
 M.A. College of Engineering

FFT Processor 1

�

�

��������������

������������������������ ���� 	�	�	�	�

������ �������� �������� �������� �� 				�������������������������������� ����� �� �� �� �

������������ ������������������������������������ �������������������� ����������������

Guided by Done by
Prof. K.Radhakrishnan Ray Ranjan Varghese
ELECTRICAL & ELECTRONICS DEPT. Chanjal .G.Tharayil
M.A. COLLEGE OF ENGINEERING

����������
� �������� � �����
����

MMMMaaaar r r r AAAAtttthhhhaaaannnnaaaassssiiiiuuuus s s s CCCCoooolllllllleeeegggge e e e oooof f f f EEEEnnnnggggiiiinnnneeeeeeeerrrriiiinnnngggg
��	�	�	�	�����

MAHATMA GANDHI UNIVERSITY, KOTTAYAM,
KERALA 2001

 M.A. College of Engineering

FFT Processor 2

TABLE OF CONTENTS
LIST OF FIGURES……………………………………………………

Chapter 1-Introduction to VHDL

1.1 Introduction 1
1.2 Advantages of VHDL over other Hardware…
Description Languages……………………………………….. 1
1.3 VHDL : The Language…………………………………… 2
 1.3.1 Entity Declaration……………………………….. 3

1.3.2 Architecture Body……………………………….. 3
1.3.3 Configuration Declaration……………………….. 7
1.3.4 Package…………………………………………… 8
1.3.5 Testbench………………………………………… 9

Chapter 2-High Level Design Flow…………………………………. 10
 2.1 HDL Capture……………………………………………… 10
 2.2 RTL Simulation…………………………………………… 10
 2.3 VHDL Synthesis………………………………………….. 12
 2.4 Functional Gate Level Verification………………………. 13
 2.5 Place and Route…………………………………………... 13
 2.6 Post Layout Timing Simulation………………………….. 15

Chapter 3-Illustration of VHDL…………………………………….. 16
 3.1 The IEEE floating-point standard………………………… 16
 3.2 The Addition Process…………………………………….. 17
 3.3 Hardware Implementation of Floating-Point Adder……… 19
 3.3.1 Block Diagram of the Adder…………………….. 19
 3.3.2 The Subtractor Unit……………………………… 20
 3.3.3 The Swap Unit…………………………………… 21
 3.3.4 The Shifter Unit………………………………….. 22
 3.3.5 The Summer Unit………………………………… 23
 3.3.6 The Normalize Unit………………………………. 23
 3.3.7 The Control Unit…………………………………. 24
 3.3.8 The Testbench for the adder……………………… 28

Chapter 4- The Fourier Transform…………………………………… 30
 4.1 The Discrete Fourier Transform…………………………... 30
 4.1.1 An Illustration…………………………………….. 30
 4.1.2 Types of Fourier Transforms……………………... 31
 4.1.3 Notation and Format of the Real DFT……………. 33
 4.1.4 DFT Basis Functions……………………………… 34
 4.1.5 Analysis, Calculating the DFT……………………. 37

4.2 The Fast Fourier Transform………………………………. 37
 4.2.1 Comparison of Real DFT and Complex DFT……. 38
 4.2.2 How the FFT works……………………………… 39
 4.3 Synthesis, Calculating the Inverse DFT………………….. 42
 4.4 Illustration of the DFT and IDFT in Matlab……………… 44

Chapter 5-Architectural Design of the FFT Processor……………… 46
 5.1 Block Diagram of the FFT Processor…………………….. 46

 M.A. College of Engineering

FFT Processor 3

 5.2 Butterfly Processing Element…………………………….. 48
 5.3 Address Generation Unit…………………………………. 50
 5.3.1 Butterfly Generator……………………………… 52
 5.3.2 Stage Generator………………………………….. 52
 5.3.3 Stage Done_IO Done Block……………………... 52
 5.3.4 IO-Address Generator…………………………… 53
 5.3.5 Base Index Generator……………………………. 53
 5.3.6 The Shifters……………………………………… 54
 5.3.7 ROM Address Generator………………………... 54
 5.4 Controller…………………………………………………. 55
 5.5 RAM and ROM…………………………………………... 55

Chapter 6-RTL Simulation of the FFT Processor…………………... 56

Chapter 7-Synthesis of the FFT Processor………………………….59

Chapter 8-Conclusion………………………………………………. 60

APPENDIX A-Code Listing……………………………………….. 61

APPENDIX B-Synthesis Results…………………………………... 101

References ………………………………………………………….112

 M.A. College of Engineering

FFT Processor 4

LIST OF FIGURES
Figure 1.1 – Half Adder…………………………………………… 3
Figure 2.1 – High Level Design Flow…………………………….. 11
Figure 3.1 – IEEE Format of Floating Point Numbers……………. 16
Figure 3.2 – Block Diagram of the Floating Point Adder Unit…… 20
Figure 3.3 – Structure of a Finite State Machine…………………. 25
Figure 4.1 – Sampled Values of signal being decomposed………. 29
Figure 4.2 – Sine and Cosine Waves after Fourier Decomposition. 30
Figure 4.3 – Types of Fourier Transforms………………………... 32
Figure 4.4 – DFT Terminology…………………………………… 33
Figure 4.5 – DFT Basis Functions………………………………… 36
Figure 4.6 – Comparison of Real and Complex DFT…………….. 38
Figure 4.7 – Signal Flow Graph for 8-point DIT-FFT with
Input Scrambling…………………………………………………. 40
Figure 4.8 – Signal Flow Graph for 8-point modified DIT-FFT
With Output Scrambling………………………………………….. 41
Figure 4.9 – The Bandwidth of Frequency Domain Signals……... 44
Figure 5.1 – FFT Computation Process…………………………... 46
Figure 5.2 – Block Diagram of FFT Processor…………………... 47
Figure 5.3 – Butterfly Processing Unit…………………………... 48
Figure 5.4 – Waveform of the Cycles used in the FFT Processor.. 49
Figure 5.5 – Address Generation Unit…………………………… 51

 M.A. College of Engineering

FFT Processor 5

CHAPTER 1

INTRODUCTION TO VHDL

1.1 Introduction

 VHDL is an acronym for VHSIC Hardware Description language

(VHSIC stands for Very High Speed Integrated Circuits). It is a

hardware description language that can be used to model a digital

system at many levels of abstraction ranging from the algorithmic level

to the gate level. The complexity of the digital system being modeled

could vary from that of a simple gate to a complete digital electronic

system, or anything in between.

 VHDL can be regarded as an integrated amalgamation of the

following languages : sequential + concurrent + netlist + timing

specification + waveform generation language.

 Therefore the language has constructs that enable to express the

concurrent or sequential behavior of a digital system with or without

timing. It also allows modeling the system as an interconnection of

components. Test waveforms can also be generated using the same

constructs. All the above constructs can be combined to provide a

comprehensive description of the system in a single model.

1.2 Advantages of VHDL over other hardware description

languages.

1. The language con be used as a communication medium

between different CAD and CAE tools.

2. The language supports hierarchy; that is, a digital system can

be modeled as a set of interconnected components each

component in turn can be modeled as a set of interconnected

subcomponents.

 M.A. College of Engineering

FFT Processor 6

3. The language supports flexible design methodologies top-

down, bottom-up or mixed.

4. It supports both synchronous and asynchronous timing models.

5. Various digital modeling techniques such as finite state

machine descriptions, algorithmic descriptions and Boolean

equations can be modeled using this language.

6. The language is publicly available, human readable, machine

readable and not proprietary.

7. The language supports three basic different description styles:

structural, dataflow and behavioral.

8. Arbitrarily large designs can be modeled using the language

and therefore there are no limitations imposed by the language

on the size of a design.

9. The model can not only describe the functionality of a design,

but also contain information about the design itself in terms of

user-defined attributes, such as total area and speed.

10. The capability of defining new data types provides the power

to describe and simulate a new design technology at a very

high level of abstraction without any concern about the

implementation details.

1.3 VHDL : The language.

 VHDL is a hardware description language that can be used to

model a digital system. The digital system con be as simple as a logic

gate or as complex as a complete electronic system. The building blocks

of this language are called as design units. The four main design units

are:

1. Entity declaration.

2. Architecture declaration.

 M.A. College of Engineering

FFT Processor 7

3. Configuration declaration.

4. Package.

The design units are described below.

1.3.1 Entity declaration.

 An entity is modeled using an entity declaration and at least one

architecture body. The entity declaration describes the external view of

an entity. The entity declaration specifies the name of the entity being

modeled and lists the set of interface ports. Ports are signals (wires)

through which the entity communicates with the other models in its

external environment. An example for a half-adder circuit is given

below.

 Figure 1.1 : Half Adder

 entity HALF-ADDER is

port (A,B : in BIT; SUM, CARRY : out BIT);

end HALF-ADDER;

This entity called HALF-ADDER has two input ports A and B ; and two

output ports SUM and CARRY .Bit is a predefined type of language

construct.

