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Abstract

Hybrid manufacturing of 3D-printed parts with integrated electronics has made significant progress in recent years.
The general idea of depositing conductive material and electronic components during or after the additive manufac-
turing step was successfully demonstrated for different process types. However, efficient 3D arrangement and wire
routing of circuits for seamless integration into the printing process requires the support of appropriate design soft-
ware. In this paper, we introduce an approach to integrate the wire routing into the slicing software for Fused Filament
Fabrication (FFF). This allows us to consider process parameters for each specific print, e.g. extrusion width, layer
thickness or shell thickness. The volumetric object model is first converted into a graph data structure which is then
used to apply a routing algorithm. The resulting G-code with embedded wires can be directly executed by the printer.
The G-code also includes instructions for a pick and place system to automatically produce the entire object, including
electronic components, without operator intervention.
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1. Introduction

Additive manufacturing of complex objects with ad-
ditional functionality beyond the rigid physical shape,
currently receives an increasing amount of active re-
search [1]. Several approaches towards integration of
electronics into additive manufacturing processes have
been proposed over the past two decades. A recent
survey is provided in [2]. First experiments with low-
temperature eutectic alloy [3] and silver filled polymer
ink [4] as conductive material were conducted as early
as 2004. Direct Write (DW) application of conductive
ink or paste inside or at the surface of additively man-
ufactured objects is a very common technique to create
electric contacts [5, 6, 7, 8, 9]. Other approaches in-
clude direct embedding of wires [10, 11], aerosol jetting
[12, 13] and inkjet application of low viscosity conduc-
tive inks [14, 15].

The additive electronics manufacturing technology is
maturing and increasingly adopted by industry vendors.
The Harvard-based startup Voxel8 [16] started distribu-
tion of a low-cost printer, combining FFF with a pneu-
matic ink dispenser in early 2015 but ceased develop-
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ment and support of the printer in 2017. A similar
technological approach is taken by nScrypt [17] and
Neotech AMT [18]. Both are developing FFF printers
with ink dispensers and pick and place capability, based
on high-grade mechanical components, aiming at pro-
fessional, industrial applications.

Figure 1: Printed wire, connecting a battery (left) to an LED (right,
not inserted yet), following the contour over multiple layers without
interrupting the shell. The main image was taken during the printing
process and shows an internal layer, final result at the bottom.
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For complex applications beyond the stage of a tech-
nology demonstrator, design- and routing-software be-
comes increasingly relevant to aid the rapid develop-
ment of new parts. So far, most of the printed demon-
strator objects have been carefully designed and pre-
pared with a substantial amount of manual work, which
is not a feasible option for the broader commercial ap-
plication of additively fabricated electronics. For both,
mechanical (mCAD) and electrical (eCAD) design soft-
ware, solutions are well understood and established.
However, the integration of an existing schematic into a
3D-body is a mostly unsolved challenge. This involves
positioning of components inside or at the surface of a
model and wiring and routing of electric connections,
both adjusted to the specifics of a given additive process
and the individual geometry of each model.

A straightforward but very labor-intensive solution
is the manual design of two solid models: one vol-
ume for the structural plastic and another representing
the conductive material. Channels and cavities must be
explicitly modeled, making subsequent redesigns time-
consuming. A semantic model of the circuit is not sup-
ported. This approach is often used to demonstrate the
feasibility of a printing technique, e.g. in [19] or in our
own work [20].

MacDonald et al. used a common PCB layout soft-
ware for aided design and routing of a planar circuit
which was then wrapped around an object [21]. While
this approach allows to reuse established algorithms and
design methods, it is bound to the surface of simple geo-
metric objects. Placing of components inside of the ma-
terial is not possible. As the circuit is modeled as a 2D
plane, collision avoidance by routing wires on different
layers inside of the printed object is also not supported.

In 2015 Autodesk and Voxel8 offered Project Wire
[22] as a web-based design and slicing tool, tailored
for the Voxel8 printer. Only predefined components
were supported. Conductive traces were represented
as a series of boxes, their thickness matching the layer
thickness of the object, and generated by a sequence
of mouse clicks. The final design was exported as
a multi-material model, represented by two tessellated
objects. It was then converted into G-code by a cus-
tom slicing tool which translated the conductive extru-
sions into combined axis and PWM commands to con-
trol the pressure-driven ink dispenser. The service was
shut down at the end of 2017.

Baily et al. proposed a concept to integrate compo-
nent placement and wire routing for the wire embedding
process into both, the mCAD and slicing software [23].
They use Dassault’s SolidWorks [24] for CAD model-
ing and Ultimakers Cura [25] as slicing tool. Both were

extended with custom plug-ins to provide the additional
functionality. The electronics specification is imported
from an EAGLE [26] schematic into SolidWorks, where
3D representations of the components are rendered and
cut out from the object to form cavities. Electrical con-
nections are then routed by creating a “3D sketch” and
exported into an auxiliary DXF file. The generation of
channels is not required, as the wires are thermally sub-
merged into the plastic surface. In a second step, the
object is imported into the Cura software, where a sec-
ond plug-in generates the trajectories for wire embed-
ding from the DXF file. Insertion of components and
joining of wires are executed manually. The approach is
currently limited to planar circuits within a single layer.

