
M A S T E R T H E S I S

Bimanual Robot-to-Robot Handover Utilizing
Multi-Modal Feedback

vorgelegt von

Björn Sygo

MIN-Fakultät

Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Studiengang: Master Informatik

Matrikelnummer: 6921896

Abgabedatum: 30.03.2024

Erstgutachter: Prof. Dr. Jianwei Zhang

Zweitgutachter: Dr. Norman Hendrich

Betreuer: Michael Görner

Abstract
Enabling bimanual robots to perform handovers from one manipulator to the other promises
significant advantages when operating in complex environments, i.e., an increased workspace
or easier object reorientation. However, implementing it in practice remains challenging. This
thesis implemented a pipeline on a bimanual robot with an anthropomorphic hand. The
pipeline can hand over different objects without previous knowledge of their shape. In this
context, the thesis explores the available workspace of this system for such a task. Additionally,
it investigates the possibility of using a reinforcement learning model trained exclusively on
the real-world system to perform the grasping part of the pipeline. The training uses the
concept of hand synergies to control the anthropomorphic hand during this process. Results
indicate the viability of such an approach, where the model performed similarly to the baseline
within a reasonable training time for real-world training.

Zusammenfassung
Zweiarmigen Robotern zu ermöglichen, sich Objekte von einem Manipulator zum anderen
zu übergeben, verspricht erhebliche Vorteile beim Agieren in komplexen Umgebungen, zum
Beispiel einen größeren Arbeitsbereich oder einfacheres Neuausrichten dieser Objekte. Die
Umsetzung in der Praxis bleibt jedoch eine Herausforderung. Diese Arbeit implementiert
solch eine Pipeline auf einem zweiarmigen Roboter mit einer anthropomorphen Hand. Diese
ist in der Lage, verschiedene Objekte ohne vorherige Kenntnis ihrer Form zu übergeben. In
diesem Zusammenhang untersucht die Arbeit weiterhin den verfügbaren Arbeitsbereich dieses
Systems für eine solche Aufgabe. Darüber hinaus wird die Möglichkeit untersucht, ein aus-
schließlich auf dem realen System trainiertes Reinforcement-Learning-Modell zu verwenden,
um in der Pipeline das Greifen der Objekte auszuführen. Das Training nutzt das Konzept der
Handsynergien, um die anthropomorphe Hand während dieses Prozesses zu kontrollieren. Die
Ergebnisse zeigen die Realisierbarkeit eines solchen Ansatzes, bei dem das Modell innerhalb
einer für ein Training in der realen Welt angemessenen Trainingszeit eine ähnliche Leistung
wie die Basislinie erbringt.

iii

Contents

List of Figures vii

List of Tables xi

1. Introduction 1
1.1. Real System Reinforcement Learning . 2
1.2. Outline . 3

2. Fundamentals 5
2.1. Robot Kinematics . 5
2.2. Workspace . 7
2.3. Grasp Stability . 8
2.4. Hand Synergies . 9
2.5. Reinforcement Learning . 11

2.5.1. Soft Actor-Critic . 13

3. Related Work 15
3.1. Grasping . 15
3.2. Real Robot Reinforcement Learning . 17
3.3. Bimanual Handover . 18

4. Approach 21
4.1. Setup . 21
4.2. Pipeline . 23

4.2.1. Grasp Point . 24
4.2.2. Handover Pose Sampling . 27
4.2.3. Grasping . 30
4.2.4. Grasp Testing . 31

4.3. Training . 32
4.3.1. Architecture . 32
4.3.2. Procedure . 35

5. Experiments 37
5.1. Workspace Analysis . 37

5.1.1. Side Grasp . 39
5.1.2. Shifted Side Grasp . 41
5.1.3. Top Grasp . 44

v

Contents

5.2. Model Training . 46
5.2.1. Hyperparameter Selection . 46
5.2.2. Side Grasp . 51
5.2.3. Top Grasp . 56

6. Discussion 61
6.1. Pipeline Architecture . 61
6.2. Training . 62

7. Conclusion 65

Bibliography 67

A. Workspace Analysis 71
A.1. Side Grasp . 71
A.2. Side Grasp X-Shift . 72
A.3. Side Grasp Y-Shift . 73
A.4. Top Grasp . 78