1.3.2 Architecture body.

The second important part of a VHDL source file is the architecture

declaration. Every entity declaration you write must be accompanied by

at least one corresponding architecture. An architecture declaration is a

 M.A. College of Engineering

FFT Processor 8

statement that describes the underlying function and/or structure of a

circuit. Each architecture in your design must be associated by name

with one entity in the design. The architecture body contains the

internal description of the entity. The internal structure can be specified

by any of the following modeling styles.

a) As a set of interconnected components.

b) As a set of concurrent assignment statements.

c) As a set of sequential assignment statements.

d) As a combination of the above three.

The different modeling styles are explained below.

a. Structural style of modeling.

This is modeled as a set of interconnected components. Such a

model for a HALF-ADDER is shown.

 architecture HA-STRUCTURE of HALF-ADDER is

 component XOR2

 port (X,Y: in BIT ; N: out BIT)

 end component;

component AND2

port (L,M : in BIT; N: out BIT);

end component;

begin

 X1: XOR2 port map (A,B,SUM);

 A1: AND2 port map (A,B, CARRY);

end HA-STRUCTURE ;

 The name of the architecture body is HA-STRUCTURE. The

architecture body is composed of two parts : the declarative part (before

 M.A. College of Engineering

FFT Processor 9

the keyword begin) and the statement part (after keyword begin). Two

component declarations are present in the declarative part of the

architecture body.

 The declared components are instantiated in the statement part of

the architecture body using component instantiation statements. X1 and

A1 are the component labels for these component instantiations. The

first component instantiation statement labeled X1, shows that signals A

and B are connected to output port SUM of the HALF-ADDER entity.

Similarly in the second component instantiation statement, signals A

and B are connected to ports L and M of the AND2 component, while

port N is connected to the CARRY-PORT of the HALF-ADDER.

b. Data flow style of modeling.

In this modeling style, the flow of data through the entity is expressed

primarily using concurrent signal assignment statements. The structure

of the entity is not explicitly specified in this modeling style, but it can

be implicitly deduced. The data flow model of the HALF-ADDER

entity is given below.

 architecture DATAFLOW of HALF-ADDER is

 begin

 SUM <= A xor B after 8ns;

 CARRY <= A and B after 4ns;

 end DATAFLOW;

 The dataflow is described using two concurrent signal assignment

statements (or sequential signal assignment statements). In a signal

assignment statement, the symbol <= implies an assignment of a value

to a signal. The value of the expression on the right hand side of the

statement is computed and is assigned to the signal on the lef t-hand side,

 M.A. College of Engineering

FFT Processor 10

called the target signal. A concurrent signal assignment statement is

executed only when any signal used in the expression on the right hand

side has an event on it, that is the value for the signal changes. Delay

information is also included in the signal assignment statements using

‘after’ clauses.

c. Behavioral style of modeling

 The behavioral style of modeling specifies the behavior of an

entity as a set of statements that are executed sequentially in the

specified process statement. They do not explicitly specify the structure

of the entity but merely its functionality . A process statement is a

concurrent statement that can appear within an architecture body. For

example, consider the following behavioral model for the same HALF-

ADDER.

 architecture BEHAVIOR of HALF-ADDER is

 begin

 process (A,B)

 variable X,Y: BIT;

 begin

 X:=A ;

 Y:=B ;

 SUM <= X xor Y;

 CARRY <= X and Y;

 end process;

 end BEHAVIOR;

 A process statement also has a declarative part (before keyword

begin) and a statement part (between keyword begin and end process).

The statements appearing within the statement part are executed

 M.A. College of Engineering

FFT Processor 11

sequentially. The list of signals specified within the parentheses after the

keyword process constitutes a sensitivity list and the process statement

is invoked whenever there is and event on any signal in the list. In the

example when an event occurs on A of B the statements appearing

within the process statement are executed sequentially. However, all the

processes that appear in a design are executed concurrently.

 The variable declaration (starts with the keyword variable)

declares two variables X and Y. A variable is different from a signal in

that it is always assigned a value instantaneously and the assignment

operator used is := compound symbol; contrast this with a signal that is

assigned a value always after a certain delay and the assignment

operator used to assign a value to a signal is the <= compound signal.

Variables declared within a process have their scope limited to that

process. Signal assignment statements appearing within a process are

called sequential signal assignment statements. Sequential signal

assignment statements, including variable assignment statements, are

executed sequentially independent of whether an event occurs on any

signals in its right-hand side expression.

d. Mixed style of modeling

 It is possible to mix the three modeling styles which were

described before in a single architecture body. That is, within an

architecture body, we could use component instantiation statements and

concurrent statements, therefore their order of appearance within the

architecture body is not important. Note that a process statement itself is

a concurrent statement; however statements within a process statement

art always executed sequentially.

1.3.3 Configuration declaration

 A configuration declaration is used to select one of the possibly

many architecture bodies that an entity may have, and to bind

 M.A. College of Engineering

FFT Processor 12

component instances to entities. For structural models, configurations

can be thought of as the parts list for the model. For component

instances, the configuration specifies from many architectures for an

entity, which architecture to use for a specific instance. When the

configuration for an entity-architecture combination is compiled into the

library, a simulatable object is created. An example of the configuration

declaration for the HALF-ADDER entity is given below.

 library CMOS-LIB, MY-LIB;

 configuration CONFIG of HALF-ADDER is

 for HA-STRUCTURE

 for X1: XOR2

 use entity CMOS-LIB.XOR-GATE (DATAFLOW);

 end for ;

 for A1 : AND2

 use configuration MY-LIB.AND-CONFIG;

 end for;

 end for;

 end CONFIG;

1.3.4 Package

The primary purpose of a package is to encapsulate elements that can be

shared (globally) among two or more design units. A package is a

common storage area used to hold data to be shared among a number of

entities. Declaring data inside of a package allows the data to be

referenced by other entities; thus, the data can be shared.

A package consists of two parts: a package declaration section and a

package body. The package declaration defines the interface for the

package, much the same way that the entity defines the interface for a

model. The package body specifies the actual behavior of the package in

the same method that the architecture statement does for a model.

 M.A. College of Engineering

FFT Processor 13

1.3.5 Testbench

A testbench is used to verify the functionality of a design. The testbench

allows the designer to verify the functionality of the design at each step

in the HDL synthesis-based methodology. When the designer makes a

small change to fix an error, the change can be tested to make sure that it

did not affect other parts of the design. New versions of the design can

be verified against known good results to verify compatibility.

A testbench is at the highest level in the hierarchy of the design. The

testbench instantiates the design under test (DUT). It provides the

necessary input stimulus to the DUT and examines the output from the

DUT.

 M.A. College of Engineering

FFT Processor 14

CHAPTER 2

HIGH LEVEL DESIGN FLOW

The high level design flow is illustrated in figure 2.1. Each step is

explained below.

2.1 HDL Capture

After the specification has been completed, the designer can begin the

process of implementation. The designer creates the VHDL description

that describes the clock-by-clock behaviour of the design. The VHDL

code for entities of the design are entered. The designer then checks the

design for any syntax errors. After all syntax errors are removed, the

VHDL code is verified for correctness by simulating it.

2.2 RTL Simulation

In RTL Simulation, the designer uses stimulus that represents the design

environment to drive the design and check to make sure that the results

are correct. A standard VHDL simulator can be used to read the RTL

VHDL description and verify the correctness of the design.

The VHDL simulator reads the VHDL description, compiles it into an

internal format, and then executes the compiled format using test

vectors. The designer can look at the output of the simulation and

determine whether or not the design is working properly. The designer

has a number of ways to analyze the output. The most common are

waveform output and tabular output.

 M.A. College of Engineering

FFT Processor 15

Design Specif icat ion

Place and Route

HDL Capture

Funct ional Gate
Simulation

RTL Simulat ion

RTL Synthesis

Post Layout
Timing Simulation

Figure 2.1 High Level Design Flow

 M.A. College of Engineering

FFT Processor 16

2.3 VHDL Synthesis

The goal of the VHDL Synthesis step is to create a design that

implements the required functionality and matches the designer’s

constraints in speed, area, or power.

The VHDL synthesis tools convert the VHDL description into a netlist

in the target FPGA or ASIC technology. For the VHDL synthesis tool to

perform this step properly, the VHDL code must be written in a

particular style.

The designer reads the VHDL design into the VHDL synthesis tool. The

tool reports syntax errors and synthesis errors. Synthesis errors usually

result from the designer using constructs that are not synthesisable. In

such cases, the code has to be modified and simulated again.

The synthesiser produces an output netlist in the target technology and a

number of report files. The designer looks at the report files to

determine the quality of the synthesis output. The most common output

files are the timing report and the area report. Most synthesis tools

produce a number of other reports such as hierarchy reports, instance

reports, net reports, power reports, and others. The most useful reports

initially are the timing and area reports, because these are usually the

most critical factors.