Carranza et al. [27] introduced a routing solution
based on the open source 3D-animation software
Blender. Similar to our approach, their extension can
import existing netlists and component geometries from
dedicated electronic design software. Components are
manually placed at arbitrary positions and orientations
in the object model. Blender’s spline implementation is
utilized to generate wire paths by manually manipulat-
ing the spline parameters for each wire. The result is
exported as a multi-material STL, one mesh represent-
ing plastic, the other conductive material. They used
a nScrypt printer to successfully fabricate a 555 timer
circuit. All components had to be placed manually in
a postprocessing step and are therefore arranged at the
surface. While this approach mostly attempts to solve
the same design challenges as our work, it does not take
into account the process parameters of the manufactur-
ing system. The authors state that they had to follow cer-
tain design rules, particularly respecting the extrusion-
width to achieve printable designs. Furthermore, auto-
mated routing is currently not possible.

Ankenbrand et al. [28] used a fully integrated 5-axis
system, combining an FFF extruder for structural ma-
terial, a piezo jet dispenser for contactless application
of conductive ink, and a vacuum gripper for camera
assisted pick and placing of electronic components.
The additional degrees of freedom allow to print wires
along free-form surfaces and place components in arbi-
trary rotations. To control the system, they integrated
slicing algorithms into a commercial CAM processor.
The model can be split into several subvolumes with
different build directions. Cavities are created upon
positioning of a component and wires are defined
manually by point to point trajectories.

In this study, we investigate the integration and rout-
ing of electronic circuits, particularly for 3-axis FFF
machines. We propose to integrate the mCAD and
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Figure 2: Left: modified 3D printer with cameras, syringe driven dispenser for conductive paste and vacuum gripper for automatic component
placing. Right: screenshot of the augmented slicing software for 3D-electronics design. The sidebar (1) contains a list of all components and their
properties (2). Routed (3) and unrouted (4) connections are represented by rubberbands. Waypoint (5) based rubberbands are created with drag and
drop (6). A slider on the right (7) allows browsing through the object layers.

eCAD models in the slicing software, where layer thick-
ness, extrusion widths and other important process pa-
rameters are known for each particular machine and
print-job. Known parameters allow the slicer to cre-
ate channels with a diameter matching the extrusion
width of the conductive material, generate solid, aligned
surfaces under wires, or to align adjacent wires with
distances chosen as a multiple of the plastic extrusion
width. The 3D circuit layout is stored in a separate file.
This way, both the 3D model and the schematic can be
modified later and the routing algorithm automatically
adopts existing connections to the new object shape.
The fundamental idea to first slicing an object and then
converting the outline of all layers into a graph repre-
sentation that is suitable for the application of search
algorithms was introduced in our previous work [29].
This article is based on a dissertation [30], particularly
on the advances described in chapter 5.

The rest of this paper is structured as follows. Sec-
tion 2 reviews our previous work, including the hard-
ware of the printer we developed to conduct experi-
ments and the basic concepts of our 3D-design- and
routing-software, which is integrated into a slicer. In
section 3, the transformation of the tessellated object
model into a graph representation is described as a pre-
requisite for the routing step. The execution of the rout-

ing algorithm is explained in section 4. During the
search, the graph is dynamically expanded with a grid
and z-connections in regions where the wire is likely
to be placed. A selection of different applications and
printed objects is presented in section 5, along with a
discussion of the results. The paper concludes with an
outlook on future work.

2. Own Previous Work

2.1. Manufacturing System

Figure 2 shows the modified, open source FFF 3D
printer which we used to develop and test our algo-
rithms. The printer is based on a Kühling & Kühling
HT500 system [31]. It consists of a 3-axis gantry sys-
tem, where the x and y axis are mounted at a fixed
height, the printbed serves as z-axis. The carriage is
equipped with:
• a standard Bondtech extruder for plastic filament,
• a screw-driven syringe extruder for conductive

paste,
• a pivot-mounted vacuum nozzle for pick and place

handling of SMD-components,
• an industrial camera (Basler acA2500-14gc).
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Figure 3: Automatic generation of a tool path with integrated electronic components and wires, illustrating the steps for channel and cavity
generation. Layer 12: Internal layers with sparse infill (density 20%). Layer 15: Several layers of solid infill to create a closed surface for wires
and components. Layer 16: Layer directly below wires and components. The internal perimeters (yellow) serve as a smooth “substrate” for the
wires, aligned with the extrusion path of the conductive material. Layer 17: Channels and cavities are generated for the extrusion of wires and
placing of components. Layer 18: Channels are covered by a region of solid infill. Layer 22: Placing of components. Layer 24: Components are
also covered by a region of solid infill, providing reliable mechanical adherence.

The conductive paste extruder and vacuum gripper
are mounted on individual, servo-controlled, micro-z-
stages and can be positioned below or above the plastic
extruder to avoid collisions. We use consumer grade
PLA and ABS materials for the plastic part and a silver
filled polymer ink (#6130F, Methode Electronics Inc) to
print the wires. The conductive ink is thermally cured,
partly by physical contact with hot plastic, with an ad-
ditional curing phase in the heated print-chamber after
the print is finished.

