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Introduction
Service robots will increasingly support daily work in busi-
ness or home environments in the near future. Possible
services are delivery tasks, cleaning services or home care.
However, the distribution and thus further development of
mobile robots is mainly dependent on the acceptance of so-
ciety. An important criteria for this acceptance is the robot’s
ability to interact with the environment. Therefore it is es-
sential to give the robot a detailed model of its environment,
i. e. the location of its interaction partners. In general, this
knowledge can only be generated using sensory input. An
explicit specification of a dynamic environment is usually
impossible.

Multimodal Tracking Framework
Both camera tracking as well as laser tracking have their
own specific advantages and drawbacks. To build a robust
and accurate tracking system it is necessary to integrate in-
dependent tracking algorithms working on different sensor
modalities. With an appropriate fusion algorithm the spe-
cific advantages of the sensors could complement one an-
other to decrease the overall error.
A typical multiple target tracking system consists of four
blocks: sensor hardware, single sensor tracking, data fu-
sion and association and track life management. A tracking
system should be modular to allow addition, removal and
exchange of sensors and tracking algorithms. Therefore,
the most important aspect of a tracking system is its ability
to filter and fuse the results from individual sensors.
I developed a framework that contains the above-mentioned
blocks. The schematic block diagram for this framework
is shown in fig. 1. The implementation of the data fusion
block includes filtering and data association using a particle
filter. Through this interface an arbitrary number of tracks
is provided where each track consists of (a) the current po-
sition and velocity of the tracked object, (b) the uncertainty
about the position and velocity and (c) a unique identity
number.

Figure 1: Components of the tracking system. The black
dots denote the common interface.

Sensor Fusion and Filtering
The problem of tracking can be considered as the detec-
tion of the state of a target. Therefore, the state xt of a
tracked person at time t is modeled as a four-dimensional
vector (x, y, δx, δy)T . This vector not only describes the
position on the ground plain but also the velocity of the
person. Since measurements of sensors contain errors it is
impossible to derive the actual state of observed persons
in a non-probabilistic way. Generally, a probability den-
sity function (pdf ) is used to represent the state. Nonlinear
Bayesian filtering can be applied to determine this pdf by
taking every previous measurement into account, however
practically it can only be applied when certain constraints
hold. The Kalman filter and the particle filter are two fre-
quently used methods to realize bayesian like filtering.

Figure 2: A person is trackted by a particle filter (left) and
a Kalman filter (right). [Schulz et al. IJRR 2003]

The Kalman filter is not able to handle the nonlinear pdf
shown in fig. 2 thus the particle filter is used here.
The basic principle of the particle filter is the importance
sampling. A multidimensional function g(x) is factorized
into two functions g(x) = f (x)π(x), where π(x) is inter-
preted as a probability density function with π(x) ≥ 0 and∫

π(x) dx = 1.
If a set of samples {xi|i = 1, . . . , i = N} with N � 1 and
distributed according to π(x) is generated, the integral of
the function g(x) can numerically be approximated as

∫
g(x) dx ≈ 1

N

N∑
i=1

f (xi) (1)

Here the function g(x) is the state of the tracked person.

Camera-Based Tracking
In this system the approach presented by Comaniciu (2000)
is used since it is suitable for cameras mounted on a mobile
robot. People tracked in the camera image are represented
by a weighted color histogram. Pixels are weighted with
a monotone decreasing kernel function K : R2 → R which
assigns smaller weights to the pixels which are further from
the center of a detected person. If the size of a person is
denoted by 2h∗, the probability of the object’s color u can
be calculated as follows:

q̂u = C
∑

x∈X∗

K
(

x

h∗

)
δ
(
b(x)− u

)
, (2)

where C denotes a normalization constant. The function
b(x) assigns the pixel to an index of the histogram’s color
bin. Therefore, a person located at the coordinate y in the
image plane is represented by a color histogram:

p̂u(y) = Ch

∑
x∈Xy

h
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h
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δ
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)
(3)

where h is the size of the target candidate. As a measure
of similarity between two color histograms we chose the
Bhattacharyya coefficient.
The goal of the tracking algorithm is to find the location y
with the highest similarity between the color histogram of
a person and a candidate located at y.

Figure 3: A person is tracked in an image.

Laser-Based Tracking
Tracking algorithms which use laser range finders are often
divided into two steps. Here a novel method to estimate the
background distances is used which is updated with each
measurement. The background distance hi(t) at time t and
angle i is given by the following recursive equation:

hi(t) = hi(t− 1) +

ε1 if hi(t− 1) < mi(t)

(−ε2) else
, (4)

where mi(t) is the measurement at time t. The values of the
positive increments ε1 and ε2 determine the adaptivity of
the background model. Background measurements are re-
moved afterwards and groups of foreground measurements
are tracked with a particle filter.

Experimental Results
For experiments two SICK laser range finders mounted on a
mobile service robot and a stationary camera at the labora-
tory of the TAMS institute are used. Due to the uncertainty
of the camera tracking which is caused by noisy measure-
ments and changing illumination conditions the outcome of
the laser tracking is weighted higher. In figure 4 the ob-
served person’s true trajectory is assumed as linear. Al-
though the greater variance of the trajectory computed by
the camera algorithm is obvious, the fused result has be im-
proved compared to the laser tracking result.

Figure 4: Comparison of sensor modalities: Camera
tracking (green) and laser tracking (blue) are fused by a

particle filter (red).

Both sensor modalities are used to increase the accuracy
and robustness of the tracking algorithm. Figure 5 shows
a multimodal tracking of two persons. Figure 6 shows the
results of a two-hour observation of the TAMS floor.

Figure 5: Increased robustness due to the use of
multimodal sensors.

Figure 6: Results of a two-hours observation. The
tracking starts when persons become visible to the sensors

and ends when they leave the range of the sensors.

The camera-based tracking algorithm runs with a resolution
of 640x480 pixel. With a standard pc our implementation
achieves 25 fps while tracking 3-4 targets. The laser-based
algorithm reaches up to 30 fps due to the lower amount of
data. Since the used particle filter is an efficient approxima-
tion of the bayesian filtering, our system should be able to
ensure real-time constraints if an appropriate environment,
e.g. RTLinux, is used.
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