
A dynamic architecture to develop distributed software for
multi-modal service robots

Daniel Westhoff
email: westhoff@informatik.uni-hamburg.de

Introduction
A novel concept for the programming of service robots is
proposed by the group TAMS. The presented software ar-
chitecture eases the development of applications for service
robots. This software architecture is based upon the Roblet-
Technology. It introduces the possibility to develop, com-
pile and execute an application on one workstation. Since
the Roblet-Technology uses Java development is indepen-
dent of the operation system. With the feature of running
programs as a distributed software, the framework allows
running algorithms which need great computation power
on remote machines which provide this power. In this way,
it greatly improves programming of applications in service
robotics. The concept is evaluated in the context of the ser-
vice robot TASER of the TAMS Institute at the University
of Hamburg. This robot consists of a mobile platform with
two manipulators equipped with artificial hands. Several
multimodal input and output devices for interaction round
off the robot.

Figure 1: Application with one client and one server.

Roblets
The basic of the proposed framework is the Roblet-
Technology, a concept firstly introduced by Westhoff et.al.
in 2004. Roblet-Technology is a client-server architecture
where clients can send parts of themselves, referred to as
Roblets, to a server. The server, referred to as Roblet-
server, then executes the Roblets with well-defined behav-
ior in case of malfunctions. A basic setup is shown in figure
1 Not only data is transmitted between the client and server
but complete executable programs. This can be compared
to Java applets but with the difference that Roblets are not
downloaded but sent.

Complex setups consist of multiple client applications and
Roblet-servers. A Roblet terminates if the execution of its
code finishes normally or returns an exception to the client
in the case of failures. In addition, a Roblet can be termi-
nated by a client remotely or by the Roblet-server directly.
After a Roblet terminates, the Roblet-server resets itself.
Roblet-Technology is applicable to all kinds of distributed
systems but it has features that make its integration into
robotic applications useful. In general, applications in ser-
vice robotics are distributed systems. Besides one or mul-
tiple mobile robots, there are visualisation- and control ap-
plicatons that run on workstations in a local area network.
Sometimes there is no direct access to the robot systems
via keyboard, mouse and monitor but only through a wire-
less network. When a Roblet-application is executed it will
send parts of itself to available servers and spread in the lo-
cal network. Roblets may send parts of themselves to other
servers as well. The network communication is hidden by
the Roblet library, which simplifies the overall develop-
ment. That means, the network is transparent and devel-
oping distributed applications based on Roblet-Technology
is like developing an application for one workstation. Ac-
cess to the remote servers is encapsulated in a client library,
reducing the execution of a Roblet on the remote system to
one method call.

Modules
For robotic applications we propose modules to extend a ba-
sic Roblet-server as shown in figure 2. A module is loaded
when the Roblet server is started. A module encapsulates
a class of similar functionality. For the robot TASER we
developed several modules: One module merges the func-
tionality of the mobile platform, a second module wraps the
manipulator system including the robot arms and the hands.
There are modules for the different vision systems, the pan-
tilt unit, a speech module and other parts of the interaction
subsystem. Notice that the map server and the pathplan-
ning server don’t run on the robot’s control computer but
on a workstation in the local network. This allows the inte-
gration of information gathered by multiple robots. For ex-
ample, in the case of dynamic map adjustment this relieves
the robot’s onboard computer of some computationally ex-
pensive tasks.

Figure 2: Chart of the generic Roblet server and how it is
extended by a module.

Units
Modules are further devided into units. Units are Java in-
terfaces that are implemented within the modules. Units
build the hardware abstraction layer in our framework. For
example, a module encapsulates the localization subsystem
of a mobile robot and a Roblet wants to query the current
pose estimate of the robot. The module implements a unit
which defines a method to get the pose. On another robot
there may be another localization system encapsulated by
another module. But, if the module implements the same
unit, the same roblet can be executed on both robots with-
out changes. Nonetheless, special features of a subsystem
are available to Roblets if module-specific units are imple-
mented. A roblet has only access to units, it does not know
anything about a module and a module’s implementation of
an interface. The whole concept is strictly object-oriented.
By introducing units, the framework is able to generalize
access to similar classes of subsystems without loosing ac-
cess to their special features. Additionally, units introduce a
possibility of versioning into the system. If new features are
integrated into a module then new units will be introduced.
As long as older units are still available, all Roblets using
these old units still work. This has proven to be of great use
since complex applications often consist of dozens of client
applications and Roblet-servers.

Technical Aspects of Multimodal Systems
Dept. Informatics, Faculty of Mathematics, Informatics and Natural Sciences

http://tams-www.informatik.uni-hamburg.de