The area report shows the designer how much of the resources of the

chip the design has consumed. The designer can tell if the design is too

big for a particular chip and the designer needs to target a larger chip, if

the design should go into a smaller chip, or if the current chip will work

fine. The designer can also get a relative size of the design to use in later

stages of the design process.

The timing report shows the timing of critical paths or specified paths of

the design. The designer examines the timing of the critical paths closely

because these paths ultimately determine how fast the design can run. If

 M.A. College of Engineering

FFT Processor 17

the longest path is a timing critical part of the design and is not meeting

the speed requirements of the designer, then the designer may have to

modify the VHDL code or try new timing constraints to make the path

meet timing.

The most important type of output data is the netlist for the design in the

target technology. This output is a gate or macro level output in a format

compatible with the place and route tools that are used to implement the

design in the target chip. For instance, most place and route tools for

FPGA technologies take in an EDIF netlist as an input format. The

primitives used in the netlist are those used in the synthesis library to

describe the technology. The place and route tools understand what to

do with these primitives in terms of how to place a primitive and how to

route wires to them.

2.4 Functional Gate Level Verification

Some designers might want to do a quick check on the output of the

synthesis tool to make sure that the synthesis tool produced a design that

is functionally correct. To do this the designer runs a functional gate

level verification. The designer reads the output VHDL netlist from the

synthesis tool plus a library of the synthesis primitives into the VHDL

simulator and runs the simulation using the RTL Verification vectors. If

the design matches, then the synthesis tool did not produce logic

mismatches; if it does not match, the designer needs to debug the VHDL

RTL description to see what is wrong.

2.5 Place and Route

Place and route tools are used to take the design netlist and implement

the design in the target technology device. The place and route tools

place each primitive from the netlist into an appropriate location on the

 M.A. College of Engineering

FFT Processor 18

target device and then route signals between the primitives to connect

the devices according to the netlist.

One input to the place and route tools is the netlist in EDIF or another

netlist format. Another input to some place and route tools is the timing

constraints, which give the place and route tools an indication about

which signals have critical timing associated with them and to route

these nets in the most timing efficient manner. These nets are typically

identified during the static timing analysis process during synthesis.

These constraints tell the place and route tool to place the primitives in

close proximity to one another and to use the fastest routing. The closer

the cells are, the shorter the routed signals will be and the shorter the

time delay.

Some place and route tools allow the designer to specify the placement

of large parts of the design. This process is also known as floor

planning. Floor planning allows the user to pick locations on the chip for

large blocks of the design so that routing wires are as short as possible.

The designer lays out blocks on the chip as general areas. The floor

planner feeds this information to the place and route tools so that these

blocks are placed properly. After the cells are placed, the router makes

the appropriate connections.

After all the cells are place and routed, the output of the place and route

tools consists of data files that can be used to implement the chip. In the

case of FPGAs, these files describe all of the connections needed to fuse

FPGAs macrocells to implement the functionality required. Anti-fuse

FPGAa use this information to burn the appropriate fuses while

reprogrammable devices download this information to the device to turn

on the appropriate transistor connections.

The other output from the place and route software is a file used to

generate the timing file. This file describes the actual timing of the

 M.A. College of Engineering

FFT Processor 19

programmed FPGA device or the final ASIC device. This timing file, as

much as possible, describes the timing extracted from the device when it

is plugged into the system for testing. The most common format of this

file for most simulators is the SDF(Standard Delay Format).

2.6 Post Layout Timing Simulation
After the place and route process has completed, the designer will want

to verify the results of the place and route process. There are a number

of methods to accomplish this task but the most common is to use post

route gate level simulation. This simulation combines the netlist used for

place and route with the timing file from the place and route process into

a simulation that checks both functionality and timing of the design. The

designer can run the simulation and generate accurate output waveforms

that show whether or not the device is operating properly and if the

timing is being met. For VHDL simulations this requires a VITAL-

compliant (standard way of describing designs with designs that allow

SDF timing back annotation) VHDL Simulator.

 M.A. College of Engineering

FFT Processor 20

CHAPTER 3

ILLUSTRATION OF VHDL

VHDL is illustrated below using an example of a floating point adder

unit which forms a part of the processor.

3.1 The IEEE Floating-Point Standard

The IEEE computer society has developed a standard for binary

floating-point arithmetic. The basic format sizes are 32 bits (single

precision) and 64 bits (double precision). The 32 bit format is used in

this project. As shown in figure, the 32 bits used in single precision are

divide into three separate groups : bits 0 through 22 form the mantissa,

bits 23 through 30 form the exponent, and bit 31 is the sign bit.

31 30 23 22 0

sign exponent Mantissa

Figure 3.1 IEEE format of floating point numbers

These bits form the floating point number, V , by the following relation:

 V = (-1)
s

* M * 2
E – 127

The term : (-1)
s

, simply means that the sign bit, S, is 0 for a positive

number and 1 for a negative number. The variable, E, is the number

between 0 and 255 represented by the eight exponent bits. Subtracting

127 from this number allows the exponent term to run from 2-127 to 2128 .

In other words, the exponent is stored in offset binary with an offset of

127.

The mantissa, M, is formed from the 23 bits as a binary fraction. For

example, the binary fraction: 1.0101, means: 1 + 0/2 + ¼ + 0/8 + 1/16.

 M.A. College of Engineering

FFT Processor 21

Floating point numbers are normalized in the same way as scientific

notation, that is there is only one nonzero digit left of the decimal point

(called a binary point in base 2). Since the only nonzero number that

exists in base two is 1, the leading digit in the mantissa will always be a

1, and therefore does not need to be stored. The 23 stored bits, referred

to by the notation: m22, m21, ………………., m0, form the mantissa according

to:

 M= 1.m22m21m20 ………….. m0.

In other words, M=1 + m22 * 2
-1 + m21 * 2

-2 + m20 * 2
-3 + ……

Zero is treated as a special number. For zero, the exponent and mantissa

bits are all zeroes. The sign bit could be ‘1’ or ‘0’.

3.2 The Addition Process

The steps involved in the addition/subtraction process are the following :

1. Choose the number with the smaller exponent.

2. Concatenate the implied ‘1’ bit with the mantissa of this number

and shift it to the right by a number of steps equal to the

difference in exponents.

3. Set the exponent of the result equal to the larger exponent.

4. Concatenate the implied ‘1’ bit with the mantissa of the larger

number and add/subtract it to the shifted number.

5. Determine the sign of the result (to be explained later).

6. Normalize the result.

It must be noted that, two binary numbers, which are n bits wide, when

added, may give a result (n+1) bits wide. Hence the result of the

summation will be (n+1) bits wide. After addition, if the (n+1)th bit is

‘1’ then, during normalization, the exponent is incremented by one and

 M.A. College of Engineering

FFT Processor 22

the bits starting from the nth bit are taken as the mantissa of the result. If

the (n+1)th bit is ‘0’ after addition, then the bits starting from the (n-1)th

bit is taken as the mantissa of the result. This is clear from the

illustration given below.

First consider a situation when the (n+1)th bit of the result is ‘0’.

Let a = 10.5 1.0101 * 23

and b = 2.25 1.0010 * 21

Note that the mantissa of “a” will store “0101” and that of “b” , “0010”,

since the ‘1’ to the left of the binary point is implied.

After performing shifting of the mantissa of “b” and adding it to the

mantissa of “a” we have

 1010100 +
 0010010

 1100110
The number represented by this result is 1.100110 * 23 , which is 12.75

in decimal. Since the ‘1’ to the left of the binary point is implied,

“100110” is stored as the mantissa of the result and (127+3) as the

exponent.

Now, let us consider a situation where the (n+1)th bit of the result

becomes ‘1’.

Let a = 5.5 1.011 * 22

and b =14.5 1.1101 * 23

After shifting and adding we have,

 11101 +
 01011

 101000
The number represented by this result is 10.1000 * 23, which is 20.

However this is not normalized. Normalizing this, we have 1.01000 * 24

Hence “01000” is stored as mantissa and (127+4) as the exponent of the

result.

 M.A. College of Engineering

FFT Processor 23

Normalizing the difference of two numbers is pretty straight forward.

Here the mantissa of the result is shifted to the left until the nth bit is ‘1’.

For each shifting the exponent is to be decremented by 1. After the nth

bit becomes ‘1’, the mantissa of the normalised result is taken from the

(n-1)th bit. This is because the ‘1’ in the nth bit is implied and does not

need to be stored.

3.3 Hardware Implementation of Floating-Point Adder

The hardware implementation of the floating-point adder unit involves

considerable circuitry. The block diagram of the implementation is

given above. Following is a description of each block of the unit. A

detailed explanation of the VHDL description of the units is also given.

