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CHAPTER 1 

INTRODUCTION TO VHDL  
 

1.1 Introduction  

 VHDL is an acronym for VHSIC Hardware Description language 

(VHSIC  stands for Very High Speed Integrated Circuits ). It is a 

hardware description language that can be used to model a digital 

system at many levels of abstraction ranging from the algorithmic level 

to the gate level. The complexity of the digital system being modeled 

could vary from that of a simple gate to a complete digital electronic 

system, or anything in between. 

 VHDL can be regarded as an integrated amalgamation of the 

following languages  :  sequential + concurrent + netlist + timing 

specification + waveform generation language. 

 Therefore the language has constructs that enable to express the 

concurrent or sequential behavior of a digital system with or without 

timing. It also allows modeling the system as an interconnection of 

components. Test waveforms can also be generated using the same 

constructs. All the above constructs can be combined to provide a 

comprehensive description of the system in a single model. 

1.2 Advantages of VHDL over other hardware description 

languages. 

1. The language con be used as a communication medium 

between different CAD  and CAE tools. 

2. The language supports hierarchy; that is, a digital system can 

be modeled as a set of interconnected components each 

component in turn can be modeled as a set of interconnected 

subcomponents. 
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3. The language supports flexible design methodologies top-

down, bottom-up or mixed. 

4. It supports both synchronous and asynchronous timing models. 

5. Various digital modeling techniques such as finite state 

machine descriptions, algorithmic descriptions and Boolean 

equations can be modeled using this language. 

6. The language is publicly available, human readable, machine 

readable and not proprietary. 

7. The language supports three basic different description styles: 

structural, dataflow and behavioral. 

8. Arbitrarily large designs can be modeled using the language 

and therefore there are no limitations imposed by the language 

on the size of a design. 

9. The model can not only describe the functionality of a design, 

but also contain information about the design itself in terms of 

user-defined attributes, such as total area and speed. 

10. The capability of defining new data types provides the power 

to describe and simulate a new design technology at a very 

high level of abstraction without any concern about the 

implementation details. 

1.3 VHDL : The language. 

 VHDL  is a hardware description language that can be used to 

model a digital system. The digital system con be as simple as a logic 

gate or as complex as a complete electronic system. The building blocks 

of this language are called as design units. The four main design units 

are: 

 

1. Entity declaration. 

2. Architecture declaration. 
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3. Configuration declaration. 

4. Package. 

The design units are described below. 

 

1.3.1 Entity declaration. 

 An entity is modeled using an entity declaration and at least one 

architecture body. The entity declaration describes the external view of 

an entity. The entity declaration specifies the name of the entity being 

modeled and lists the set of interface ports. Ports are signals (wires) 

through which the entity communicates with the other models in its 

external environment. An example for a half-adder circuit is given 

below. 

                         

                                                 

                                    Figure 1.1 : Half Adder          

                    entity HALF-ADDER is 

port ( A,B : in BIT; SUM, CARRY : out BIT ); 

end HALF-ADDER; 

 

This entity called HALF-ADDER has two input ports A and B ; and two 

output ports SUM and CARRY .Bit is a predefined type of language 

construct. 

1.3.2 Architecture body. 

The second important part of a VHDL source file is the architecture 

declaration. Every entity declaration you write must be accompanied by 

at least one corresponding architecture. An architecture declaration is a 
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statement that describes the underlying function and/or structure of a 

circuit. Each architecture in your design must be associated by name 

with one entity in the design.  The architecture body contains the 

internal description of the entity. The internal structure can be specified 

by any of the following modeling  styles. 

a) As a set of interconnected components. 

b) As a set of concurrent  assignment statements. 

c) As a set of sequential assignment statements. 

d) As a combination of the above three. 

The different modeling styles are explained below. 

 

a. Structural style of modeling. 

This is modeled as a set of interconnected components. Such a 

model for a HALF-ADDER is shown. 

   

 architecture HA-STRUCTURE of HALF-ADDER is  

  component XOR2 

 port ( X,Y: in BIT ; N: out BIT )  

 end component; 

component AND2 

port ( L,M : in BIT; N: out BIT); 

end component; 

begin 

 X1: XOR2 port map (A,B,SUM); 

 A1: AND2 port map (A,B, CARRY); 

end  HA-STRUCTURE ;   

 

 The name of the architecture body is HA-STRUCTURE. The 

architecture body is composed of  two parts : the declarative part (before 
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the keyword begin ) and the statement part ( after keyword begin). Two 

component declarations are present in the declarative part of the 

architecture body. 

 The declared components are instantiated in the statement part of 

the architecture body using component instantiation statements. X1 and 

A1 are the component labels for these component instantiations. The 

first component instantiation statement labeled X1, shows that signals A 

and B are connected to output port SUM of the HALF-ADDER entity. 

Similarly in the second component instantiation statement, signals A 

and B are connected to ports L and M of the AND2 component, while 

port N is connected to the CARRY-PORT of the HALF-ADDER. 

b. Data flow style of modeling. 

In this modeling style, the flow of data through the entity is expressed 

primarily using concurrent signal assignment statements. The structure 

of the entity is not explicitly specified in this modeling style, but it can 

be implicitly deduced. The data flow model of the HALF-ADDER 

entity is given below.  

  

  architecture DATAFLOW of  HALF-ADDER is  

  begin  

   SUM <= A xor B after 8ns;  

   CARRY <= A and B after 4ns; 

  end DATAFLOW; 

 

 The dataflow is described using two concurrent signal assignment 

statements (or sequential signal assignment statements ). In a signal 

assignment statement, the symbol <= implies an assignment of a value 

to a signal. The value of the expression on the right hand side of the 

statement is computed and is assigned to the signal on the lef t-hand side, 
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called the target signal. A concurrent signal assignment statement is 

executed only when any signal used in the expression on the right hand 

side has an event on it, that is the value for the signal changes. Delay 

information is also included in the signal assignment statements using 

‘after’ clauses. 

c. Behavioral style of modeling 

 The behavioral style of modeling specifies the behavior of an 

entity as a set of statements that are executed sequentially in the 

specified  process statement. They do  not explicitly specify the structure 

of the entity but merely its functionality . A process statement is a 

concurrent statement that can appear within an architecture body. For 

example, consider the following behavioral model for the same HALF-

ADDER. 

 

  architecture BEHAVIOR of  HALF-ADDER is  

  begin  

   process ( A,B ) 

   variable X,Y: BIT; 

  begin  

   X:=A ; 

   Y:=B ; 

   SUM <= X xor Y; 

   CARRY <= X and Y; 

   end process; 

   end BEHAVIOR; 

 

 A process statement also has a declarative part (before keyword 

begin) and a statement part ( between keyword begin and end process ). 

The statements appearing within the statement part are executed 
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sequentially. The list of signals specified within the parentheses after the 

keyword process constitutes a sensitivity list and the process statement 

is invoked whenever there is and event on any signal in the list. In the 

example when an event occurs on A of B the statements appearing 

within the process statement are executed sequentially. However, all the 

processes that appear in a design are executed concurrently. 

 The variable declaration ( starts with the keyword variable ) 

declares two variables X and Y. A variable is different from a signal in 

that it is always assigned a value instantaneously and the assignment 

operator used is := compound symbol; contrast this with a signal that is 

assigned a value always after a certain delay and the assignment 

operator used to assign a value to a signal is the <= compound signal. 

Variables declared within a process have their scope limited to that 

process. Signal assignment statements appearing within a process are 

called sequential signal assignment statements. Sequential signal 

assignment statements, including variable assignment statements, are 

executed sequentially independent of whether an event occurs on any 

signals in its right-hand side expression. 

d. Mixed style of modeling 

 It is possible to mix the three modeling styles which were 

described before in a single architecture body. That is, within an 

architecture body, we could use component instantiation statements and 

concurrent statements, therefore their order of appearance within the 

architecture body is not important. Note that a process statement itself is 

a concurrent statement; however statements within a process statement 

art always executed sequentially. 