A second camera (bed camera) is attached to the
printer’s frame, next to the printbed, facing upwards.
The cameras are used to align components during the
pick and place process [20], calibrate the positions of
tools, and to document the build process [32].

A component tray, consisting of several small boxes,
is mounted to the printbed. SMD-components are pre-
pared by an operator prior to the print-process. Each
box holds exactly one component. The exact position of
the component inside a box is determined by the head
camera before each pick operation. This approach is
very flexible for prototyping, where each printed object
requires a different set of components.

OctoPrint [33] is used as a printserver to control
the hardware. We implemented OctoPNP [34] as an

OctoPrint plugin to integrate vision-based pick and
place operations into the normal printing process. The
shape and destination position of each component is
encoded with a custom extension into the G-code for-
mat. OctoPNP extracts this additional information upon
loading of a G-code file and assigns a component tray
box for each component.

2.2. 3D-Electronics Design Software

The general concept of our software to integrate 3D-
electronics design and routing was introduced in [35].
It is a modified version of the open source slicing soft-
ware Slic3r. The processing of physical models into a
sequence of machine movements (G-code) is the core
functionality of a slicer. Our extension allows to import
EAGLE schematics as eCAD models.

Figure 2 shows how the current state of a design is
rendered as G-code preview by the user interface. The
user can place components at different layers of the
sliced object via drag and drop, similar to the layout
step for a PCB board, by vertically “browsing” through
the object. Components can be set to arbitrary positions
and orientations, however, our pick and place system is
currently constrained to rotations in the vertical z-axis,
therefore support for wire generation after rotation in x
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Figure 4: Simple case of a single connection within one layer. The graph representation (right) of the current layer is initialized by offsetting the
contour polygons and the intersection of the rubberband with infill regions. The weight of the direct connection derived from the rubberband is
equal to the most outer perimeter. The same weight value is later also used for grid edges.

or y is not fully implemented yet. Automatic position-
ing of components is considered an interesting topic for
future research, but in many cases the exact 3D-position
of most components is determined by the application
(e.g. for sensors or LED interfaces). The netlist for each
imported schematic is internally represented by a graph
data-structure to model semantic relations. Unrouted
connections between placed components are visualized
as rubberbands. High-level routing is achieved by man-
ually setting waypoints, serving as interpolation points
for the low-level routing to generate extrusion paths.

Once the positions of components and additional wire
waypoints are set, the software automatically generates
cavities for components, channels for wires, and ap-
propriate extrusion trajectories for conductive material.
Cavities and channels are inserted into the solid object
by computing the hull polygon from the component out-
line and extrusion width of the conductive material ex-
truder for each affected layer, and subtracting this hull
polygon from the layer contour. To reduce the risk of
defects caused by the roughness of printed surfaces, an
aligned bed is generated below every wire as illustrated
in Figure 3, Layer 16. This is achieved by opening a
very narrow gap in the contour of layer L−1, causing the
generation of a perimeter around the gap which is pre-
cisely aligned with the wire. Regions below and above
the integrated electronics are marked as internal solid
surfaces and printed with high material density to form
a solid enclosure in objects with sparse infill.

3. Data Representation

The steps described in this section are a preliminary
requirement for the actual routing algorithm, but it is
safe to first read section 4 for a general understanding
of the concept.

The application of routing algorithms requires a
proper representation of the object shape and certain
relevant process parameters. To achieve this, the origi-
nal tessellated volumetric model is converted into a 3D
graph representation G = (V, E) with weighed edges:
w : E → R+

0 . All coordinates, weights and distances
are scaled by a factor of 106 and represented by inte-
ger values to avoid accuracy problems caused by float-
ing point approximations. This is the default behavior
of the underlying Slic3r implementation and was con-
tinued in our extension. On a 32 bit architecture, this
covers a workspace of 4294 mm with 1 nm resolution.
In a first step, a common slicing algorithm is applied
to split the volumetric object into a stack of 2D layer
surfaces, each represented by a set of nested polygons.
Section 3.2 describes how the resulting polygons are re-
fined in a second step to remove redundancy and guar-
antee sufficient spatial resolution for the routing algo-
rithm.

The printed contour of a given Layer Li is generated
by a set of np perimeter loops, forming the solid shell
of the object. Within this shell, which is filled with a
sparse infill structure, wires can be routed arbitrarily.
Figure 4 illustrates how the graph is initialized based on
the outline of each individual layer in a third step. Con-
ductive traces should follow, but not interrupt perimeter
extrusions if possible. Contour-aligned edges are there-
fore computed by offsetting the layer polygons inwards.
Given the number np and width δp of perimeter extru-
sions, the offset values ∆ are determined by:

∆k = k · δp +
δc + γ

2
, k ∈ {0 . . np} (1)

where δc is the extrusion width of the conductive mate-
rial and γ is the amount of extra space to form a channel
around the wire.
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Figure 5: Effect of increasing edge weights towards the object surface. Wires will follow the contour in regions with sufficient space (left) and
preserve as many extrusions as possible at narrow passages.