Note that the adder uses two clocks. One is the main clock. Only the

control unit requires this clock. The numbers are inputted during the

positive cycle of this clock. This clock is also the clock synchronising

the various blocks of the FFT processor, which is to be discussed later

on. The other clock, which has a much shorter period, is local to the

adder. All the blocks within the adder are synchronised using this clock.

3.3.1 Block diagram of the adder

ensub ,enswap, enshift, addpulse, normalise : enables corresponding blocks.

Finsub, finswap, finshift, finish_sum, end_all : signals to indicate that the

corresponding operations in the blocks are over.

A_small : high if “a” is the smaller number.

Numzero : high when one of the numbers is zero.

Change : pulse given to control unit whenever there is a change in input numbers.

Exp : exponent of larger number.

Addsub : high if operation to be performed is addition , else it is low.

Signbit : high if sign of result is –ve. If result is positive this signal is low.

Reset : Resets the control unit.

Rst : resets all signals of all the units.

 M.A. College of Engineering

FFT Processor 24

SUBTRACTOR

SUMMER

NORMALIZER

CONTROL
UNIT

SHIFTER

ch
an

ge

nu
m

ze
ro

fin
su

b

en
su

b

SWAP UNIT

sw
ap

_n
um

1

ex
p

f inswap

enswap

sw
ap

_n
um

2

sub

enshi f t

f inshif t

ad
ds

ub

ad
dp

ul
se

fin
is

h_
su

m

sh
ift

_o
ut

s um_ou t

normal ise signbit addsub end_al l

ze
ro

de
te

ct

f i na l_sum

a_
sm

al
l

rs
t

re
se

t

a (31)

b(31)

Figure 3.2 Block diagram of floating point adder unit

3.3.2 The Subtractor Unit

The function of the subtractor is to output the difference between the

mantissas of the two numbers. This information is given to the shifter,

which shifts the smaller number by the difference between the

mantissas. Apart from this, the subtractor gives information to the

control unit as to which number is smaller and if any number is zero. Let

us examine the code in detail.

The first process begins with the “if(rst_sub=’0’)” statement. This

indicates that we need to proceed only if the reset port to the unit is low.

That is if the reset port to the subtractor is high then we need only to set

 M.A. College of Engineering

FFT Processor 25

the outputs to zero. Note that the ninth bit is an extra bit. This bit is set

to ‘1’ whenever there is a valid output number.

First the exponent and the mantissa are separated and written into separate

variables. Since the involvement of zero in calculations need to be treated

separately, the presence of zero in any one of the numbers is detected by the

statements “if(c=0)” and “if(d=0)”. When one of the numbers is zero, the

num_zero signal is set high. If “a” is zero then the output of “zero_detect” is

“01”. If “b” is zero then this signal is set to “10”.

Several cases arise now .If the exponents of the two numbers are different,

then the smaller one is to be found out and corresponding subtractions made. If

the exponents are same then the smaller of the mantissas is to be found out. In

certain cases the numbers are the same. All these cases need to be treated

separately. The signal “a_smaller” is used to give information to the control

unit as to which number is smaller. When the calculations are finished the

“fin_sub” signal goes high. All these signals are reset at the start of the next set

of calculations.

There is a second process , namely “process(a,b)” within the same architecture.

This process is executed whenever there is a change in the input numbers. This

process sends out a pulse called “change” to the control unit indicating that the

input numbers have changed. The control unit then restarts the entire cycle of

operations.

3.3.3 The Swap Unit

The function of the swap unit is to input the mantissa of the smaller number to

the shifter, so that it can shift it by the difference in the exponents of the two

numbers. The implicit ‘1’ in the IEEE standard format is concatenated with the

mantissa of the larger number and inputted to the summer. Also the L.S.B (last

8 bits) of the mantissa of this number is set to zero. The mantissa of the

smaller number is given to the shifter. In this case also a ‘1’ is concatenated

 M.A. College of Engineering

FFT Processor 26

with the mantissa (for checking in the shifter for a valid number) and the last

nine bits are set to zero. After the swapping process is over the signal

finish_swap is set high to inform the control unit. When the rst_swap signal is

high the signals are reset.

3.3.4 The Shifter Unit

There are two “if” blocks in the shifter. This is needed because the

assignments to “sub_temp” and “temp2” in the first block get updated in

the next “if” block and multiple clock cycles may be needed to complete

the shifting process. Therefore the first “if” block needs to be executed

only the first time a number arrives . Let us examine this in detail.

Initially when the processor is reset (this is done after each addition by

the control unit) the variables “temp3” and “t” are set to ‘1’ while

“finish_out” is reset to ‘0’. Whenever there is a change in the signals

given in the sensitivity list of the process, the process is executed. The

first time , the first “if” block is executed and thereafter the second

block. However we see that “temp3” is reset to ‘0’ in the first block. So

the first block will not be executed in the next clock cycle (since this

block is executed only for “temp3=’1’) unless the block is reset (when

reset, temp3 is set to ‘1’).

In the second “if” block the unit first checks whether “sub_temp” is

zero (last 8 bits only). If so, no more shifting is required and the number

is outputted. Also finish_out is set to ‘1’. If “sub_temp” is not zero then

the mantissa is shifted to the right . At the same time “sub_temp” is

decremented. This is given by the lines

 elsif (clock = '1' and clock'event) then

 temp2 := '0' & temp2 (31 downto 1) ;

 sub_temp := sub_temp - "00000001" ;

 M.A. College of Engineering

FFT Processor 27

In the next clock cycle the unit will first check if “sub_temp” is zero. If

so, it outputs the shifted mantissa to the summer, else the number is

shifted again.

3.3.5 The Summer Unit

This unit sums/subtracts the shifted mantissa of the smaller number and

the mantissa of the larger number. The summer adds an extra bit ‘0’ and

then sums/subtracts. This is to find out whether normalization is

required or not. If normalization (that is converting the result to IEEE

format) is required, this bit will be set. The information as to whether

addition or subtraction is to be done is received from the control unit

from the signal “addsub”. After the addition process, the “add_finish”

signal is set.

3.3.6 The Normalize Unit

As in the case of the shifter unit, there are two “if” blocks in this section

for the same reasons as that of the shifter unit. The normalization

process when one number is zero and when addition or subtraction is

used are all different from one another. The block under

“if(addsub=’0’)” gives the normalization procedure for the difference of

two numbers. The first statement under this section is

“if(numb_temp=0)”. Such a condition occurs only when both numbers

are same and they have been subtracted (or they are of opposite sign

and they have been added). Obviously the result is zero. If a number is

normalized then numb_temp(31) is zero. In that case the final difference

can be outputted. If numb_temp(31) is not ‘1’ then it has to be shifted to

the left in successive clock cycles until this bit is ‘1’. For each shifting

the exponent is decremented by one. This is given by the section

 elsif (clock = '1' and clock'event) then

 M.A. College of Engineering

FFT Processor 28

 numb_temp := numb_temp(30 downto 0) & '0' ;

 temp_exp := temp_exp - "00000001" ;

 end if ;

The normalization process of addition is different. Here, if normalisation

is required, the bit “numb_temp(32)” will be ‘1’. In that case, the

exponent has to be incremented by one. If numb_temp(32)=’0’, the bits

of the sign, exponent and the mantissa just have to concantanated.

When one of the numbers is zero, the sum is the other number. The

subtractor gives the information as to which number is zero. If “a” is

zero, “zero_detect” is “01” and the output is “b”. If “b” is zero,

“zero_detect” is “10” and the output is “a”.

3.3.7 The Control Unit

The control unit is the “H.O.D” of the floating point adder unit. It

controls all the activities of the adder. It is modelled as a finite state

machine. So first, something about finite state machines.

Finite State Machine

A finite state machine (FSM) is a type of sequential circuit that is

designed to sequence through specific patterns of finite states in a

predetermined sequential manner. There are two types of FSM, Mealy

and Moore. The Moore FSM has outputs that are a function of current

state only. The Mealy FSM has outputs that are a function of the

current state and primary inputs. An FSM consists of three parts:

1. Sequential Current State Register: The register, a set of n-bit flip-

flops

(state vector flip-flops) clocked by a single clock signal is used

to hold the state vector (current state or simply state) of the FSM. A

state vector with a length of n-bit has 2 to the power n possible binary

patterns, known as state encoding. Often, not all 2 to the power n

 M.A. College of Engineering

FFT Processor 29

patterns are needed, so the unused ones should be designed not to occur

during normal operation. Alternatively, an FSM with m-state requires at

least

log2 (m) state vector flip-flops.

2. Combinational Next State Logic: An FSM can only be in one state

at any given time, and each active transition of the clock causes it

to change from its current state to the next state, as defined by the

next state logic. The next state is a function of the FSM’s inputs and

its current state.

3. Combinational Output Logic: Outputs are normally a function of

the current state and possibly the FSM’s primary inputs (in the case

of a Mealy FSM). Often in a Moore FSM, you may want to derive

the outputs from the next state instead of the current state, when

the outputs are registered for faster clock-to-out timings.