1.3.3  Configuration declaration  

 A configuration declaration is used to select one of the possibly 

many architecture bodies that an entity may have, and to bind 
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component instances to entities. For structural models, configurations 

can be thought of as the parts list for the model. For component 

instances, the configuration specifies from many architectures for an 

entity, which architecture to use for a specific instance. When the 

configuration for an entity-architecture combination is compiled into the 

library, a simulatable object is created. An example of the configuration 

declaration for the HALF-ADDER entity is given below. 

  library CMOS-LIB, MY-LIB; 

  configuration  CONFIG of  HALF-ADDER is  

  for HA-STRUCTURE  

  for X1: XOR2 

  use entity CMOS-LIB.XOR-GATE (DATAFLOW); 

  end for ; 

  for A1 : AND2  

  use configuration MY-LIB.AND-CONFIG; 

  end for; 

  end for; 

  end CONFIG; 

1.3.4 Package 

The primary purpose of a package is to encapsulate elements that can be 

shared (globally) among two or more design units. A package is a 

common storage area used to hold data to be shared among a number of 

entities. Declaring data inside of a package allows the data to be 

referenced by other entities; thus, the data can be shared.  

A package consists of two parts: a package declaration section and a 

package body. The package declaration defines the interface for the 

package, much the same way that the entity defines the interface for a 

model. The package body specifies the actual behavior of the package in 

the same method that the architecture statement does for a model. 
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1.3.5 Testbench 

A testbench is used to verify the functionality of a design. The testbench 

allows the designer to verify the functionality of the design at each step 

in the HDL synthesis-based methodology. When the designer makes a 

small change to fix an error, the change can be tested to make sure that it 

did not affect other parts of the design. New versions of the design can 

be verified against known good results to verify compatibility. 

A testbench is at the highest level in the hierarchy of the design. The 

testbench instantiates the design under test (DUT). It provides the 

necessary input stimulus to the DUT and examines the output from the 

DUT. 
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CHAPTER 2 

HIGH LEVEL DESIGN FLOW  

The high level design flow is illustrated in figure 2.1. Each step is 

explained below. 

2.1 HDL Capture 

After the specification has been completed, the designer can begin the 

process of implementation. The designer creates the VHDL description 

that describes the clock-by-clock behaviour of the design. The VHDL 

code for entities of the design are entered. The designer then checks the 

design for any syntax errors. After all syntax errors are removed, the 

VHDL code is verified for correctness by simulating it. 

 

2.2 RTL Simulation 

In RTL Simulation, the designer uses stimulus that represents the design 

environment to drive the design and check to make sure that the results 

are correct. A standard VHDL simulator can be used to read the RTL 

VHDL description and verify the correctness of the design. 

The VHDL simulator reads the VHDL description, compiles it into an 

internal format, and then executes the compiled format using test 

vectors. The designer can look at the output of the simulation and 

determine whether or not the design is working properly. The designer 

has a number of ways to analyze the output. The most common are 

waveform output and tabular output. 
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Design Specif icat ion

Place and Route

HDL Capture

Funct ional Gate
Simulation

RTL Simulat ion

RTL Synthesis

Post Layout
Timing Simulation

 

Figure 2.1  High Level Design Flow 
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2.3 VHDL Synthesis 

The goal of the VHDL Synthesis step is to create a design that 

implements the required functionality and matches the designer’s 

constraints in speed, area, or power. 

The VHDL synthesis tools convert the VHDL description into a netlist 

in the target FPGA or ASIC technology. For the VHDL synthesis tool to 

perform this step properly, the VHDL code must be written in a 

particular style.  

The designer reads the VHDL design into the VHDL synthesis tool. The 

tool reports syntax errors and synthesis errors. Synthesis errors usually 

result from the designer using constructs that are not synthesisable. In 

such cases, the code has to be modified and simulated again. 

The synthesiser produces an output netlist in the target technology and a 

number of report files. The designer looks at the report files to 

determine the quality of the synthesis output. The most common output 

files are the timing report and the area report. Most synthesis tools 

produce a number of other reports such as hierarchy reports, instance 

reports, net reports, power reports, and others. The most useful reports 

initially are the timing and area reports, because these are usually the 

most critical factors. 

The area report shows the designer how much of the resources of the 

chip the design has consumed. The designer can tell if the design is too 

big for a particular chip and the designer needs to target a larger chip, if 

the design should go into a smaller chip, or if the current chip will work 

fine. The designer can also get a relative size of the design to use in later 

stages of the design process. 

The timing report shows the timing of critical paths or specified paths of 

the design. The designer examines the timing of the critical paths closely  

because these paths ultimately determine how fast the design can run. If 
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the longest path is a timing critical part of the design and is not meeting 

the speed requirements of the designer, then the designer may have to 

modify the VHDL code or try new timing constraints to make the path 

meet timing. 

The most important type of output data is the netlist for the design in the 

target technology. This output is a gate or macro level output in a format 

compatible with the place and route tools that are used to implement the 

design in the target chip. For instance, most place and route tools for 

FPGA technologies take in an EDIF netlist as an input format. The 

primitives used in the netlist are those used in the synthesis library to 

describe the technology. The place and route tools understand what to 

do with these primitives in terms of how to place a primitive and how to 

route wires to them. 

 

2.4 Functional Gate Level Verification 

Some designers might want to do a quick check on the output of the 

synthesis tool to make sure that the synthesis tool produced a design that 

is functionally correct. To do this the designer runs a functional gate 

level verification. The designer reads the output VHDL netlist from the 

synthesis tool plus a library of the synthesis primitives into the VHDL 

simulator and runs the simulation using the RTL Verification vectors. If 

the design matches, then the synthesis tool did not produce logic 

mismatches; if it does not match, the designer needs to debug the VHDL 

RTL description to see what is wrong. 

 

2.5 Place and Route 

Place and route tools are used to take the design netlist and implement 

the design in the target technology device. The place and route tools 

place each primitive from the netlist into an appropriate location on the 
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target device and then route signals between the primitives to connect 

the devices according to the netlist. 

One input to the place and route tools is the netlist in EDIF or another 

netlist format. Another input to some place and route tools is the timing 

constraints, which give the place and route tools an indication about 

which signals have critical timing associated with them and to route 

these nets in the most timing efficient manner. These nets are typically 

identified during the static timing analysis process during synthesis. 

These constraints tell the place and route tool to place the primitives in 

close proximity to one another and to use the fastest routing. The closer 

the cells are, the shorter the routed signals will be and the shorter the 

time delay. 

Some place and route tools allow the designer to specify the placement 

of large parts of the design. This process is also known as floor 

planning. Floor planning allows the user to pick locations on the chip for 

large blocks of the design so that routing wires are as short as possible. 

The designer lays out blocks on the chip as general areas. The floor 

planner feeds this information to the place and route tools so that these 

blocks are placed properly. After the cells are placed, the router makes 

the appropriate connections. 

After all the cells are place and routed, the output of the place and route 

tools consists of data files that can be used to implement the chip. In the 

case of FPGAs, these files describe all of the connections needed to fuse 

FPGAs macrocells to implement the functionality required. Anti-fuse 

FPGAa use this information to burn the appropriate fuses while 

reprogrammable devices download this information to the device to turn 

on the appropriate transistor connections. 

The other output from the place and route software is a file used to 

generate the timing file. This file describes the actual timing of the 
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programmed FPGA device or the final ASIC device. This timing file, as 

much as possible, describes the timing extracted from the device when it 

is plugged into the system for testing. The most common format of this 

file for most simulators is the SDF(Standard Delay Format). 

 

2.6 Post Layout Timing Simulation 
After the place and route process has completed, the designer will want 

to verify the results of the place and route process. There are a number 

of methods to accomplish this task but the most common is to use post 

route gate level simulation. This simulation combines the netlist used for 

place and route with the timing file from the place and route process into 

a simulation that checks both functionality and timing of the design. The 

designer can run the simulation and generate accurate output waveforms 

that show whether or not the device is operating properly and if the 

timing is being met. For VHDL simulations this requires a VITAL-

compliant (standard way of describing designs with designs that allow 

SDF timing back annotation) VHDL Simulator. 
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CHAPTER 3 

ILLUSTRATION OF VHDL  

 

VHDL is illustrated below using an example of a floating point adder 

unit which forms a part of the processor. 