The edge weight w is set to a neutral value of 1.0 for
the most inner edges and gradually increases towards
the boundary:

wk = 1.0 + (np − k) · α (2)

where α can be configured in the user interface with the
default value set to 0.1. Figure 5 illustrates how the pro-
gressive weighting scheme confines conductive traces to
stay inside the object hull but still allows thinning of the
plastic material in regions with insufficient space.

To assemble a full 3D-representation, contour edges
are inserted to the graph for each layer, resulting in a
stack of unconnected sub-graphs as initial data structure
for the routing algorithm outlined in section 4.

In a final step, a straight connection is established for
the wire which is about to be routed by inserting a set of
edges along the rubberband representing this wire. The
weight of such shortcut edges is set to w = 1.0 + np ·

α which is equal to the weight of the outer perimeter
edges. The direct connection can be omitted to enforce
grid-aligned wire trajectories in infill regions.

3.1. Spatial Indices

The graph data-structure is complemented by several
indices, organized in a layer-indexed list.

For efficient spatial relation queries, an R-tree [36]
based index (spatial-index) of all vertices is maintained.
The routing algorithm depicted in section 4 often tests
whether a vertex already exists at or close to a given
coordinate. Slight deviations introduced during the slic-
ing and polygon offsetting steps frequently result in very
similar, but not identical points. Therefore, two points
with a distance below a certain threshold ε are consid-
ered to be coincident. Without a spatial index for simple
lookup operations (“is there a corresponding point on
the next layer?”) all vertices of G must be checked for
ε-coincidence individually by iterating the entire graph.
A nearest-query is used to find the closest point which
is then tested for ε-coincidence in a second step. Find-
ing all points within a bounding box can be achieved by
a within-query. This is later required to connect a new
grid vertex with all nearby existing vertices.

The routing algorithm also frequently tests whether
newly generated vertices are located inside the object’s
hull. To accelerate this, a supplementary stack of de-
flated slices is pre-computed. Each slice consists of a

Figure 6: Removing redundant collinear points. Left: tessellated representation of a typical object with many rectangular surfaces, each composed
of 2 or more triangles. Center: resulting polygon for one layer in the slicing process, containing a number of collinear points from the additional
triangle edges (red marker in 2). Right: same polygon after collinear points were removed.
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Figure 7: Alignment and upsampling of contour polygon points to guarantee maximum edge length constraint for inter-layer connections. The
contour of a single layer (center) is compared pointwise against all points of the previous layer. Right: matching points with slight deviations are
aligned (green), points matching the contour are inserted (blue). In a final step, additional points are inserted where the distance between two points
is higher than interlayer overlap (at the rectangular cutout).

polygon, containing only the infill area of one layer. To
test a vertex, the corresponding deflated slice is selected
by the z-coordinate and it is computed whether the [x, y]
coordinate is contained by this polygon.

3.2. Removing Redundancy

The triangle-based representation of tessellated sur-
faces often causes undesirable redundant information
during the slicing step. Figure 6 (left) illustrates a typ-
ical example where planar surfaces are represented by
a combination of two or more triangles. The contour
polygons for a given layer are computed by intersect-
ing a horizontal plane with all triangle edges. For the
highlighted rectangular surface (red circle), this results
in an additional vertex with a slightly different position
at each layer (Fig.6 (center)). Such a redundant point
would interrupt the search for matching inter-layer con-
nections described in section 4.2, since no correspond-
ing point exists at the adjacent layers.
Since all redundant points lie on a straight line between
two actual boundary points of the considered surface, it
is sufficient to remove collinear points. For each con-
secutive set of 3 points p1, p2, p3, the distance between
the mid point p2 and the line [p1, p3] is computed. If
the distance is below a threshold ε, p2 is skipped and
p1 is tested against the next pair of points. The result is
depicted in Fig. 6 (right).

3.3. Upsampling
In addition to the problem of redundant collinear

points, a low density of points on the perimeter poly-
gons also poses an issue. The distance between each
two adjacent points pi and pi+1 must be smaller than the
interlayer overlap (ω). Otherwise the routing al-
gorithm described in section 4 would not be able to con-
nect new vertices in infill areas to the existing perime-
ter vertices. The search for an inter-layer connection
would also fail, as the first back-traversal step would al-
ready exceed the maximum allowed overlapping length.
To solve this problem, we insert additional (redundant)
points into the contour polygons to achieve sufficient
density. This step is executed right after the object is
sliced into the layer representation prior to all offsetting
operations, resulting in a graph where the length of each
edge is guaranteed to be below ω.

If possible, additional points should be aligned with
corresponding points on adjacent layers. For a given
Layer Li all polygon points are compared to the points in
the previous layer Li−1. In a first step, coincident points
are aligned and points occurring in Li−1 but not in Li are
projected upwards (green and blue points in fig. 7). In a
second step points are inserted at remaining long edges,
e.g. at the rectangular cutout in fig. 7 which did not
exist in the previous layer. Typically, adjacent contours
are very similar and the point density is sufficient after
the projection step, the final upsampling occurs only a
few times for each object at strong contour changes.
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4. Routing

The 3D position and rotation of electronic compo-
nents within the object coordinate system is manually
set by the user and implicitly determines the position of
contact pads. The connection between two pads is de-
rived from the netlist as direct connection (rubberband).
A rubberband can be split into multiple segments by
waypoints, to define a coarse wire trajectory. SMD-pads
are treated as waypoints by the algorithm.