Moore and Mealy FSM structures are shown below.

 M.A. College of Engineering

FFT Processor 30

Figure 3.3 Structure of a finite state machine

The control unit is modelled as a Mealy machine. The transition from

one state to another, takes place during the rising clock edge of the

positive cycle. If there is any change in the input numbers to the

subtractor, it sends out a pulse (change) to the control unit. The control

unit then starts the FSM from the beginning. Also when the processor is

reset externally, the control unit sets the current state as the first state

(reset1). The second process carries out all these actions.

The actions performed in each state in the first process are given below:

Reset1 : Here, the various signals are reset.

Reset2 : The reset signal is brought back to ‘0’. (Otherwise the outputs

will not change, it will remain as 0). Also the subtractor and swap units

are enabled.

Reset3 : If one of the numbers is zero (indicated by “zero_num”) the

shifting and adding operations can be skipped. Therefore the next state

is set as reset5. Else, the shifter is enabled when the operations in the

subtractor and swap unit are over. Also the subtractor and swap unit are

disabled.

Reset4 : When the function of the shifter is over, it is disabled and the

adder unit is enabled.

 M.A. College of Engineering

FFT Processor 31

Reset5 : If one of the numbers is zero, the normalize unit is enabled.

Else, the normalize unit is enabled when the function of the summer is

over. Also, the summer is disabled in this state.

Reset6 : Here, when the normalisation process is over, the normalize

unit is disabled in the positive cycle. Later, in the negative cycle, the

state is transferred to reset1.

Reset7 : This is the state into which the control unit comes when the

adder is disabled.

There is a third process in the control unit which gives information to

the summer as to whether addition or subtraction is to be performed. It

also gives information to the normalize unit about the sign of the result.

The operation to be performed and the sign of the result are determined

from the following table.

Sign of a Sign of b Bigger number Sign of result
Operation to be

performed

+ve +ve a or b +ve addition

-ve -ve a or b -ve addition

+ve -ve a -ve subtraction

-ve +ve a -ve subtraction

+ve

-ve

b

+ve

subtraction

-ve +ve b +ve subtraction

 M.A. College of Engineering

FFT Processor 32

“a_small” (this signal is high if a is smaller) will be high even if both the

numbers are same. However it can be seen from the table that this does

not affect the result.

3.3.8 The Testbench for the Adder

The testbench is used to give the external inputs to the adder. It also

instantiates the various components. The input numbers are read in

through a text file. Here, each bit has to be read in and assigned to a

local variable. Then the entire string is assigned to either “a” or ”b”.

The results are obtained in a file named simili.lst (if you use VHDL

Simili for simulation). It can be examined to verify the correctness of

the design.

 M.A. College of Engineering

FFT Processor 33

CHAPTER 4

THE FOURIER TRANSFORM

4.1 The Discrete Fourier Transform.

Fourier analysis is a family of mathematical techniques, all based on

decomposing signals into sinusoids. The discrete Fourier transform

(DFT) is the family member used with digitized signals. Fourier analysis

is named after Jean Baptiste Joseph Fourier (1768-1830), a French

mathematician and physicist.

4.1.1 An Illustration

Figure 4.1 and 4.2 illustrate how a signal can be decomposed into

sine and cosine waves. Figure 4.1 shows an example signal, 16

points long, running from sample number 0 to 15. Figure 4.2 shows

the Fourier decomposition of this signal, nine cosine waves and

nine sine waves, each with a different frequency and amplitude.

Although far from obvious, these 18 sinusoids add to produce the

waveform in figure 4.1. For discrete signals,this decomposition is

mathematically exact. There is no difference between the signal in

figure 4.1 and the sum of the signals in figure 4.2, just as there is no

difference between 7 and 3+4. The frequency of each sinusoid is

fixed; only the amplitude is changed depending on the shape of the

waveform being decomposed.

Figure 4.1 Sampled values of signal being decomposed

 M.A. College of Engineering

FFT Processor 34

Figure 4.2 Sine and cosine waves after Fourier decomposition

 There are an infinite number of ways that a signal can be

decomposed. The goal of decomposition is to end up with something

 M.A. College of Engineering

FFT Processor 35

easier to deal with than the original signal. For example, impulse

decomposition allows signals to be examined one point at a time,

leading to the powerful technique of convolution. In Fourier

Transforms, the component sine and cosine waves are simpler than the

original signal because they have a property that the original signal does

not have: sinusoidal fidelity. A sinusoidal input to a system is

guaranteed to produce a sinusoidal output. Only the amplitude and phase

of the signal can change; the frequency and wave shape must remain the

same. Sinusoids are the only waveform that have this useful property.

While square and triangular decompositions are possible, there is no

general reason for them to be useful.

4.1.2 Types of Fourier Transforms

 A signal can be either continuous or discrete, and it can be either

periodic or aperiodic. The combination of these two features generates

the four categories of Fourier Transforms described below and

illustrated in Fig. 4.3

Aperiodic-Continuous

This includes, for example, decaying exponentials and the Gaussian

curve. These signals extend to both positive and negative infinity

without repeating in a periodic pattern. The Fourier Transform for this

type of signal is simply called the Fourier Transform.

Periodic-Continuous

Here the examples include: sine waves, square waves, and any

waveform that repeats itself in a regular pattern from negative to

positive infinity. This version of the Fourier transform is called the

Fourier Series.

 M.A. College of Engineering

FFT Processor 36

Aperiodic-Discrete

These signals are only defined at discrete points between positive and

negative infinity, and do not repeat themselves in a periodic fashion.

This type of Fourier transform is called the Discrete Time Fourier

Transform.

Periodic-Discrete

These are discrete signals that repeat themselves in a periodic fashion

from negative to positive infinity. This class of Fourier Transform is

sometimes called the Discrete Fourier Series, but is most often called the

Discrete Fourier Transform.

Figure 4.3 Types of Fourier Transforms

 Fourier transform that can be used in DSP is the DFT. In other words,

digital computers can only work with information that is discrete and

finite in length.

Each of the four Fourier Transforms can be subdivided into real and

complex versions. The real version is the simplest, using ordinary

numbers and algebra for the synthesis and decomposition. For instance,

 M.A. College of Engineering

FFT Processor 37

Fig. 4.1 is an example of the real DFT. The complex versions of the four

Fourier transforms are immensely more complicated, requiring the use

of complex numbers. These are numbers such as:3+4j , where j is equal

to root of-1 (electrical engineers use the variable j, while

mathematicians use the variable, i). Complex mathematics can quickly

become overwhelming, even to those that specialize in DSP.

4.1.3 Notation and Format of the Real DFT

Figure 4.4 DFT Terminology

As shown in Fig. 4.4, the discrete Fourier transform changes an N point

input signal into two point output signals. The input signal contains the

amplitude of the signal being decomposed, while the two output signals

contain the amplitudes of the component sine and cosine waves (scaled

in a way we will discuss shortly). The input signal is said to be in the

time domain. This is because the most common type of signal entering

the DFT is composed of samples which are obtained at regular intervals

of time.

Any kind of sampled data can be fed into the DFT, regardless of how it

was acquired. When you see the term "time domain" in Fourier analysis,

 M.A. College of Engineering

FFT Processor 38

it may actually refer to samples taken over time, or it might be a general

reference to any discrete signal that is being decomposed. The term

frequency domain is used to describe the amplitudes of the sine and

cosine waves . The number of samples in the time domain is usually

represented by the variable N. In most cases, the samples run from 0 to

N-1, rather than 1 to N.

Standard DSP notation uses lower case letters to represent time domain

signals, such as x[],y[] , and z[] . The corresponding upper case letters

are X[] Y[] Z[], used to represent their frequency domains, that is X[],

Y[], Z[].For illustration, assume an N point time domain signal is

contained in x[]. The frequency domain of this signal is called X[], and

consists of two parts, each an array of N/2+1 samples . These are called

the Real part of X[] ,written

as Re X[] , and the Imaginary part of X[], written as Im X[] . The

values Re X[] are the amplitudes of the cosine waves, while the values

in Im X[]are the amplitudes of the sine waves.

4.1.4 DFT Basis Functions

The sine and cosine waves used in the DFT are commonly called the

DFT basis functions. In other words, the output of the DFT is a set of

numbers that represent amplitudes. The basis functions are a set of sine

and cosine waves with unity amplitude. If you assign each amplitude

(the frequency domain) to the proper sine or cosine wave (the basis

functions), the result is a set of scaled sine and cosine waves that can be

added to form the time domain signal.

The DFT basis functions are generated from the equations:

Ck[i] = cos(2 pi k i /N)

Sk[i] = sin (2 pi k i /N)

 M.A. College of Engineering

FFT Processor 39

where Ck[] is the cosine wave for the amplitude held in Re X[k], and

Sk[] is the sine wave for the amplitude held in Im X[k]. Each is N points

in length, running from i = 0 to N-1. The parameter, k, determines the

frequency of the wave. In an N point DFT ,k takes on values between 0

and N/2. The DFT basis functions are illustrated in figure 4.5.