 

3.1 The IEEE Floating-Point Standard 

The IEEE computer society has developed a standard for binary 

floating-point arithmetic. The basic format sizes are 32 bits (single 

precision) and 64 bits (double precision). The 32 bit format is used in 

this project. As shown in figure, the 32 bits used in single precision are 

divide into three separate groups : bits 0 through 22 form the mantissa, 

bits 23 through 30 form the exponent, and bit 31 is the sign bit.  

 

31 30       23 22                      0 

sign         exponent                                              Mantissa 

Figure 3.1 IEEE format of floating point numbers 

 
These bits form the floating point number, V , by the following relation: 

                                         V  =  (-1)
s 

*  M *  2
E – 127 

 

The term : (-1)
s 

, simply means that the sign bit, S, is 0 for a positive 

number and 1 for a negative number. The variable, E, is the number 

between 0 and 255 represented by the eight exponent bits. Subtracting 

127 from this number allows the exponent term to run from 2-127  to 2128 . 

In other words, the exponent is stored in offset binary with an offset of 

127. 

The mantissa, M, is formed from the 23 bits as a binary fraction. For 

example, the binary fraction: 1.0101, means: 1 + 0/2 + ¼ + 0/8 + 1/16. 
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Floating point numbers are normalized in the same way as scientific 

notation, that is there is only one nonzero digit left of the decimal point 

(called a binary point in base 2). Since the only nonzero number that 

exists in base two is 1, the leading digit in the mantissa will always be a 

1, and therefore does not need to be stored. The 23 stored bits, referred 

to by the notation: m22, m21, ………………., m0, form the mantissa according 

to: 

 

     M= 1.m22m21m20 ………….. m0. 

 

In other words, M=1 + m22 * 2
-1 + m21 * 2

-2 + m20 * 2
-3 + …… 

Zero is treated as a special number. For zero, the exponent and mantissa 

bits are all zeroes. The sign bit could be ‘1’ or ‘0’. 

 

3.2 The Addition Process 

The steps involved in the addition/subtraction process are the following : 

1. Choose the number with the smaller exponent. 

2. Concatenate the implied ‘1’ bit with the mantissa of this number 

and shift it to the right by a number of steps equal to the 

difference in exponents. 

3. Set the exponent of the result equal to the larger exponent. 

4. Concatenate the implied ‘1’ bit with the mantissa of the larger 

number and add/subtract it to the shifted number. 

5. Determine the sign of the result (to be explained later). 

6. Normalize the result. 

It must be noted that, two binary numbers, which are n bits wide, when 

added, may give a result (n+1) bits wide. Hence the result of the 

summation will be (n+1) bits wide. After addition, if the (n+1)th  bit is 

‘1’ then, during normalization, the exponent is incremented by one and 
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the bits starting from the nth bit are taken as the mantissa of the result. If 

the (n+1)th bit is ‘0’ after addition, then the bits starting from the (n-1)th 

bit is taken as the mantissa of the result. This is clear from the 

illustration given below. 

First consider a situation when the (n+1)th bit of the result is ‘0’. 

Let  a = 10.5                1.0101 * 23   

and  b =  2.25       1.0010 * 21 

Note that the mantissa of “a” will store “0101” and that of “b” , “0010”, 

since the ‘1’ to the left of the binary point is implied. 

After performing shifting of the mantissa of “b” and adding it to the 

mantissa of “a” we have 

  1010100   + 
  0010010 
  ----------- 
  1100110 
The number represented by this result is 1.100110 * 23 , which is 12.75 

in decimal. Since the ‘1’ to the left of the binary point is implied, 

“100110” is stored as the mantissa of the result and (127+3) as the 

exponent. 

Now, let us consider a situation where the (n+1)th bit of the result 

becomes ‘1’. 

Let a = 5.5                    1.011 * 22                  

and b =14.5                   1.1101 * 23 

After shifting and adding we have, 

  11101   + 
  01011 
  -------- 
    101000    
The number represented by this result is 10.1000 * 23, which is 20. 

However this is not normalized. Normalizing this, we have 1.01000 * 24  

Hence “01000” is stored as mantissa and (127+4) as the exponent of the 

result. 



                                                                                 M.A. College of Engineering  

FFT Processor 23 

Normalizing the difference of two numbers is pretty straight forward.  

Here the mantissa of the result is shifted to the left until the nth bit is ‘1’. 

For each shifting the exponent is to be decremented by 1. After the nth  

bit becomes ‘1’, the mantissa of the normalised result is taken from the 

(n-1)th bit. This is because the ‘1’ in the nth bit is implied and does not 

need to be stored. 

 

3.3 Hardware Implementation of Floating-Point Adder 

The hardware implementation of the floating-point adder unit involves 

considerable circuitry. The block diagram of the implementation is 

given above. Following is a description of each block of the unit. A 

detailed explanation of the VHDL description of the units is also given. 

Note that the adder uses two clocks. One is the main clock. Only the 

control unit requires this clock. The numbers are inputted during the 

positive cycle of this clock. This clock is also the clock synchronising 

the various blocks of the FFT processor, which is to be discussed later 

on. The other clock, which has a much shorter period, is local to the 

adder. All the blocks within the adder are synchronised using this clock.  

3.3.1 Block diagram of the adder 

ensub ,enswap, enshift, addpulse, normalise : enables corresponding blocks. 

Finsub, finswap, finshift, finish_sum, end_all : signals to indicate that the 

corresponding operations in the blocks are over. 

A_small : high if “a” is the smaller number. 

Numzero : high when one of the numbers is zero. 

Change : pulse given to control unit whenever there is a change in input numbers. 

Exp : exponent of larger number. 

Addsub : high if operation to be performed is addition , else it is low. 

Signbit : high if sign of result is –ve. If result is positive this signal is low.  

Reset : Resets the control unit. 

Rst : resets all signals of all the units. 
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Figure 3.2  Block diagram of floating point adder unit 

3.3.2 The Subtractor Unit  

The function of the subtractor is to output the difference between the 

mantissas of the two numbers. This information is given to the shifter, 

which shifts the smaller number by the difference between the 

mantissas. Apart from this, the subtractor gives information to the 

control unit as to which number is smaller and if any number is zero. Let 

us examine the code in detail. 

The first process begins with the “if(rst_sub=’0’)” statement. This 

indicates that we need to proceed only if the reset port to the unit is low. 

That is if the reset port to the subtractor is high then we need only to set 
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the outputs to zero.  Note that the ninth bit is an extra bit. This bit is set 

to ‘1’ whenever there is a valid output number.  

First the exponent and the mantissa are separated and written into separate 

variables. Since the involvement of zero in calculations need to be treated 

separately, the presence of zero in any one of the numbers is detected by the 

statements “if(c=0)” and “if(d=0)”. When one of the numbers is zero, the 

num_zero signal is set high. If “a” is zero then the output of “zero_detect” is 

“01”. If “b” is zero then this signal is set to “10”. 

Several cases arise now .If the exponents of the two numbers are different, 

then the smaller one is to be found out and corresponding subtractions made. If 

the exponents are same then the smaller of the mantissas is to be found out. In 

certain cases the numbers are the same. All these cases need to be treated 

separately. The signal “a_smaller” is used to give information to the control 

unit as to which number is smaller. When the calculations are finished the 

“fin_sub” signal goes high. All these signals are reset at the start of the next set 

of calculations. 

There is a second process , namely “process(a,b)” within the same architecture. 

This process is executed whenever there is a change in the input numbers. This 

process sends out a pulse called “change” to the control unit indicating that the 

input numbers have changed. The control unit then restarts the entire cycle of 

operations. 

 

3.3.3 The Swap Unit 

The function of the swap unit is to input the mantissa of the smaller number to 

the shifter, so that it can shift it by the difference in the exponents of the two 

numbers. The implicit ‘1’ in the IEEE standard format is concatenated with the 

mantissa of the larger number and inputted to the summer. Also the L.S.B (last 

8 bits) of the mantissa of this number is set to zero. The mantissa of the 

smaller number is given to the shifter. In this case also a ‘1’ is concatenated 
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with the mantissa (for checking  in the shifter for a valid number) and the last 

nine bits are set to zero. After the swapping process is over the signal 

finish_swap is set high to inform the control unit. When the rst_swap signal is 

high the signals are reset. 