vi

List of Figures

1.1. An example of the robot used in this thesis handing an object from one ma-
nipulator to the other. 1

2.1. Example schematic of a 2D robot arm with 3 joints. 5
2.2. The left image shows the multi-fingered hand used as one manipulator in this

thesis, while the right image shows the two-finger gripper used as the other. . 8
2.3. The three options of slippage during robot grasps: translational, rotational,

or no slip. [17] . 9
2.4. Simplified model of acting forces during an object grasp. [19] 10
2.5. Simplified model of the relationship between an agent and its environment in

the context of RL. 11

3.1. An example from the work of Liang et al. [22] of their trained model grasping
a bleach bottle. 15

3.2. The training setup of Gu et al. [35] for training their robot to open doors in
the real world. 18

3.3. An example for a functional re-grasp from the work of Pavlichenko et al. [42]. 20

4.1. PR2 robot with an Azure Kinect attached on its head and a Shadow Dexterous
Hand. 21

4.2. Joint schematic of a left Shadow hand without BioTac sensors. [22] 22
4.3. Simplified structure of the handover pipeline. 23
4.4. Fixed pose to capture a point cloud of the handover object. 24
4.5. On the left, an unfiltered point cloud received by the camera. On the right is

the resulting point cloud after both filters are applied. 25
4.6. The frames for defining the grasp pose for both manipulators. 26
4.7. Both available grasp types for the handover pipeline. 26
4.8. Fixed starting pose for the handover pose sampling process. 27
4.9. The handover frame is a virtual frame between the two end-effector frames. . 28
4.10. Plot of the cost function used to evaluate the generated joint configurations

for the values of one joint. 29
4.11. The wrist-mounted force sensor relative to the gripper end-effector frame. . . 32
4.12. The first three synergies for the shadow hand and their respective movements

for positive or negative weights. [22] . 36

5.1. Example of sampled rotations for one handover pose. 37
5.2. An example of creating the grid-based workspace analysis for the side grasp. . 38

vii

List of Figures

5.3. The left image shows all positions with at least one valid solution for the side
grasp. 39

5.4. Best 5% of positions according to the three defined metrics of number of valid
solutions, average cost, and minimal cost for the side grasp. 39

5.5. The intersection of the best 5% of positions for each metric for the side grasp. 40
5.6. The distribution of all valid solutions for the side grasp according to the three

defined metrics of number of valid solutions, average cost, and minimal cost. . 41
5.7. The left image shows all positions with at least one valid solution for the

x-shifted side grasp. 42
5.8. Best 5% of positions according to the three defined metrics of number of valid

solutions, average cost, and minimal cost for the x-shifted side grasp. 42
5.9. The intersection of the best 5% of positions for each metric for the x-shifted

side grasp. 42
5.10. The left image shows all positions with at least one valid solution for the

y-shifted side grasp. 43
5.11. Best 5% of positions according to the three defined metrics of number of valid

solutions, average cost, and minimal cost for the y-shifted side grasp. 43
5.12. The intersection of the best 5% of positions for each metric for the y-shifted

side grasp. 44
5.13. The left image shows all positions with at least one valid solution for the top

grasp. 44
5.14. Best 5% of positions according to the three defined metrics of number of valid

solutions, average cost, and minimal cost for the top grasp. 45
5.15. The intersection of the best 5% of positions for each metric for the top grasp. 45
5.16. The three objects used for training and testing the grasping models and the

handover baseline. 46
5.17. Average episode length for all training attempts. The Table 5.2 shows the

configurations for all attempts. 47
5.18. Average reward per episode for all training attempts Table 5.2 shows the

configurations for all attempts. The reward function changed over different
training attempts, so higher values do not necessarily relate to better attempts. 48

5.19. Entropy coefficient for all training attempts with a variable one. The Table 5.2
shows the configurations for all attempts. 48