Let's look at several of these basis functions in detail. Figure (a) shows

the cosine wave c0[]. This is a cosine wave of zero frequency, which is a

constant. This means that it holds the average value of all the points in

the time domain signal. In electronics, it would be said that ReX[0]

holds the DC offset. The sine wave of zero frequency, s0[] is shown in

(b), and is composed of all zeros. Since this can not affect the time

domain signal being synthesized, its value is irrelevant, and always set

to zero.

Figures (c) & (d) show c10[]&s10[] the sinusoids that complete ten cycles

in the N points. These correspond to ReX[10] & ImX[10] , respectively.

The highest frequencies in the basis functions are shown in (g) and (h).

These are cN/2[] & sN/2[] or in this example, c16[]& s16[]. This discrete

cosine wave alternates in value between 1 and -1, which can be

interpreted as sampling a continuous sinusoid at the peaks. In contrast,

the discrete sine wave contains all zeros, resulting from sampling at the

zero crossings. This makes the value of ImX[N/2] the same as ImX[0],

always equal to zero, and does not affect the synthesis of the time

domain signal.

 M.A. College of Engineering

FFT Processor 40

Figure 4.5 DFT Basis Functions

Here's a puzzle: If there are N samples entering the DFT, and samples

N+2 exiting, where did the extra information come from? The answer:

two of the output samples contain no information, allowing the other N

samples to be fully independent. The points that carry no information

are ImX[N/2] and ImX[0] , the samples that always have a value of

zero.

 M.A. College of Engineering

FFT Processor 41

4.1.5 Analysis, Calculating the DFT

The DFT analysis equations are given below. Here, x[i] is the time

domain signal being analyzed. ReX[k] and ImX[k] are the frequency

domain signals being calculated. The index i runs from 0 to N-1 while k

runs from 0 to N/2.

The DFT can be calculated in three completely different ways. First, the

problem can be approached as a set of simultaneous equations.

Thismethod is useful for understanding the DFT, but it is too inefficient

to beof practical use. The second method is called correlation. This is

based on detecting a known waveform in another signal. The third

method, called the Fast Fourier Transform (FFT), is an ingenious

algorithm that decomposes a DFT with N points, into N DFTs each with

a single point. The FFT is typically hundreds of times faster thanthe

other methods. It is important to remember that all three of these

methods produce an identical output. In actual practice, correlation is

the preferred technique if the DFT has less than about 32 points,

otherwise the FFT is used.

 4.2 THE FAST FOURIER TRANSFORM

J.W. Cooley and J.W. Tukey are given credit for bringing the FFT to the

world in their paper: "An algorithm for the machine calculation of

complex Fourier Series," Mathematics Computation. The FFT is based

on the complex DFT, a more sophisticated version of the real DFT.

 M.A. College of Engineering

FFT Processor 42

These transforms are named for the way each represents data, that is,

using complex numbers or using real numbers.

 Figure 4.6 Comparison of real and complex DFT

4.2.1 Comparison of Real DFT and Complex DFT

Since the FFT is an algorithm for calculating the complex DFT, it is

important to understand how to transfer real DFT data into and out of

the complex DFT format. The real DFT transforms an N point time

domain signal into two point frequency domain signals. The time

domain N/ 2 + 1 signal is called just that: the time domain signal. The

two signals in the frequency domain are called the real part and the

imaginary part, holding the amplitudes of the cosine waves and sine

waves, respectively.

In comparison, the complex DFT transforms two N point time domain

signals into two N point frequency domain signals. The two time

domain signals are called the real part and the imaginary part, just as

 M.A. College of Engineering

FFT Processor 43

are the frequency domain signals. In spite of their names, all of the

values in these arrays are just ordinary numbers. Suppose there is an N

point signal, and we need to calculate the real DFT by using the FFT,

then set all of the samples in the imaginary part to zero. Then, move the

N point signal into the real part of the complex DFT's time domain, and

compute DFT using the FFT. The result is a real and an imaginary signal

in the frequency domain, each composed of N points. Samples 0 through

N/2 of these signals correspond to the real DFT's spectrum .

4.2.2 How the FFT works

The FFT is a complicated algorithm, and its details are usually left to

those that specialize in such things. This section describes the general

operation of the FFT. The FFT operates by decomposing an N point

time domain signal into N time domain signals each composed of a

single point. The second step is to calculate the N frequency spectra

corresponding to these N time domain signals. Lastly, the N spectra are

synthesized into a single frequency spectrum. There are basically two

algorithms in FFT. One is called DIT(Decimation in time) and the other

DIF(Decimation in frequency).

In the DIT approach, the initial DFT is divided into two transforms, one

consisting of a transform of even samples and the other consisting of a

transform of odd samples. This process is carried out until the initial

transform is reduced to a set of two-point transforms of the initial data.

An in-place FFT implementation allows the results of each FFT

butterfly to replace its inputs. In order to use an in place algorithm it is

necessary either to re-order the input data array or re-order the output

array. This re-ordering is simply arranged by reversing the address bits.

Before starting to calculate the DFT, the input data is ordered such that

its address is bit-reversed, that is if the binary address of the required

 M.A. College of Engineering

FFT Processor 44

sequence of data is 110 then the bit reversed version on that becomes

011. Given below is the signal flow graph for the DIT.

Figure 4.7 Signal flow graph for 8 point DIT-FFT with input

scrambling

This signal flow graph consists of a number of butterflies. Each butterfly

takes a pair of input data values A and B and outputs A1 and B1 as

shown below. The input data is multiplied by the twiddle factor WN
k .

The solid dots represent addition\subtraction.

 where

 A= x + jX

 B= y + jY

 WN
k
� ������	
�� – ������	
��

 A1 = x1 + jX 1 = A + BWN
k

 B1= y1 + jY 1 = A - BWN
k

Subsituting for A , B and WN
k we obtain

 M.A. College of Engineering

FFT Processor 45

 A1
��������	�
������	���
�������������	�
����-�	���
������

 B1=[(x-���	�
����-�	���
��������X-���	�
���� � �	���
������

An in-place algorithm makes efficient use of memory as the transformed

data overwrites the input data. However the indexing required to

determine which location in memory to fetch the input data is quite

complex. This is explained later on when the processor is discussed.

The algorithm used in this processor is a variation of the DIT algorithm

discussed above. The difference is that output scrambling is used and the

inputs are in natural order. The signal flow graph for this algorithm is

shown below.

 Figure 4.8 Signal flow graph for modified DIT-FFT

with output scrambling

An illustration of the modified version of the FFT-DIT algorithm is

given below. The inputs are first stored in the addresses shown. The

results of FFT computation at each stage is shown. The results of the

final stage are outputted in a bit reversed addresses.

 M.A. College of Engineering

FFT Processor 46

4.3 Synthesis, Calculating the Inverse DFT

The synthesis equation is given as

In words, any N point signal, can be created by adding N/2 + 1 cosine

waves and N/2+1 sine waves. The amplitudes of the cosine and sine

waves are held in the arrays ReX[k](bar) and ImX[k](bar), respectively.

The synthesis equation multiplies these amplitudes by the basis

Addr

ess
Input

O/P of

Stage 1

O/P of

stage 2

O/P of

stage 3

Bit-reversed

 O/P

0000 -1 -3 -2.5 0 0

0001 1 -0.5 2.5 -5 2.06065

0010 1.5 0.5 -3.5 -3.5 -3.5

0011 2 3 -3.5 -3.5 -0.06065

0100 -2 1 1 2.06065 -5

0101 -1.5 2.5 2.5 -0.06065 -0.06065

0110 -1 2.5 1 -0.06065 -3.5

0111 1 1 2.5 2.06065 2.06065

1000 0 0 0 0 0

1001 0 0 0 0 -4.9749

1010 0 0 0 3.5 3.5

1011 0 0 0 -3.5 0.02515

1100 0 0 -2.5 -4.9749 0

1101 0 0 -1 -0.02515 -0.2515

1110 0 0 2.5 0.02515 -3.5

1111 0 0 1 4.9749 4.9749

 M.A. College of Engineering

FFT Processor 47

functions to create a set of scaled sine and cosine waves. Adding the

scaled sine and cosine waves produces the time domain signal, x[i].

In the equation given above, the arrays are called ReX[k](bar) and

ImX[k](bar), rather than ReX[k] and ImX[k], This is because the

amplitudes needed for synthesis are slightly different from the

frequency domain ReX[k] and ImX[k], of a signal . This is the scaling

Im X[k] Re X[k] factor issue we referred to earlier. Although the

conversion is only a simple normalization, it is a common bug in

computer programs. The conversion between the two is given by

 ReX[k](bar) = ReX[k]/(N/2)

 ImX[k](bar) = -ImX[k]/(N/2)

except for two special cases

 ReX[0](bar) = ReX[0]/N

 ReX[N/2](bar) = ReX[N/2]/N

 The conversion is required because the frequency domain is defined as

a spectral density. Figure 4.9 shows how this works. Spectral density

describes how much signal (amplitude) is present per unit of bandwidth.