 

3.3.4 The Shifter Unit 

There are two “if” blocks in the shifter. This is needed because the 

assignments to “sub_temp” and “temp2” in the first block get updated in 

the next “if” block and multiple clock cycles may be needed to complete 

the shifting process. Therefore the first “if” block needs to be executed 

only  the first time  a number arrives . Let us examine this in detail. 

Initially when the processor is reset (this is done after each addition by 

the control unit) the variables “temp3” and “t” are set to ‘1’ while 

“finish_out” is reset to ‘0’. Whenever there is a change in the signals 

given in the sensitivity list of the process, the process is executed. The 

first time , the first “if” block is executed and thereafter the second 

block. However we see that “temp3” is reset to ‘0’ in the first block. So 

the first block will not be executed in the next clock cycle (since this 

block is executed only for “temp3=’1’) unless the block is reset (when 

reset, temp3 is set to ‘1’). 

In the second “if” block the unit first checks whether  “sub_temp” is 

zero (last 8 bits only). If so, no more shifting is required and the number 

is outputted. Also finish_out is set to ‘1’. If  “sub_temp” is not zero then 

the mantissa is shifted to the right .  At the same time “sub_temp” is 

decremented.  This is given by the lines 

                                         elsif ( clock = '1' and clock'event ) then  

                                         temp2 := '0' & temp2 (31 downto 1) ;  

                                         sub_temp := sub_temp - "00000001" ; 
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In the next clock cycle the unit will first check if “sub_temp” is zero. If 

so,  it outputs the shifted mantissa to the summer, else the number is 

shifted again. 

 

3.3.5 The Summer Unit 

This unit sums/subtracts the shifted mantissa of the smaller number and 

the mantissa of the larger number. The summer adds an extra bit ‘0’ and 

then sums/subtracts. This is to find out whether normalization is 

required or not. If normalization (that is converting the result to IEEE 

format) is required, this bit will be set. The information as to whether 

addition or subtraction is to be done is received from the control unit 

from the signal “addsub”. After the addition process, the “add_finish” 

signal is set.   

 

3.3.6 The Normalize Unit 

As in the case of the shifter unit, there are two “if” blocks in this section 

for the same reasons as that of the shifter unit. The normalization 

process when one number is zero and when addition or subtraction is 

used are all different from one another. The block under 

“if(addsub=’0’)” gives the normalization procedure for the difference of 

two numbers. The first statement under this section is 

“if(numb_temp=0)”. Such a condition occurs only when both numbers 

are  same  and they have been subtracted (or they are of opposite sign 

and they have been added). Obviously the result is zero. If a number is 

normalized then numb_temp(31) is zero. In that case the final difference 

can be outputted. If numb_temp(31) is not ‘1’ then it has to be shifted to 

the left in successive clock cycles until this bit is ‘1’.  For each shifting 

the exponent is decremented by one. This is given by the section  

   elsif (clock = '1' and clock'event) then 
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      numb_temp := numb_temp(30 downto 0) & '0' ; 

      temp_exp := temp_exp - "00000001" ;    

     end if ;                      

The normalization process of addition is different. Here, if normalisation 

is required, the bit “numb_temp(32)” will be ‘1’. In that case, the 

exponent has to be incremented by one. If numb_temp(32)=’0’,  the bits 

of the sign, exponent and the mantissa just have to concantanated. 

When one of the numbers is zero, the sum is the other number. The 

subtractor gives the information as to which number is zero. If “a” is 

zero, “zero_detect” is “01” and the output is “b”. If “b” is zero, 

“zero_detect” is “10” and the output is “a”. 

 

3.3.7 The Control Unit 

The control unit is the “H.O.D” of the floating point adder unit. It 

controls all the activities of the adder. It is modelled as a finite state 

machine. So first, something about finite state machines. 

Finite State Machine 

A finite state machine (FSM) is a type of sequential circuit that is 

designed to sequence through specific patterns of finite states in a 

predetermined sequential manner. There are two types of FSM, Mealy 

and Moore. The Moore FSM has outputs that are a function of current 

state only. The Mealy FSM has outputs that are a function of the 

current state and primary inputs. An FSM consists of three parts: 

1. Sequential Current State Register: The register, a set of n-bit flip-

flops 

(state vector flip-flops) clocked by a single clock signal is used 

to hold the state vector (current state or simply state) of the FSM. A 

state vector with a length of n-bit has 2 to the power n possible binary 

patterns, known as state encoding. Often, not all 2 to the power n 
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patterns are needed, so the unused ones should be designed not to occur 

during normal operation. Alternatively, an FSM with m-state requires at 

least 

log2 (m) state vector flip-flops. 

2. Combinational Next State Logic: An FSM can only be in one state 

at any given time, and each active transition of the clock causes it 

to change from its current state to the next state, as defined by the 

next state logic. The next state is a function of the FSM’s inputs and 

its current state. 

3. Combinational Output Logic: Outputs are normally a function of 

the current state and possibly the FSM’s primary inputs (in the case 

of a Mealy FSM). Often in a Moore FSM, you may want to derive 

the outputs from the next state instead of the current state, when 

the outputs are registered for faster clock-to-out timings. 

Moore and Mealy FSM structures are shown below. 
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Figure 3.3 Structure of a finite state machine 

 

The control unit is modelled as a Mealy machine. The transition from 

one state to another, takes place during the rising clock edge of the 

positive cycle. If there is any change in the input numbers to the 

subtractor, it sends out a pulse (change) to the control unit. The control 

unit then starts the FSM from the beginning. Also when the processor is 

reset externally, the control unit sets the current state as the first state 

(reset1). The second process carries out all these actions. 

The actions performed in each state in the first process are given below: 

Reset1 : Here, the various signals are reset.  

Reset2 : The reset signal is brought back to ‘0’. (Otherwise the outputs 

will not change, it will remain as 0). Also the subtractor and swap units 

are enabled. 

Reset3 : If one of the numbers is zero (indicated by “zero_num”) the 

shifting and adding operations can be skipped. Therefore the next state 

is set as reset5. Else, the shifter is enabled when the operations in the 

subtractor and swap unit are over. Also the subtractor and swap unit are 

disabled. 

Reset4 : When the function of the shifter is over, it is disabled and the 

adder unit is enabled.  
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Reset5 : If one of the numbers is zero, the normalize unit is enabled. 

Else, the normalize unit is enabled when the function of the summer is 

over. Also, the summer is disabled in this state. 

Reset6 : Here, when the normalisation process is over, the normalize 

unit is disabled in the positive cycle. Later, in the negative cycle, the 

state is transferred to reset1.  

Reset7 : This is the state into which the control unit comes when the 

adder is disabled. 

There is a third process in the control unit which gives information to 

the summer as to whether addition or subtraction is to be performed. It 

also gives information to the normalize unit about the sign of the result. 

The operation to be performed and the sign of the result are determined 

from the following table. 

 

Sign of  a Sign of b Bigger number Sign of result 
Operation to be 

performed 

+ve +ve a or b +ve addition 

-ve -ve a or b -ve addition 

+ve -ve a -ve subtraction 

-ve +ve a -ve subtraction 

+ve 

 

-ve 

 

b 

 

+ve 

 

subtraction 

 

-ve +ve b +ve subtraction 



                                                                                 M.A. College of Engineering  

FFT Processor 32 

“a_small” (this signal is high if a is smaller) will be high even if both the 

numbers are same. However it can be seen from the table that this does 

not affect the result. 

 

3.3.8 The Testbench for the Adder 

The testbench is used to give the external inputs to the adder. It also 

instantiates the various components. The input numbers are read in 

through a text file. Here, each bit has to be read in and assigned to a 

local variable. Then the entire string is assigned to either “a” or ”b”.  