The routing problem is defined as finding the opti-
mal, collision-free path, connecting two points A and
B which is printable for a given object geometry and
printer configuration. A and B are two adjacent way-
points, connected by a rubberband. The routing step
is executed iteratively on all wire segments. Collisions
with previously routed wires are implicitly avoided
since the channels are treated as holes.

4.1. Planar Pathfinding

This section covers the subquestion of routing a wire
within a single layer of the object as illustrated in fig-
ure 4. The problem is extended to the 3D case in the
next section 4.2.

Once the initial graph representation of an object is
fully assembled, a modified A* algorithm is applied
to route printed wires. A* was preferred over several
other possible routing approaches. Alternative algo-
rithms could be purely grid-based with Steiner Recti-
linear Minimal Trees (SRMT) or Integer Linear Pro-
gramming (ILP) or probabilistic attempts e.g. based
on Rapidly-exploring Random Trees (RRT). A* works
well on graph representations which can encode both,
the free-form topology of an object shape and a grid
structure for infill regions.

Vertex u

Current best
path (blue)

New grid
vertices

Connection to
existing vertex

Rejected vertex 
outside of material

x

y

Figure 8: Dynamic generation of new grid vertices. Upon examina-
tion of the current vertex (blue), new vertices (red) are generated in
45°steps with a distance of ν (grid step distance). Existing ver-
tices within a radius of ν are connected in a second step (green).

1 A* (G, s, h)
2 foreach vertex u in V do // init vertices

3 d[u] := f [u] := ∞;
4 color[u] := WHITE;
5 p[u] := u;
6 end
7 color[s] := GRAY ; // init start-vertex s
8 d[s] := 0;
9 f [s] :=h(s);

10 Insert(Q, s) ; // start with vertex s
11 while Q , ∅ do
12 u← Extract-Min(Q); // examine u
13 if u == goal then return u;
14 Expand-Grid(u);
15 if Test-Z-Connection(u) then
16 Insert(Q, r)
17 end
18 foreach vertex v in Adj[u] do
19 if w(u, v) + d[u] < d[v] then
20 d[v] := w(u, v) + d[u];
21 f [v] := d[v]+ h(v);
22 p[v] := u;
23 if color[v] , GRAY then
24 color[v] := GRAY;
25 Insert(Q, v)
26 end
27 end
28 end
29 color[u] := BLACK ; // finish u
30 end
31 end

Algorithm 1: The modified A* algorithm used for
searching an optimal wire route in G based on the
formulation from the Boost Graph Library docu-
mentation [37] which was used for the implementa-
tion. In line 14 new grid vertices are inserted to the
graph, based on the shape of the layer corresponding
to the z-position of u (see section 4.1). The search
for suitable inter-layer connections and re-insertion
of the predecessor vertex r into the queue (lines 15-
17) are explained in section 4.2.

We use a priority queue based implementation with
dynamic grid generation in infill areas as outlined in Al-
gorithm 1. In the pseudocode, d(v) is the distance of ver-
tex v from the start vertex s. f (v) denotes the estimated
cost of the best path from s over v to the goal vertex t, by
combining the distance to v and the estimated distance
to the goal: f (v) = d(v) + h(v). A detailed discussion of
the heuristic function h is given below in section 4.3. Q
is a queue, holding all open vertices, ordered by their f -
value. p(v) points to the predecessor of v. The resulting
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Figure 9: Dynamically growing grid in infill regions after 100 steps (a), 200 steps (b), successful termination (c) and the resulting G-code (d).

path is obtained by traversing the predecessor map from
t to s after execution of the search algorithm.

Applied to the initial graph as shown in figure 4, the
wire trajectory would have to strictly follow the layer
contour. Individual features, i.e. the holes in figure 4,
are only connected by the direct edges, derived from
the rubberband. Infill areas are generally well suited to
contain wires, but require discrete modeling to be used
in the graph structure. To achieve this, an octagrid is
dynamically generated during the search, with a spacing
of grid step distance ν along the main axis.

Typical values for ν are in the range [1. . 2] mm. Upon
examination of the current vertex u, 8 new vertices vk

are generated in 45° steps around the current vertex dur-
ing the examination step (line 14 in alg. 1) as illustrated
in figure 8. New vertices are tested against the deflated
slices dataset and rejected if they are not located within
an infill area. In addition, all existing vertices within a
distance of one grid step are efficiently selected via the
spatial index introduced in section 3, and also connected
to u to link up the infill grid with the pre-generated con-
tour vertices. The weight of grid edges is again set to
w = 1.0+np ·α, equal to the weight of the outer perime-

ter edges.
Figure 9 illustrates how the graph is successively

growing during the search, resulting in a smooth wire
trajectory.