To convert the sinusoidal amplitudes into a spectral density, divide each

amplitude by the bandwidth represented by each amplitude. This brings

up the next issue: how do we determine the bandwidth of each of the

discrete frequencies in the frequency domain? As shown in the figure,

the bandwidth can be defined by drawing dividing lines between the

samples. For instance, sample number 5 occurs in the band between 4.5

and 5.5; sample number 6 occurs in the band between 5.5 and 6.5, etc.

Expressed as a fraction of the total bandwidth (i.e., N/2), bandwidth of

each sample is 2/N. An exception to this is the samples on each end,

which have one-half of this bandwidth, 1/N. This accounts for the

scaling factor between the sinusoidal amplitudes and frequency domain,

as well as the additional factor of two needed for the first and last

 M.A. College of Engineering

FFT Processor 48

samples. Why the negation of the imaginary part? This is done solely to

make the real DFT consistent with its big brother, the complex DFT.

Figure 4.9 The bandwidth of frequency domain signals

4.4 Illustration of the DFT and IDFT in Matlab

Given below is an illustration of the DFT and IDFT in Matlab using an

8-point sample. The commands and the results are given.

» p=[-1.2 2 3 -2 0 4 -0.23 1]; %sampled input

» y=fft(p); %command to find the fft

» disp(y); % display y

Columns 1 through 4

 6.5700 -0.4929 + 0.3055i -3.9700 - 7.0000i -1.9071 + 6.7655i

 Columns 5 through 8

 -3.4300 -1.9071 - 6.7655i -3.9700 + 7.0000i -0.4929 - 0.3055i

% The commands below calculate the time domain signal from the

% frequency domain signals obtained above.

% The following lines take into account the scaling factors.

» cosines=real(y)/4; % divide real parts of fft result by N/2

» sines=-imag(y)/4; % divide imaginary parts of fft result –N/2

» %special cases of scaling factors are given below

 M.A. College of Engineering

FFT Processor 49

» cosines(1)=real(y(1))/8;

» cosines(5)=real(y(5))/8;

» i=[0 1 2 3 4 5 6 7];

% The following lines multiply the basis functions with the

corresponding amplitudes

% obtained from the fft. Note that only frequencies from 0 to N/2 are

present.

% Also the Matlab representation of an array starts from cosines(1) and

not cosines(0)

» c0=cosines(1)*cos(2*3.1416*0*i/8);% d.c component

» c1=cosines(2)*cos(2*3.1416*1*i/8);% amplitude of cos wave

completing one cycle in the sampled %period

» c2=cosines(3)*cos(2*3.1416*2*i/8);

» c3=cosines(4)*cos(2*3.1416*3*i/8);

» c4=cosines(5)*cos(2*3.1416*4*i/8);

» s0=sines(1)*sin(2*3.1416*0*i/8);

» s1=sines(2)*sin(2*3.1416*1*i/8);

» s2=sines(3)*sin(2*3.1416*2*i/8);

» s3=sines(4)*sin(2*3.1416*3*i/8);

» s4=sines(5)*sin(2*3.1416*4*i/8);

» result=c0+c1+c2+c3+c4+s0+s1+s2+s3+s4;

» disp(result);

Columns 1 through 8

 -1.2000 2.0000 3.0000 -2.0000 0.0001 4.0000 -0.2300 1.000

 It can be seen that the results of the synthesis agree with that of the

original signal.

 M.A. College of Engineering

FFT Processor 50

CHAPTER 5
ARCHITECTURAL DESIGN OF THE FFT PROCESSOR

The operation of the processor is partitioned into three main processes.

These are the Data Input, FFT Computation and Data Output Processes.

This partitioning is depicted in figure 5.1

Figure 5.1 FFT Computation Process

 The processing cycle starts with the Data input process,

during which sampled data is read in and stored in memory. During the

FFT computation process, the FFT is computed on the stored data.

During the Output process results of the FFT computation process are

read out to the outside world. These processes are then mapped to

hardware resources.

5.1 Block Diagram of the FFT Processor
The FFT processor architecture consists of a single radix-2 butterfly

(which is referred as the butterfly processing element), a dual-port FIFO

RAM, a coefficient ROM, a controller and an address generation unit. It

also consists of a “cycles unit” to separate the various cycles, namely c0,

c1, c2 and c3. This unit also outputs the ORed output of some of these

cycles such as c0 and c1. The process of writing into the RAM during

FFT computation, begins only five cycles after the first data is read from

RAM. The counter unit is used to count these cycles. Data pathways are

in the form of 32-bit signed fractions. Coefficients are stored as 32-bit

words.

 M.A. College of Engineering

FFT Processor 51

CONTROLLER

BUTTERFLY
PROCESSING

ELEMENT

ADDRESS
GENERATION

UNIT

CO-EFFICIENT ROM

RAM

CYCLES UNIT

C
O

U
N

TE
R

st
ag

ed

ff
td io
d ipop

fft
_e

n

io
_m

od
e

ro
m

ge
n_

en

enbw

enbor

ra
m

_w
r

ra
m

_r
d

ro
m

_e
n

pr
es

et

c0
_e

n

cycles

c0\c lock

rom_add

clk_count

disable

reset_count

da
ta

_r
om

ou
t_

da
ta

ra
m

_d
at

a

data_io

Figure 5.2 Block diagram of FFT Processor

A brief description of the important signals used in the processor is given below.

staged : goes high when a stage is completed

fftd : goes high when the fft operation is completed

iod : goes high when input/output operation is over.

fft_en : enable the address generation for collecting data from RAM during FFT

calculation.

io_mode : High when input/output operation is going on.

op : High when output is going on.

 M.A. College of Engineering

FFT Processor 52

ip : high when input is going on.

romgen_en : enable address generation for ROM.

ram_rd : RAM read address.

ram_wr : RAM write address.

enbw : write enable of RAM

enbor : read enable of RAM

out_data : Data to be written to RAM

data_ram : Data from RAM to butterfly processing unit.

cycles : consists of signals c0,c1,c2,c3,c0_c1,c2_c3,c0_c2,c1_c3.

Note that the clock and initialising signals are not sho wn.

5.2 BUTTERFLY PROCESSING ELEMENT .

Figure 5.3 Butterfly Processing Unit

 The butterfly is the basic operator of the FFT. It computes a two

point FFT. It takes two data words from memory and computes the FFT.

The results are written back to the same memory locations of the inputs

since an in-place algorithm is used. The butterfly processing element

computes one butterfly every four cycles. It consists of one multiplier

and two adders. The architecture for it is depicted in figure 5.3

 M.A. College of Engineering

FFT Processor 53

 The blocks named “R” are a set of negative edge triggered D flip

flops. That is, each “R” block consists of 32 D-flip flops, one for each

bit. Similarly the “L” blocks are positive level triggered. The blocks

labeled “D” are positive edge triggered. c0,c1,c2 and c3 are the four

cycles that the processor takes to calculate the fft . c0,c1 is the OR

output of the cycles c0 and c1. Similarly c0,c2 is the OR output of c0

and c2 and so forth. This is shown below.

c lock_main

c0

c1

c2

c3

c0,c1

Figure 5.4 Waveform of the cycles used in the FFT Processor

 M.A. College of Engineering

FFT Processor 54

The multiplier forms the partial products of the complex multiplication

and produces a 32 bit signed fraction result. This is followed by the first

adder which sums the cross products of the complex multiplication. The

second adder produces the sum and difference outputs of the butterfly

operation.

 The butterfly processing element takes four cycles to compute a

two-point FFT/ It has a latency of five cycles. Three of these are

associated with the fact that three input components (y,Y,and x) are

required before an output can be computed and two are to pipeline the

RAM read and write operations. The table shows the outputs of the

multipliers, adders and that read from the ROM and RAM and written

into RAM at different cycles.

5.3 ADDRESS GENERATION UNIT (AGU)

The purpose of the address generation unit is to provide the RAM and

the coefficient ROM with the correct addresses. It also keeps track of

which butterfly is being computed in which stage. For an 8-point

complex FFT there are 3 stages, each stage consisting of 4 butterflies. In

 M.A. College of Engineering

FFT Processor 55

addition to this, since address generation during input, output and FFT

computation processes are different, it keeps track of the mode of

operation of the chip and generates the required address. Mode of

operation information is supplied by the controller. A block level

description of the AGU is shown in figure. The different blocks of the

AGU are explained separately.