5.20. Deteriorating behavior of the second training attempt. 49
5.21. Action values over all timesteps for an example grasp of the chips can. The

used model only received the constant one-hot encoding as input. 50
5.22. Examples of side grasp handovers for each object. 51
5.23. Examples of successful side grasps for all three objects in the final evaluation

pose. 52
5.24. Final model grasping behavior for the chips can. 53
5.25. The development of model-generated actions during an example side grasp for

all three objects. 53

viii

List of Figures

5.26. The left image shows the orientation of the bleach bottle with which the model
trained. In the right image, the bleach bottle’s orientation is rotated by 180°
to test the performance with this alternative insertion method. 54

5.27. The variable distances of handover poses where the hand is above or below
the object. 55

5.28. An example of the object twisting in the hand after the gripper retracts. . . . 56
5.29. Average reward for the top grasp model during training. 57
5.30. Examples of top grasp handovers for each object. 57
5.31. Examples of successful top grasps for all three objects in the final evaluation

pose. 58
5.32. The development of model-generated actions during an example top grasp for

all three objects. 59

A.1. Additional views of all valid solutions for the x-shifted side grasp. 71
A.2. Additional views of the sliced version of all valid solutions for the side grasp. . 71
A.3. Additional views of the best 5% regarding the number of valid solutions for

the side grasp. 72
A.4. Additional views of the best 5% regarding the average cost for the side grasp. 72
A.5. Additional views of the best 5% regarding the minimal cost for the side grasp. 72
A.6. Additional views of the intersection of the best 5% regarding all metrics for

the side grasp. 73
A.7. Distribution of all valid solutions for the x-shifted side grasp according to the

three defined metrics of number of valid solutions, average cost and minimal
cost. 73

A.8. Additional views of all valid solutions for the x-shifted side grasp. 73
A.9. Additional views of the sliced version of all valid solutions for the x-shifted side

grasp. 74
A.10.Additional views of the best 5% regarding the number of valid solutions for

the x-shifted side grasp. 74
A.11.Additional views of the best 5% regarding the average cost for the x-shifted

side grasp. 74
A.12.Additional views of the best 5% regarding the minimal cost for the x-shifted

side grasp. 75
A.13.Additional views of the intersection of the best 5% regarding all metrics for

the x-shifted side grasp. 75
A.14.Distribution of all valid solutions for the y-shifted side grasp according to the

three defined metrics of number of valid solutions, average cost and minimal
cost. 75

A.15.Additional views of all valid solutions for the y-shifted side grasp. 76
A.16.Additional views of the sliced version of all valid solutions for the y-shifted side

grasp. 76
A.17.Additional views of the best 5% regarding the number of valid solutions for

the y-shifted side grasp. 76

ix

List of Figures

A.18.Additional views of the best 5% regarding the average cost for the y-shifted
side grasp. 77

A.19.Additional views of the best 5% regarding the minimal cost for the y-shifted
side grasp. 77

A.20.Additional views of the intersection of the best 5% regarding all metrics for
the y-shifted side grasp. 77

A.21.Distribution of all valid solutions for the top grasp according to the three
defined metrics of number of valid solutions, average cost and minimal cost. . 78

A.22.Additional views of all valid solutions for the top grasp. 78
A.23.Additional views of the sliced version of all valid solutions for the top grasp. . 78
A.24.Additional views of the best 5% regarding the number of valid solutions for

the top grasp. 79
A.25.Additional views of the best 5% regarding the average cost for the top grasp. 79
A.26.Additional views of the best 5% regarding the minimal cost for the top grasp. 79
A.27.Additional views of the intersection of the best 5% regarding all metrics for

the top grasp. 80

x

List of Tables

4.1. Joint limits for the joints of both arm manipulation groups. 22

5.1. Overview of cutoff values for the different workspace analyses. 41
5.2. Configuration for all training scenarios during hyperparameter selection. . . . 47
5.3. Success rates of pipeline executions for model and baseline generated side grasps. 52
5.4. Success rates of pipeline executions for model and baseline generated top grasps. 58