4.2. Z-Connections
In a 3D circuit, wires should not be constrained to a

single layer. Figure 10 illustrates different approaches to
physically establish an electric contact, spanning multi-
ple layers. For this study, only the staircase scheme was
considered, to avoid collision issues, as our printer re-
quires direct surface contact of the dispensing needle. In
Figure 12 the example case from Figure 4 is modified,
so the rubberband spans several layers.

In the graph representation, such a connection
between two adjacent layers consists of a sequence
of matching edges on both layers. The minimum
length of the overlapping sequence is implemented as
an adjustable parameter ω (interlayer overlap).
Pre-computing all grid vertices and testing all possible
combinations of sequences is computationally not
feasible. We therefore exploit the vertex examination
step of the A* algorithm to efficiently find suitable

Figure 10: Possible approaches for direct-write wires to connect different layers. Left: short, overlapping wire segments forming a staircase.
Center: a hole is printed over several layers and filled with conductive material, resembling a via. Right: printed ramp with open channel, the wire
is applied in a nonplanar extrusion. Note that both latter solutions require application of material below the current print surface, bearing the risk
of potential collisions between toolhead and printed part.
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Figure 11: Dynamic generation of inter-layer connections. The cur-
rent optimal route (blue) is traversed back, starting from vertex u. For
all green points on this path, a matching vertex was found on the
adjacent layer below. Once this overlapping segment is longer than
interlayer overlap ω, a new edge ep is inserted, connecting both
layers.

connections in the growing graph. In Algorithm 1,
line 15, the current front vertex u is tested for possible
inter-layer connections after new grid vertices are
generated but before the relaxation of outgoing edges.
The situation is illustrated in figure 11: starting from the
front vertex u, the current best path (blue) is traversed
back (green) until the sum of distances between all
visited predecessor vertices is higher than ω. Each
vertex along the path is tested for a corresponding
vertex at the layer below. Since grid edges in infill
regions of adjacent layers potentially do not exist yet,
they are also inserted to the graph at the previous
and next layer, according to the scheme depicted in
Figure 8. If every point on the current best path has
a matching point on an adjacent layer, an inter-layer
edge ep (orange) is added between the first matching
point r on the path and the point corresponding to u in
the previous layer up. Accordingly for the layer above.
Traversing only the current best path limits the search
for suitable inter-layer connections to sequences along
the approximate direction towards the goal.

The weight w(r, up) of ep is set to the sum of the
weights of all edges from u to r plus a constant factor Γ:

w(r, un) =

r∑
k=u

w(k, p(k)) + Γ (3)

where p(k) denotes the predecessor of k. Γ is exposed
to the user interface as a parameter to control how much
layer changes should be avoided. The factor directly

determines how far the algorithm explores horizontally
around an obstacle before it considers searching at the
next layers. Inter-layer connections tend to be less re-
liable than extrusions on one layer and require addi-
tional tool changes. Depending on the geometry of the
individual object and the machine characteristics, layer
changes can be either favored or avoided.

The new graph edge ep potentially shortcuts a longer
sequence of vertices, particularly in cases where the
wire follows the contour of an object, as it is the case
in figure 11. This edge is used by the routing algorithm,
but not for toolpath generation. To preserve the origi-
nal trajectory, all overlapping sections are stored in an
external key-value data structure overlap-map. Each
interlayer-edge is mapped by its vertex-ID to a sequence
of 2D-points, representing the overlapping portion of
two extrusions at the layer boundary, excluding the z-
information (the blue segment of the path). Upon gen-
eration of the G-code for the conductive wire extrusion,
this sequence is inserted twice, with different z-values
for both affected layers, such that the end of an extru-
sion is repeated on the next layer to close the electric
connection. The resulting overlap is highlighted in the
overlay in figure 12.

The newly generated edge ep(r, up) is not directly
connected to front vertex u and will therefore not be
evaluated during the current A* examination step.
However, vertex r is already on the closed list (marked
as black) and will also not be evaluated again, leaving
ep as a “dead branch” in the original formulation of A*.
To enforce a re-evaluation, r is inserted into the queue
Q again with f (r) = 0, pushing r to the front. In the
next iteration, r is examined again with up being in the
adjacency list, correctly appending them to the fringe if
their relaxation is successful.

4.3. Heuristic
The A* algorithm uses a distance function to

accelerate the search by providing additional infor-
mation about the general direction to the goal. As
the remaining distance is not known in advance, a
heuristic h(u) is required to estimate the distance
from u to the goal vertex t. A good heuristic utilizes
previously available knowledge about the topology of
the search domain and can significantly influence the
performance. A heuristic is said to be admissible if it
never overestimates the actual minimal cost between
the current vertex u and the goal t. The cost measure
is not equal to the length of the path, as the edges
have different weights. Slightly longer trajectories
along a perimeter are therefore favored over a straight
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Figure 12: Rendering of a tool path where the wire automatically follows the contour of both an increasingly inclined surface (bowl) and a long
straight vertical surface (cube). Several layer changes occur along both structures. Note that the wire is intentionally covered with sparse infill only
for transparency visualization. The overlay shows a close-up of one layer-change, viewed from the opposite side.

connection. The cost of the resulting path returned
by A* is minimal, if the heuristic also is monotonic.
However, even with a monotonic, admissible heuristic,
all equally suitable paths with the same distance to the
current fringe must be evaluated. In a 3D-object, if
the straight path is obstructed by the object’s shape,
the number of evaluated vertices increases cubically
with the difference between path length estimated by
the heuristic and actual path length. The search can be
accelerated by relaxing the admissibility criterion and
slightly overestimating the actual distance. By adding a
factor ε (ε > 1) to the heuristic, the search is performed
faster, producing a non-optimal result. The result is still
guaranteed to have a cost of at most ε times the optimal
path [38].