The results are obtained in a file named simili.lst (if you use VHDL 

Simili for simulation). It can be examined to verify the correctness of 

the design. 
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CHAPTER 4 

THE FOURIER TRANSFORM  

 

4.1  The Discrete Fourier Transform. 

Fourier analysis is a family of mathematical techniques, all based on 

decomposing signals into sinusoids. The discrete Fourier transform 

(DFT) is the family member used with digitized signals. Fourier analysis 

is named after Jean Baptiste Joseph Fourier (1768-1830), a French 

mathematician and physicist. 

4.1.1 An Illustration 

Figure 4.1 and 4.2 illustrate how a signal can be decomposed into 

sine and cosine waves. Figure 4.1 shows an example signal, 16 

points long, running from sample number 0 to 15. Figure 4.2 shows 

the Fourier decomposition of this signal, nine cosine waves and 

nine sine waves, each with a different frequency and amplitude. 

Although far from obvious, these 18 sinusoids add to produce the 

waveform in figure 4.1. For discrete signals,this decomposition is 

mathematically exact. There is no difference between the signal in 

figure 4.1 and the sum of the signals in figure 4.2, just as there is no  

difference between 7 and 3+4. The frequency of each sinusoid is 

fixed; only the amplitude is changed depending on the shape of the 

waveform being decomposed. 

                          

Figure 4.1 Sampled values of signal being decomposed 
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Figure 4.2  Sine and cosine waves after Fourier decomposition 

 

                         There are an infinite number of ways that a signal can be 

decomposed. The goal of decomposition is to end up with something 
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easier to deal with than the original signal. For example, impulse 

decomposition allows signals to be examined one point at a time, 

leading to the powerful technique of convolution. In Fourier 

Transforms, the component sine and cosine waves are simpler than the 

original signal because they have a property that the original signal does 

not have: sinusoidal fidelity. A sinusoidal input to a system is 

guaranteed to produce a sinusoidal output. Only the amplitude and phase 

of the signal can change; the frequency and wave shape must remain the 

same. Sinusoids are the only waveform that have this useful property. 

While square and triangular decompositions are possible, there is no 

general reason for them to be useful. 

 

4.1.2 Types of Fourier Transforms   

   A signal can be either continuous or discrete, and it can be either 

periodic or aperiodic. The combination of these two features generates 

the four categories of  Fourier Transforms  described below and 

illustrated in Fig. 4.3 

 

Aperiodic-Continuous 

This includes, for example, decaying exponentials and the Gaussian 

curve. These signals extend to both positive and negative infinity 

without repeating in a periodic pattern. The Fourier Transform for this 

type of signal is simply called the Fourier Transform. 

Periodic-Continuous 

Here the examples include: sine waves, square waves, and any 

waveform that repeats itself in a regular pattern from negative to 

positive infinity. This version of the Fourier transform is called the 

Fourier Series. 
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Aperiodic-Discrete 

These signals are only defined at discrete points between positive and 

negative infinity, and do not repeat themselves in a periodic fashion. 

This type of Fourier transform is called the Discrete Time Fourier 

Transform. 

Periodic-Discrete 

These are discrete signals that repeat themselves in a periodic fashion 

from negative to positive infinity. This class of Fourier Transform is 

sometimes called the Discrete Fourier Series, but is most often called the 

Discrete Fourier Transform. 

Figure 4.3  Types of Fourier Transforms 

 Fourier transform that can be used in DSP is the DFT. In other words, 

digital computers can only work with information that is discrete and 

finite in length. 

Each of the four Fourier Transforms can be subdivided into real and 

complex versions. The real version is the simplest, using ordinary 

numbers and algebra for the synthesis and decomposition. For instance, 
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Fig. 4.1 is an example of the real DFT. The complex versions of the four 

Fourier transforms are immensely more complicated, requiring the use 

of complex numbers. These are numbers such as:3+4j , where j is equal 

to root of-1 (electrical engineers use the variable j, while 

mathematicians use the variable, i). Complex mathematics can quickly 

become overwhelming, even to those that specialize in DSP. 

 

4.1.3 Notation and Format of the Real DFT 

 
Figure 4.4 DFT Terminology 

 
As shown in Fig. 4.4, the discrete Fourier transform changes an N point 

input signal into two point output signals. The input signal contains the 

amplitude of the signal being decomposed, while the two output signals 

contain the amplitudes of the component sine and cosine waves (scaled 

in a way we will discuss shortly). The input signal is said to be in the 

time domain. This is because the most common type of signal entering 

the DFT is composed of samples which are obtained at regular intervals 

of time. 

Any kind of sampled data can be fed into the DFT, regardless of how it 

was acquired. When you see the term "time domain" in Fourier analysis, 
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it may actually refer to samples taken over time, or it might be a general 

reference to any discrete signal that is being decomposed. The term 

frequency domain is used to describe the amplitudes of the sine and 

cosine waves   . The number of samples in the time domain is usually 

represented by the variable N. In most cases, the samples run from 0 to 

N-1, rather than 1 to N. 

Standard DSP notation uses lower case letters to represent time domain 

signals, such as  x[ ],y[ ] , and z[ ] . The corresponding upper case letters 

are X[ ] Y[ ] Z[ ], used to represent their frequency domains, that is X[ ], 

Y[ ], Z[ ].For illustration, assume an N point time domain signal is 

contained in x[ ]. The frequency domain of this signal is called X[ ], and 

consists of two parts, each  an array of N/2+1 samples . These are called 

the Real part of  X[ ] ,written 

as Re X[ ] , and the Imaginary part of X[ ], written as Im X[ ] . The 

values Re X[ ] are the amplitudes of the cosine waves, while the values 

in Im X[ ]are the amplitudes of the sine waves. 

 

4.1.4 DFT Basis Functions 

The sine and cosine waves used in the DFT are commonly called the 

DFT basis functions. In other words, the output of the DFT is a set of 

numbers that represent amplitudes. The basis functions are a set of sine 

and cosine waves with unity amplitude. If you assign each amplitude 

(the frequency domain) to the proper sine or cosine wave (the basis 

functions), the result is a set of scaled sine and cosine waves that can be 

added to form the time domain signal. 

The DFT basis functions are generated from the equations: 

Ck[ i ]  =  cos(2 pi k i /N) 

Sk[ i ] =  sin (2 pi k i /N) 
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where  Ck[ ]  is the cosine wave for the amplitude held in Re X[k], and  

Sk[ ] is the sine wave for the amplitude held in Im X[k]. Each is N points 

in length, running from i = 0 to N-1. The parameter, k, determines the 

frequency of the wave. In an N point DFT ,k takes on values between 0 

and N/2. The DFT basis functions are illustrated in figure 4.5. 

Let's look at several of these basis functions in detail. Figure (a) shows 

the cosine wave c0[]. This is a cosine wave of zero frequency, which is a 

constant. This means that it holds the average value of all the points in 

the time domain signal. In electronics, it would be said that ReX[0] 

holds  the DC offset. The sine wave of zero frequency, s0[] is shown in 

(b), and is composed of all zeros. Since this can not affect the time 

domain signal being synthesized, its value is irrelevant, and always set 

to zero.  

Figures (c) & (d) show c10[]&s10[] the sinusoids that complete ten cycles 

in the N points. These correspond to ReX[10] & ImX[10] , respectively. 

The highest frequencies in the basis functions are shown in (g) and (h). 

These are  cN/2[]  & sN/2[]  or in this example, c16[]& s16[]. This discrete 

cosine wave alternates in value between 1 and -1, which can be 

interpreted as sampling a continuous sinusoid at the peaks. In contrast, 

the discrete sine wave contains all zeros, resulting from sampling at the 

zero crossings. This makes the value of  ImX[N/2] the same as ImX[0], 

always equal to zero, and does not affect the synthesis of the time 

domain signal. 
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Figure 4.5 DFT Basis Functions 

 

Here's a puzzle: If there are N samples entering the DFT, and samples 

N+2 exiting, where did the extra information come from? The answer: 

two of the output samples contain no information, allowing the other N 

samples to be fully independent. The points that carry no information 

are ImX[N/2] and ImX[0] , the samples that always have a value of 

zero. 
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4.1.5 Analysis, Calculating the DFT 

The DFT analysis equations are given below. Here, x[i] is the time 

domain signal being analyzed. ReX[k] and ImX[k] are the frequency 

domain signals being calculated. The index i runs from 0 to N-1 while k 

runs from 0 to N/2.  