STAGE
GENER-

ATOR

incr

c lear

staged

butterf ly_iod

BUTTERFLY

GENERATOR

STAGE DONE_
IO DONE

BASEINDEX
GENERATOR

IO ADDRESS
GENERATOR

ROM ADDRESS
GENERATOR

SHIFTERS

mux

stage

incr

io_mode

staged
iod
fftd

butterfly

stage

staged

clear

butterfly

stage

fft_en

cycles
(c0,c1,c2,c3)

io_mode

ip

op

butterfly

f f tadd_rd

io_add

io_modestage

butterfly

cycles
(c0,c1,c2,c3)

romadd_gen
rom_add

ram_rd

ram_wr

Figure 5.5 Address Generation Unit

 M.A. College of Engineering

FFT Processor 56

5.3.1 Butterfly Generator

The butterfly generator keeps track of which butterfly is being computed

in a particular stage. It is basically a 16-bit up counter since for an 8-

point complex FFT there are 4 butterflies per stage and 4 data words per

butterfly (2 real and 2 imaginary).

Note that during data input and data output the butterfly is incremented

by the clock while during fft computation mode, it is incremented by c0.

This is because, 4 cycles are required to calculate one butterfly. Hence

the butterfly generator need to be incremented only once in every 4

cycles during FFT computation. The selection between the clock and

“c0” is made by a multiplexer. The “io mode” signal is used for

selection. Whenever “clear” or “stage done” signal goes high, the

butterfly generator is reset. The block diagram of the butterfly generator

is shown above.

5.3.2 Stage Generator

The stage generator keeps track of the current stage in the FFT

computation. The stage generator supplies the base index generator with

the number of the stage which is currently being computed. For an 8-

point FFT there are 3 stages hence the stage generator is basically a two-

bit counter which is incremented one every 4 butterfly counts (by the

“stage done” signal).

5.3.3 Stage done_IO done block

It generates four signals called “iod”, “staged” “fftd” and “butterfly”.

“iod” is generated when the “butterfly” count is 15. This informs the

controller that either the Data Input or Output process is finished. The

“staged” signal is generated when the current “butterfly” count is 4, it

increments the stage generator by one. fftd is generated when the stage

 M.A. College of Engineering

FFT Processor 57

count is three. This informs the controller that the FFT computation

process is done, hence forcing the FFT processor to start the data output

process. The block diagram of stage generator is shown below.

5.3.4 IO-Address Generator

 The IO Address Generator is responsible for generating addresses

for RAM during the data input and output processes. During the data

input process the output of the butterfly generator “butterfly” can be

used for addressing 16 locations in the RAM. However, during the data

output process data should be bit-reversed while being written to outside

world. Once in the output process bit-reversed address is selected by the

muxes in the AGU. The controller gives the information whether the

process is in IO-mode through the signal “iomode”. This signal is used

for selecting.

5.3.5 Base Index Generator

The base index generator produces the addresses for reading from the
RAM as shown below.

 M.A. College of Engineering

FFT Processor 58

 The butterfly has two complex data inputs A and B. These inputs

when manipulated produces four outputs x, X, y and Y, out of which X

and Y are complex values. Since there are 16 locations, the BIG is a

mode-16 counter. The FFT mode address generation is quite complex.

The address generation is obtained by manipulating the outputs of the

butterfly generator, stage generator and the cycles.

Let the 4 bits of the butterfly signal be “b3 b2 b1 b0”. Then the
addresses for “x”, “X” , “y” and “Y” are generated based on the
following table.

 Stage Address for “x” Stage Address for “y”

1 0 0 b1 b0 1 0 1 b1 b0
2 0 b1 0 b0 2 0 b1 1 b0
3 0 b1 b0 0 3 0 b1 b0 1

The addresses for “X” and “Y” are obtained by setting the M.S.B as ‘1’

in the addresses of “x” and “y” respectively. Note that “y” is collected

from RAM during cycle “c0”. Similarly “x” is collected during the cycle

“c2” and so forth. This information is used while writing the VHDL

code.

5.3.6 The Shifters

As mentioned, the result of FFT computation is written back into the

same location as it was read. However there is a latency of five cycles.

For example, if “y” is read from the RAM during cycle “c0”, “y1” is

written into the same location as it was read after 5 cycles, that is during

cycle “c1”. So the read address is shifted in each on these five cycles.

The output of the last shifter is then given as the write address.

5.3.7 ROM Address Generator

The ROM Address Generator is used to provide the ROM with the

correct address for collecting the sine and cosine co-efficients. It is

modeled based on the co-efficients given in the signal flow graph.

 M.A. College of Engineering

FFT Processor 59

5.4 CONTROLLER

The controller is modeled as a finite state machine which has been

explained already. It has seven states ranging from rst1 to rst 7. The

actions performed in each state is clearly commented in the code. The

signals to and from the controller are given in figure 5.2.

5.5 RAM AND ROM

The input is first written into the RAM. During the FFT computation

process, the FFT of two numbers is calculated and written back into the

same location in the RAM. During the output process bit reversed

address is given to the RAM and it outputs the data in it accordingly.

 The ROM is used to store the sine and cosine values needed in the

FFT computation process. It outputs these values according to the

address given to it.

 M.A. College of Engineering

FFT Processor 60

CHAPTER 6
RTL SIMULATION OF THE FFT PROCESSOR

The implementation of the design in VHDL is verified by simulating the

design. A testbench is written for the purpose. It reads the input data

from a file. It also instantiates the various components and provides the

main entity with the signals such as clock and reset. Note that there are

two clocks, one for the entire processor and the other(of a higher

frequency) for the adder unit. Alternatively, one can use a multiply by n

circuit to increase the frequency of the main clock and give it to the

adder.

The results of simulation and a comparison with the results of Matlab

are given below. It is seen that the first value (d.c value) of our design

does not match with the Matlab result. This is a bug in the program

which we could not eliminate. However, the FFT is used to find the

frequency components of a signal and the d.c value is not important.

Infact, for analysis purposes, the d.c value is quite often set to zero. In

our program, the d.c value is invariably zero.

So, in a sense it is a blessing in disguise.

Sampled data input : [-1 1 2 –0.5 –3 –1 2 0]. The imaginary parts are set

to zero. The IEEE standard format of these numbers are given in the file

“rom_ram.vhd”. The testbench reads the input numbers from this file.

10111111100000000000000000000000
00111111100000000000000000000000
01000000000000000000000000000000
10111111000000000000000000000000
11000000010000000000000000000000
10111111100000000000000000000000
01000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

 M.A. College of Engineering

FFT Processor 61

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

The results:
The output of the simulation was written into a file named “result.txt”.
The contents of this file for the input given above is as follows.

00000000000000000000000000000000
01000000011100010010001011010000
11000001000000000000000000000000
00111110011011011101001100000000
00111111000000000000000000000000
00111110011011011101001100000000
11000001000000000000000000000000
01000000011100010010001011010000
00000000000000000000000000000000
10111111100001111100001101100000
10111111000000000000000000000000
10111111100001111100001101100000
00000000000000000000000000000000
00111111100001111100001101100000
00111111000000000000000000000000
00111111100001111100001101100000

The C routine which converts these binary numbers to decimal reads

from the file “result.txt” and outputs the result into another file as

follows.

--REAL PARTS
0
3.76775
-8
0.23225
0.5
0.23225
-8
3.76775
--IMAGINARY PARTS
0

 M.A. College of Engineering

FFT Processor 62

-1.06065
-0.5
-1.06065
0
1.06065
0.5
1.06065

Matlab Results

Columns 1 through 4

 -0.5000 3.7678 - 1.0607i -8.0000 - 0.5000i 0.2322 - 1.0607i

 Columns 5 through 8

 0.5000 0.2322 + 1.0607i -8.0000 + 0.5000i 3.7678 + 1.0607i

 M.A. College of Engineering

FFT Processor 63

CHAPTER 7

SYNTHESIS OF THE FFT PROCESSOR

The processor was synthesised using Synopsis’ FPGA Express for the

FLEX 10K family of Altera’s FPGAs. The adder unit, the butterfly

processor unit and the address generation unit were synthesised

separately. Then, the entire design was synthesised. The synthesis

software produces a number of files of which the synthesis report file

and the EDIF netlist file are important. The report file is given in

appendix B. The EDIF netlist file is too large to be given (It has more

than 1 lakh lines!). It also produces some schematics as its output. We

tried to place and route the processor using Altera’s MAX PLUS- II

tool. However, the design did not fit into any of the available devices.

The tool used was a shareware version and so only smaller designs

could be place and routed.

 M.A. College of Engineering

FFT Processor 64

CONCLUSION

An 8 point 32 bit FFT processor was designed, simulated and

synthesized using VHDL. First, a VHDL by example approach was used

to illustrate the basics of VHDL. For this a floating point adder unit was

designed and tested. The FFT processor was then simulated. The results

of the simulation were seen to match with the results of Matlab. It was

synthesized and optimized for speed using Synopsis’ FPGA Express.

The chip is expected to run at a clock frequency of about 25 MHz. The

chip can be easily upgraded for a 128 point or 256 point FFT.

 M.A. College of Engineering

FFT Processor 65