The heuristic in our algorithm is based on the Euclid-
ian distance:

h(u) =

√
dx

2 + dy
2 + dz

2 · ε (4)

If start and goal vertex are located on different layers,
this heuristic significantly underestimates the remain-
ing z-distance due to the additional constant cost factor
Γ which prevents the generation of unnecessary inter-
layer connections. For a more accurate estimation of the
z-distance, the number of layer changes must be counted
(the layer thickness is not fixed and can vary through-
out the object). With ||dz|| denoting the number of layer
hops, the actual distance is estimated as:

h(u) =
(√

dx
2 + dy

2 + dz
2 + ||dz|| · Γ

)
· ε (5)

It is generally preferable to equally distribute layer
transitions along the trace and avoid local “stacks” of
short extrusions. To support a uniform distribution, the

heuristic is further extended with an adaptive factor:

zα =
∣∣∣∣( dxy

Dxy
−

dz

Dz

)
· ν

∣∣∣∣ (6)

Dxy is the horizontal Euclidean distance between start
and goal vertex. dxy/Dxy therefore describes the remain-
ing portion of the horizontal distance in the range [0..1],
accordingly for the vertical ratio. The difference of both
ratios is exactly zero along the direct line between both
vertices. In other words: the difference becomes a pos-
itive value if the z-distance is too small or too large
in relation to the remaining xy-distance. The result is
a dimensionless number and must be scaled to match
the dimension of the grid. It is therefore multiplied
with the grid step distance ν, so the additional es-
timated value does not exceed one grid step. The result-
ing heuristic is implemented for the A* algorithm as:

h(u) =
(√

dx
2 + dy

2 + dz
2 + ||dz|| · Γ + zα

)
· ε (7)

5. Results and Discussion

Several objects were sliced and printed to test the
ability of the algorithms introduced in this paper to cope
with different fundamental situations.

Figure 13 (left) shows an example where the wires
are forced to detour over several layers to stay inside
the object while at the same time avoiding a collision.
Wire collisions are inherently avoided by routing wires
sequentially. For each individual net, the routing graph
is updated and only regions not yet occupied by previ-
ously routed wires are considered. As the result strongly
depends on the order in which wires are processed, a
heuristic is used to optimize the order of the rubber-
bands prior to the routing step. The general approach
is simple and common in literature:
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Figure 13: Wire routing over a high vertical distance. Left: wires stay inside the object and avoid collisions. Infill material is not rendered. Center:
sparse infill enabled to demonstrate how the routing preserves the configured shell thickness with a solid bed in all situations. Right: Vertical
connections pushed to their limits, connecting an LED at the top of the lighthouse.

1. For each net, count the number of collisions with
other nets, assuming that all connections are real-
ized as straight lines. Sort the nets ascending by
number of collisions.

2. In a second step, order nets with an equal number
of collisions by their length, starting with the short-
est.

Computing the collision of wires represented by a one-
dimensional line is insufficient, as the extrusion and
channel around the wires have a certain extent. This
is solved by first inflating all other wires to the channel
diameter and computing intersections with the inflated
polygons. Existing methods from VLSI and PCB rout-
ing could be applied to improve the results, e.g. setting
predominant directions for some layers or Rip-Up and
Reroute.

Figure 13 (right) illustrates the limitations of z-
connections in layered manufacturing. While the rout-
ing algorithm finds a solution, the required staircase pat-
tern induces a convoluted trajectory. Excessive stack-
ing of short conductive segments causes frequent tool
changes and increases the risk of defects. Additional
slicing directions or reliable generation of vias span-
ning higher distances are an important future research
topic. Note that both objects shown in figure 13 are
non-functional renderings to illustrate the result of our
algorithm in specific situations and were not actually
printed.

Direct embedding of electronics is particularly use-
ful in situations where a small number of wires need to
be integrated into a complex geometry or where compo-
nents require a particular positioning. For a high num-
ber of components and wire density, PCBs are better

suited. The “instrumented object” presented in figure 14
is a good illustration for this finding. It is used to record
dexterous manipulation movements executed with the
human hand in a tracking setup. The position of the fin-
gers, the object itself, and contact forces between finger
and object are recorded and generalized into parametric
motion primitives to control robotic multi-finger grip-
pers. Optical proximity sensors embedded into the walls
of the inner part measure the deformation of the outer
hull, which acts as a deformable cantilever. If the me-
chanical properties of the structure are known, the force
inducing the deformation can be computed. The data are
collected by a microcontroller and sent to a host com-
puter via Bluetooth connection. The highly integrated
circuit of the microcontroller and an additional Inertial
Measurement Unit (IMU) for position tracking are pro-
vided on a PCB and connected to the printed circuit via
the base-plate.