 

The DFT can be calculated in three completely different ways. First, the 

problem can be approached as a set of simultaneous equations. 

Thismethod is useful for understanding the DFT, but it is too inefficient 

to beof practical use. The second method is called correlation. This is 

based on detecting  a known waveform in another signal. The third 

method, called the Fast Fourier Transform (FFT), is an ingenious 

algorithm that decomposes a DFT with N points, into N  DFTs each with 

a single point. The FFT is typically hundreds of times faster thanthe 

other methods. It is important to remember that all three of these 

methods produce an identical output. In actual practice, correlation is 

the preferred technique if the DFT has less than about 32 points, 

otherwise the FFT is used. 

 

 4.2 THE FAST FOURIER TRANSFORM 

J.W. Cooley and J.W. Tukey are given credit for bringing the FFT to the 

world in their paper: "An algorithm for the machine calculation of 

complex Fourier Series," Mathematics Computation. The FFT is based 

on the complex DFT, a more sophisticated version of the real DFT. 
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These transforms are named for the way each represents data, that is, 

using complex numbers or using real numbers.        

 

       Figure 4.6 Comparison of real and complex DFT 

4.2.1 Comparison of  Real DFT and Complex DFT 

Since the FFT is an algorithm for calculating the complex DFT, it is 

important to understand how to transfer real DFT data into and out of 

the complex DFT format. The real DFT transforms an N point time 

domain signal into two point frequency domain signals. The time 

domain N/ 2 + 1 signal is called just that: the time domain signal. The 

two signals in the frequency domain are called the real part and the 

imaginary part, holding the amplitudes of the cosine waves and sine 

waves, respectively.  

In comparison, the complex DFT transforms two N point time domain 

signals into two N point frequency domain signals. The two time 

domain signals are called the real part and the imaginary part, just as 
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are the frequency domain signals. In spite of their names, all of the 

values in these arrays are just ordinary numbers. Suppose there is an N 

point signal, and we need to calculate the real DFT by using the FFT, 

then set all of the samples in the imaginary part to zero. Then, move the 

N point signal into the real part of the complex DFT's time domain, and 

compute DFT using the FFT. The result is a real and an imaginary signal 

in the frequency domain, each composed of N points. Samples 0 through 

N/2 of these signals correspond to the real DFT's spectrum . 

 

4.2.2 How the FFT works 

The FFT is a complicated algorithm, and its details are usually left to 

those that specialize in such things. This section describes the general 

operation of the FFT.  The FFT operates by decomposing an N point 

time domain signal into N time domain signals each composed of a 

single point. The second step is to calculate the N frequency spectra 

corresponding to these N time domain signals. Lastly, the N spectra are 

synthesized into a single frequency spectrum.  There are basically two 

algorithms in FFT. One is called DIT(Decimation in time) and the other 

DIF(Decimation in frequency).  

In the DIT approach, the initial DFT is divided into two transforms, one 

consisting of a transform of even samples and the other consisting of a 

transform of odd samples. This process is carried out until the initial 

transform is reduced to a set of two-point transforms of the initial data. 

An in-place FFT implementation allows the results of each FFT 

butterfly to replace its inputs. In order to use an in place algorithm it is 

necessary either to re-order the input data array or re-order the output 

array. This re-ordering is simply arranged by reversing the address bits. 

Before starting to calculate the DFT, the input data is ordered such that 

its address is bit-reversed, that is if the binary address of the required 
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sequence of data is 110 then the bit reversed version on that becomes 

011. Given below is the signal flow graph for the DIT.  

 

Figure 4.7 Signal flow graph for 8 point DIT-FFT with input 

scrambling 

This signal flow graph consists of a number of butterflies. Each butterfly 

takes a pair of input data values A and B and outputs A1  and  B1  as 

shown below. The input data is multiplied by the twiddle factor WN
k . 

The solid dots represent addition\subtraction. 

              

      where      

            A=  x + jX  

    B= y + jY 

    WN
k 
� ������	
�� – ������	
�� 

                A1 = x1 + jX 1 = A + BWN
k  

                      B1=  y1 + jY 1  =  A - BWN
k 

Subsituting for A , B and WN
k we obtain 
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����-�	���
��������X-���	�
���� � �	���
������ 

An in-place algorithm makes efficient use of memory as the transformed 

data overwrites the input data. However the indexing required to 

determine which location in memory to fetch the input data is quite 

complex. This is explained later on when the processor is discussed. 

The algorithm used in this processor is a variation of the DIT algorithm 

discussed above. The difference is that output scrambling is used and the 

inputs are in natural order. The signal flow graph for this algorithm is 

shown below. 

 

 Figure 4.8 Signal flow graph for modified DIT-FFT  

with output scrambling 

An illustration of the modified version of the FFT-DIT algorithm is 

given below. The inputs are first stored in the addresses shown. The 

results of FFT computation at each stage is shown. The results of the 

final stage are outputted in a bit reversed addresses. 
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4.3 Synthesis, Calculating the Inverse DFT 

The  synthesis equation is given as 

 

In words, any N point signal,  can be created by adding  N/2 + 1 cosine 

waves and N/2+1 sine waves. The amplitudes of the cosine and sine 

waves are held in the arrays ReX[k](bar) and ImX[k](bar),  respectively. 

The synthesis equation multiplies these amplitudes by the basis 

Addr

ess 
Input 

O/P of  

Stage 1 

O/P of  

stage 2 

O/P of  

stage 3 

Bit-reversed 

 O/P 

0000 -1 -3 -2.5 0 0 

0001 1 -0.5 2.5 -5 2.06065 

0010 1.5 0.5 -3.5 -3.5 -3.5 

0011 2 3 -3.5 -3.5 -0.06065 

0100 -2 1 1 2.06065 -5 

0101 -1.5 2.5 2.5 -0.06065 -0.06065 

0110 -1 2.5 1 -0.06065 -3.5 

0111 1 1 2.5 2.06065 2.06065 

1000 0 0 0 0 0 

1001 0 0 0 0 -4.9749 

1010 0 0 0 3.5 3.5 

1011 0 0 0 -3.5 0.02515 

1100 0 0 -2.5 -4.9749 0 

1101 0 0 -1 -0.02515 -0.2515 

1110 0 0 2.5 0.02515 -3.5 

1111 0 0 1 4.9749 4.9749 
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functions to create a set of scaled sine and cosine waves. Adding the 

scaled sine and cosine waves produces the time domain signal,  x[ i]. 

In the equation given above, the arrays are called  ReX[k](bar) and  

ImX[k](bar),  rather than ReX[k] and  ImX[k],  This is because the 

amplitudes needed for synthesis  are slightly different from the 

frequency domain  ReX[k] and  ImX[k],  of a signal . This is the scaling 

Im X[ k] Re X[ k] factor issue we referred to earlier. Although the 

conversion is only a simple normalization, it is a common bug in 

computer programs. The conversion between the two is given by 

   ReX[k](bar) = ReX[k]/(N/2) 

   ImX[k](bar) = -ImX[k]/(N/2) 

except for two special cases 

   ReX[0](bar) = ReX[0]/N 

   ReX[N/2](bar) = ReX[N/2]/N 

 The conversion is required because the frequency domain is defined as 

a spectral density. Figure 4.9 shows how this works. Spectral density 

describes how much signal (amplitude) is present per unit of bandwidth. 

To convert the sinusoidal amplitudes into a spectral density, divide each 

amplitude by the bandwidth represented by each amplitude. This brings 

up the next issue: how do we determine the bandwidth of each of the 

discrete frequencies in the frequency domain? As shown in the figure, 

the bandwidth can be defined by drawing dividing lines between the 

samples. For instance, sample number 5 occurs in the band between 4.5 

and 5.5; sample number 6 occurs in the band between 5.5 and 6.5, etc. 

Expressed as a fraction of the total bandwidth (i.e.,  N/2), bandwidth of 

each sample is 2/N. An exception to this is the samples on each end, 

which have one-half of this bandwidth, 1/N. This accounts for the 

scaling factor between the sinusoidal amplitudes and frequency domain, 

as well as the additional factor of two needed for the first and last 
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samples. Why the negation of the imaginary part? This is done solely to 

make the real DFT consistent with its big brother, the complex DFT. 

 
Figure 4.9 The bandwidth of frequency domain signals 

 
4.4 Illustration of the DFT and IDFT in Matlab 

Given below is an illustration of the DFT and IDFT in Matlab using an 

8-point sample. The commands and the results are given. 

» p=[-1.2 2 3 -2 0 4 -0.23 1]; %sampled input 

» y=fft(p); %command to find the fft 

» disp(y); % display y 

Columns 1 through 4  

   6.5700            -0.4929 + 0.3055i  -3.9700 - 7.0000i  -1.9071 + 6.7655i 

 Columns 5 through 8  

  -3.4300            -1.9071 - 6.7655i  -3.9700 + 7.0000i  -0.4929 - 0.3055i 

 

 

% The commands below calculate the time domain signal from the  

% frequency domain signals obtained above. 

% The following lines take into account the scaling factors. 

» cosines=real(y)/4; % divide real parts of fft result by N/2 

» sines=-imag(y)/4; % divide imaginary parts of fft result –N/2 

» %special cases of scaling factors are given below 
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» cosines(1)=real(y(1))/8; 

» cosines(5)=real(y(5))/8; 

» i=[0 1 2 3 4 5 6 7]; 

% The following lines multiply the basis functions with the 

corresponding amplitudes 

% obtained from the fft. Note that only frequencies from 0 to N/2 are 

present. 

% Also the Matlab representation of an array starts from cosines(1) and 

not cosines(0) 

» c0=cosines(1)*cos(2*3.1416*0*i/8);% d.c component 

» c1=cosines(2)*cos(2*3.1416*1*i/8);% amplitude of cos wave 

completing one cycle in the sampled %period  

» c2=cosines(3)*cos(2*3.1416*2*i/8); 

» c3=cosines(4)*cos(2*3.1416*3*i/8); 

» c4=cosines(5)*cos(2*3.1416*4*i/8); 

» s0=sines(1)*sin(2*3.1416*0*i/8); 

» s1=sines(2)*sin(2*3.1416*1*i/8); 

» s2=sines(3)*sin(2*3.1416*2*i/8); 

» s3=sines(4)*sin(2*3.1416*3*i/8); 

» s4=sines(5)*sin(2*3.1416*4*i/8); 

» result=c0+c1+c2+c3+c4+s0+s1+s2+s3+s4; 

» disp(result); 

Columns 1 through 8 

   -1.2000    2.0000    3.0000   -2.0000    0.0001    4.0000   -0.2300   1.000  

 It can be seen that the results of the synthesis agree with that of the 

original signal.   
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CHAPTER 5 
ARCHITECTURAL DESIGN OF THE FFT PROCESSOR  

 
The operation of the processor is partitioned into three main processes. 

These are the Data Input, FFT Computation and Data Output Processes. 

This partitioning is depicted in  figure 5.1 

                        
Figure 5.1 FFT Computation Process 

 
                  The processing cycle starts with the Data input process, 

during which sampled data is read in and stored in memory. During the 

FFT computation process, the FFT is computed on the stored data. 

During the Output process results of the FFT computation process are 

read out to the outside world. These processes are then mapped to 

hardware resources. 

 
5.1 Block Diagram of the FFT Processor                          
The FFT processor architecture consists of a single radix-2 butterfly 

(which is referred as the butterfly processing element), a dual-port FIFO 

RAM, a coefficient ROM, a controller and an address generation unit. It 

also consists of a “cycles unit” to separate the various cycles, namely c0, 

c1, c2 and c3. This unit also outputs the ORed  output of some of these 

cycles such as c0 and c1. The process of writing into the RAM during 

FFT computation, begins only five cycles after the first data is read from 

RAM. The counter unit is used to count these cycles.  Data pathways are 

in the form of 32-bit  signed fractions. Coefficients are stored as 32-bit 

words. 
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Figure 5.2 Block diagram of FFT Processor 

A brief description of the important signals used in the processor is given below. 

staged : goes high when a stage is completed 

fftd : goes high when the fft operation is completed 

iod : goes high when input/output operation is over. 

fft_en : enable the address generation for collecting data from RAM during FFT 

calculation. 

io_mode : High when input/output operation is going on. 

op : High when output is going on. 
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ip : high when input is going on. 

romgen_en : enable address generation for ROM. 

ram_rd : RAM read address. 

ram_wr : RAM write address. 

enbw : write enable of RAM 

enbor : read enable of RAM 

out_data : Data to be written to RAM 

data_ram : Data from RAM to butterfly processing unit. 

cycles : consists of signals c0,c1,c2,c3,c0_c1,c2_c3,c0_c2,c1_c3. 

Note that the clock and initialising signals are not sho wn. 

 
5.2 BUTTERFLY PROCESSING ELEMENT . 
 

 

Figure 5.3 Butterfly Processing Unit 

 The butterfly is the basic operator of the FFT. It computes a two 

point FFT. It takes two data words from memory and computes the FFT. 

The results are written back to the same memory locations of the inputs 

since an in-place algorithm is used. The butterfly processing element 

computes one butterfly every four cycles. It consists of one  multiplier 

and two adders. The architecture for it is depicted in figure 5.3 
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   The blocks named “R” are a set of negative edge triggered D flip 

flops. That is, each “R” block consists of 32 D-flip flops, one for each 

bit.  Similarly the “L” blocks are positive level triggered. The blocks 

labeled “D” are positive edge triggered.  c0,c1,c2 and c3 are the four 

cycles  that the processor takes to calculate the fft . c0,c1 is the OR 

output of the cycles c0 and c1. Similarly c0,c2 is the OR output of c0 

and c2 and so forth. This is shown below.        

 

c lock_main

c0

c1

c2

c3

c0,c1
 

 

Figure 5.4 Waveform of the cycles used in the FFT Processor 
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The multiplier forms the partial products of the complex multiplication 

and produces a 32 bit signed fraction result. This is followed by the first 

adder which sums the cross products of the complex multiplication. The 

second adder produces the sum and difference outputs of the butterfly 

operation. 

 The butterfly processing element takes four cycles to compute a 

two-point FFT/ It has a latency of five cycles. Three of these are 

associated with the fact that three input components (y,Y,and x) are 

required before an output can be computed and two are to pipeline the 

RAM read and write operations. The table shows the outputs of the 

multipliers, adders and that read from the ROM and RAM and written 

into RAM at different cycles. 

 

 
5.3 ADDRESS GENERATION UNIT (AGU) 

The purpose of the address generation unit is to provide the RAM and 

the coefficient ROM with the correct addresses. It also keeps track of 

which butterfly is being computed in which stage. For an 8-point 

complex FFT there are 3 stages, each stage consisting of 4 butterflies. In 
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addition to this, since address generation during input, output and FFT 

computation processes are different, it keeps track of the mode of 

operation of the chip and generates the required address. Mode of 

operation information is supplied by the controller. A block level 

description of the AGU is shown in figure. The different blocks of the 

AGU are explained separately.  

 

    

 

STAGE
GENER-
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staged

butterf ly_iod
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Figure 5.5 Address Generation Unit 
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5.3.1 Butterfly Generator 

The butterfly generator keeps track of which butterfly is being computed 

in a particular stage. It is basically a 16-bit up counter since for an 8-

point complex FFT there are 4 butterflies per stage and 4 data words per 

butterfly (2 real and 2 imaginary).   

Note that during data input and data output the butterfly is incremented 

by the clock while during fft computation mode, it is incremented by c0. 

This is because, 4 cycles are required to calculate one butterfly. Hence 

the butterfly generator need to be incremented only once in every 4 

cycles during FFT computation. The selection between the clock and 

“c0” is made by a multiplexer. The “io mode” signal is used for 

selection. Whenever “clear” or “stage done” signal goes high, the 

butterfly generator is reset. The  block diagram of the butterfly generator 

is shown above.  