The full 3D integration of a circuit is demonstrated
in figure 15. Three LEDs are integrated into the boat
as navigation lights, connected to a microcontroller. A
few waypoints were manually set at the bow of the boat
to achieve a small distance to the components, and two
waypoints at the stern for the power connection. The
routing algorithm then generated the trajectories. It
successfully kept the wires within the material at the
walls and avoided collisions with other wires and com-
ponents.

The graph based routing algorithm currently adds
significant additional processing time to the slic-
ing process. A runtime profiling of the C++

code suggests that one single geometric subroutine
(Point::projection onto) within the polygon han-
dling library accounts for approximately 90% of the
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Figure 14: Top: force sensitive “instrumented object” with fully 3D-printed integrated electronics. Optical proximity sensors are embedded into
the surfaces to measure deformations of the outer hull. The sides of the inner part are printed as a foldable object which is bent into the final form
during assembly. Bottom: force data recorded during a manipulation task. The position of the object is tracked with a camera, using the visual
marker attached to the bottom.

Figure 15: 3D circuit generated with the autorouting algorithm. Top: transparent rendering of the G-code with conductive material highlighted in
purple. Left: Stitched high-resolution image of an intermediate layer, recorded during the printing process. The image shows plastic extrusion,
a long wire extrusion following the perimeter and contour of the portside boat hull, and short wire extrusions for the LEDs and microcontroller
in the bow. Right: Printed boat with blinking LEDs. The pattern is generated by a pre-programmed Attiny85-20 microcontroller. STL-model by
Maxlarsen under CC BY 3.0 license.
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processing time. This subroutine could potentially be
accelerated by optimization or caching. The execution
time also depends on the A* graph search parameters
and object shape. To estimate the effect we processed
our demonstration object shown in figure 4 with a com-
bination of different parameters:

Table 1: Runtime analysis of the routing algorithm for different pa-
rameters.

Grid
resolution

Heuristic
(ε)

Inter-layer
cost (Γ) Runtime

Path
length

Baseline 1.0 mm 1.0 1.5 3.26 s 77.1 mm

Reso-
lution

0.5 mm
1.0 1.5

12.92 s 70.3 mm
1.5 mm 2.35 s 77.2 mm
2.0 mm 1.28 s 77.5 mm

ε 1.0 mm 1.1 1.5 2.87 s 77.1 mm
1.3 1.27 s 78.2 mm

Γ 1.0 mm 1.0
0.0 7.44 s 74.2 mm
3.0 2.83 s 77.1 mm
5.0 2.50 s 76.8 mm

Combined 2.0 mm 1.3 5.0 0.60 s 78.7 mm

For each row, the altered parameter is highlighted
in bold text. All other parameters are fixed. Reducing
the grid resolution decreases the runtime as expected.
Increasing the heuristic factor ε yields lower runtimes at
the cost of less optimal trajectories. The layer-changing
cost Γ also significantly affects the runtime. A low value
prefers horizontal exploration, including several adja-
cent layers while a high value minimizes the number of
layer changes for the potential cost of longer in-layer
detours. The special case of Γ = 0 eliminates layer
changing costs at all, often resulting in an “undulating”
trajectory, jumping up and down between the layers.
The differences in the resulting path length reflect situa-
tions where the wire ”dives” below the cutout (∼70 mm)
or circumvents the obstacle on a higher layer (∼77 mm).

As a reference: slicing only the plastic object with-
out any electronics requires 0.085 s. Compared to the
print-time of more than one hour, the computing time to
prepare the G-code is negligible in all cases.

6. Conclusion

In this paper we introduced an approach to arrange,
route and print electronic circuits in 3D objects. The
pre-defined schematic is imported into a slicing soft-
ware where the position of components and wire way-
points are set in a preview rendering of the G-code. The
solid object is then translated into a graph representa-
tion, suitable for the application of a routing algorithm,
which generates printable extrusion paths for conduc-
tive material, well embedded into the structure of the

printed object. We successfully demonstrated the ap-
proach with several applications and printed objects.

The slicing and routing software described in this pa-
per is available under an AGPLv3 license on Github:

https://github.com/platsch/Slic3r/tree/electronics

Be aware that this is a highly experimental implementa-
tion and currently not suitable for production use.

Future research clearly should attempt to overcome
the limitations caused by the layered structure. For the
3-axis gantry systems used in this paper this could be
achieved by developing solutions for vertical vias as de-
picted in figure 10. A promising approach is the appli-
cation of design and routing concepts for 4-/5-axis ma-
nufacturing machines. Those configurations are com-
monly used for machining and allow deposition of ma-
terial from every angle, facilitating conformal printing
of wires along the surface or partitioning of the entire
object into multiple subvolumes with different slicing-
and wire-routing-directions. The same applies to com-
ponent handling where rotations are currently only pos-
sible around the z-axis. While the basic hardware al-
ready exists, collision avoidance and G-code generation
for additive processing still pose major challenges.
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