  

5.3.2 Stage Generator 

The stage generator keeps track of the current stage in the FFT 

computation. The stage generator supplies the base index generator with 

the number of the stage which is currently being computed. For an 8-

point FFT there are 3 stages hence the stage generator is basically a two-

bit counter which is incremented one every 4 butterfly counts (by the 

“stage done” signal).  

 

5.3.3  Stage done_IO done block 

It generates four signals called “iod”, “staged” “fftd” and “butterfly”. 

“iod” is generated when the “butterfly” count is 15. This informs the 

controller that either the Data Input or Output process is finished. The 

“staged” signal is generated when the current “butterfly” count is 4, it 

increments the stage generator by one. fftd is generated when the stage 
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count is three. This informs the controller that the FFT computation 

process is done, hence forcing the FFT processor to start the data output 

process. The block diagram of stage generator is shown below. 

 

5.3.4 IO-Address Generator 

  The IO Address Generator is responsible for generating addresses 

for RAM during the data input and output processes. During the data 

input process the output of the butterfly generator “butterfly” can be 

used for addressing 16 locations in the RAM. However, during the data 

output process data should be bit-reversed while being written to outside 

world. Once in the output process bit-reversed address is selected by the 

muxes in the AGU. The controller gives the information whether the 

process is in IO-mode through the signal “iomode”. This signal is used 

for selecting.  

5.3.5 Base Index Generator 

The base index generator produces the addresses for reading from the 
RAM as shown below. 
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  The butterfly has two complex data inputs A and B. These inputs 

when manipulated produces four outputs x, X, y and Y, out of which X 

and Y are complex values. Since there are 16 locations, the BIG is a 

mode-16 counter. The FFT mode address generation is quite complex. 

The address generation is obtained  by manipulating the outputs of the 

butterfly generator, stage generator and the cycles.  

Let the 4 bits of the butterfly signal be “b3 b2 b1 b0”. Then the 
addresses for “x”, “X” , “y” and “Y” are generated based on the 
following table. 
 
   Stage         Address for “x”        Stage       Address for  “y”  

1 0 0 b1 b0 1 0 1 b1 b0 
2 0 b1 0 b0 2 0 b1 1 b0 
3 0 b1 b0 0 3 0 b1 b0 1 

 
The addresses for “X” and “Y” are obtained by setting the M.S.B as ‘1’ 

in the addresses of “x” and “y” respectively. Note that  “y” is collected 

from RAM during cycle “c0”. Similarly “x” is collected during the cycle 

“c2” and so forth. This information is used while writing the VHDL 

code. 

5.3.6 The Shifters 

As mentioned, the result of FFT computation is written back into the 

same location as it was read. However there is a latency of five cycles. 

For example, if “y” is read from the RAM during cycle “c0”, “y1” is 

written into the same location as it was read after 5 cycles,  that is during 

cycle “c1”. So the read address is shifted in each on these five cycles. 

The output of the last shifter is then given as the write address. 

 

5.3.7 ROM Address Generator 

The ROM Address Generator is used to provide the ROM with the 

correct address for collecting the sine and cosine co-efficients. It is 

modeled based on the co-efficients given in the signal flow graph.                            
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5.4  CONTROLLER 

The controller is modeled as a finite state machine which has been 

explained already.  It has seven states ranging from rst1 to rst 7. The 

actions performed in each state is clearly commented in the code. The 

signals to and from the controller are given in figure 5.2. 

 

5.5 RAM AND  ROM 

The input is first written into the RAM. During the FFT computation 

process, the FFT of two numbers is calculated and written back into the 

same location in the RAM. During the output process bit reversed 

address is given to the RAM and it outputs the data in it accordingly. 

  The ROM is used to store the sine and cosine values needed in the 

FFT computation process. It outputs these values according to the 

address given to it. 
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CHAPTER 6 
RTL SIMULATION OF THE FFT PROCESSOR  

 
The implementation of the design in VHDL is verified by simulating the 

design. A testbench is written for the purpose. It reads the input data 

from a file. It also instantiates the various components and provides the 

main entity with the signals such as clock and reset. Note that there are 

two clocks, one for the entire processor and the other(of a higher 

frequency) for the adder unit. Alternatively, one can use a multiply by n 

circuit to increase the frequency of the main clock and give it to the 

adder. 

The results of simulation and a comparison with the results of Matlab 

are given below.  It is seen that the first value (d.c value) of our design 

does not match with the Matlab result. This is a bug in the program 

which we could not eliminate. However, the FFT is used to find the 

frequency components of a signal and the d.c value is not important. 

Infact, for analysis purposes, the d.c value is quite often set to zero. In 

our program, the d.c value is invariably zero. 

So, in a sense it is a blessing in disguise. 

Sampled data input : [-1 1 2 –0.5 –3 –1 2 0]. The imaginary parts are set 

to zero. The IEEE standard format of these numbers are given in the file 

“rom_ram.vhd”. The testbench reads the input numbers from this file. 

 

10111111100000000000000000000000  
00111111100000000000000000000000  
01000000000000000000000000000000  
10111111000000000000000000000000  
11000000010000000000000000000000  
10111111100000000000000000000000  
01000000000000000000000000000000  
00000000000000000000000000000000  
00000000000000000000000000000000 
00000000000000000000000000000000 
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00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
 
The results: 
The output of the simulation was written into a file named “result.txt”. 
The contents of this file for the input given above is as follows. 
 
00000000000000000000000000000000 
01000000011100010010001011010000 
11000001000000000000000000000000 
00111110011011011101001100000000 
00111111000000000000000000000000 
00111110011011011101001100000000 
11000001000000000000000000000000 
01000000011100010010001011010000 
00000000000000000000000000000000 
10111111100001111100001101100000 
10111111000000000000000000000000 
10111111100001111100001101100000 
00000000000000000000000000000000 
00111111100001111100001101100000 
00111111000000000000000000000000 
00111111100001111100001101100000 
 
The C routine which converts these binary numbers to decimal reads 

from the file “result.txt” and outputs the result into another file as 

follows. 

--REAL PARTS 
0 
3.76775 
-8 
0.23225 
0.5 
0.23225 
-8 
3.76775 
--IMAGINARY PARTS 
0 
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-1.06065 
-0.5 
-1.06065 
0 
1.06065 
0.5 
1.06065 
 
Matlab Results 

Columns 1 through 4  
 
  -0.5000             3.7678 - 1.0607i  -8.0000 - 0.5000i   0.2322 - 1.0607i 
 
  Columns 5 through 8  
 
   0.5000             0.2322 + 1.0607i  -8.0000 + 0.5000i   3.7678 + 1.0607i 
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CHAPTER 7 
 

SYNTHESIS OF THE FFT PROCESSOR 
 
The processor was synthesised using Synopsis’ FPGA Express for the 

FLEX 10K family of Altera’s FPGAs. The adder unit, the butterfly 

processor unit and the address generation unit were synthesised 

separately. Then, the entire design was synthesised. The synthesis 

software produces a number of files of which the synthesis report file 

and the EDIF netlist file are important. The report file is given in  

appendix B. The EDIF netlist file is too large to be given (It has more 

than 1 lakh lines!). It also produces some schematics as its output. We 

tried to place and route the processor using Altera’s MAX PLUS- II 

tool. However, the design did not fit into any of the available devices. 

The tool used was a shareware version and so only smaller designs 

could be place and routed.  
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CONCLUSION 

An 8 point 32 bit FFT processor was designed, simulated and 

synthesized using VHDL. First, a VHDL by example approach was used 

to illustrate the basics of VHDL. For this a floating point adder unit was 

designed and tested. The FFT processor was then simulated. The results 

of the simulation were seen to match with the results of Matlab. It was 

synthesized and optimized for speed using Synopsis’ FPGA Express.  

The chip is expected to run at a clock frequency of about 25 MHz. The 

chip can be easily upgraded for a 128 point or 256 point FFT.  
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