xi

1. Introduction

With the constant rise of interest in robotics, more and more applications outside laboratories
emerge. While robots in factories are already widespread, they often operate independently
of humans, performing highly specialized tasks. However, newer developments aim to have
robots operate beside humans and expand the deployment area to include other domains, such
as domestic environments. Two requirements to succeed in this endeavor are the robot’s ca-
pability to operate in these unstructured, human-centric environments and to stay predictable
for humans in their movements. Consequently, a critical skill for robots is the ability to hand
over objects. Humans constantly grasp objects and pass them to their other hand for further
use. Examples include removing objects from a dishwasher or grasping a tool on the other
side of their preferred hand while working.
Robots will encounter two general scenarios when performing handovers. The first involves

a human and a robot, where the robot either gives or receives an object to or from the
human. This field, therefore, encompasses human-to-robot and robot-to-human handovers
[1]. However, this thesis focuses on the second type, involving two robot arms. These can
either belong to two different agents or the same one. The latter case, where one robot
performs a handover of an object from one of its manipulators to the other, is the scenario
for this thesis. This scenario requires a robot platform equipped with two arms performing a
bimanual task, as defined by Smith et al. [2].
Providing the capability of performing bimanual handovers on such a platform also comes

with significant advantages. For example, it makes changing an object’s orientation easier
than through in-hand object manipulation. Enabling object re-grasping without needing a
support surface also increases the flexibility of task assignments. Additionally, it allows them
to move and use objects in a larger area without moving the rest of their bodies. As many
service robots in development have a dual-arm setup, the last part is essential regarding
predictable movements.

Figure 1.1.: An example of the robot used in this thesis handing an object from one manipu-
lator to the other.

1

1. Introduction

Therefore, the first aim of this thesis is to implement a pipeline capable of performing a
bimanual handover on such a platform. It combines multiple modalities sensed by sensors on
the robot to achieve this. The pipeline has to work with different objects. It also has no prior
knowledge of the shape of these objects, as this would also not be the case when operating
outside of a laboratory environment. To this extent, the thesis also performs a workspace
analysis to implement this bimanual task properly [3].
However, as seen in Figure 1.1, the robot used in this thesis is also equipped with an

anthropomorphic hand as one of its manipulators. Such a hand can perform tasks that would
be impossible with a two-finger gripper, such as using tools. Consequently, enabling a robot
to perform the same tasks with an anthropomorphic hand that it could perform with a two-
finger gripper increases its flexibility. Nonetheless, this also comes with additional challenges.
An anthropomorphic hand has significantly more degrees of freedom (DOF) and is, therefore,
more difficult to control.
One prominent approach is to use reinforcement learning (RL) to control these multi-

fingered hands [4]. RL allows one to let the robot learn how to control the hand itself instead
of having to decide how to move every joint of the hand manually. Additionally, it allows
adaptation to varying circumstances, such as different objects for the handover. The second
aim is, therefore, to train an RL model that performs the object-grasping part of the handover
pipeline. Specifically, the thesis investigates the possibility of training such a model entirely
on a real-world system without a simulator. As this latter part is an unusual approach, the
following section further explains the motivation for this choice.

1.1. Real System Reinforcement Learning

As reinforcement learning is notoriously sample inefficient, the question arises about why it
should be directly deployed on a real system instead of a simulation, as is typical. First, recent
developments in RL, such as more sample-efficient algorithms, start to combat this challenge
of training robots in the real world [5]. Allowing training on real-world systems also prevents
one persistent issue for simulation training. This issue is the so-called sim-to-real or reality
gap. It describes the difficulty of a simulation-trained system functioning in the real world.
The reason for this is the simplified assumptions for models in a simulator. A simulator can
not simulate the noise of a real system, i.e., calibration errors or motor slippage. Nor can
a physics model calculate every interaction happening in the real world. When confronted
with these noise sources, systems perform significantly worse than in simulation. While, for
example, domain randomization options exist to combat this issue, they can only partially
solve this problem in practice. Training directly on the system can prevent this issue entirely.
For the setup in this thesis, using the real robot directly is specifically beneficial. It uses

a Willow Garage PR2 [6], which is a highly compliant system. Resultingly, any motion of
one manipulator on an object held by the other manipulator, such as in a handover, can and
will move the other arm slightly. It would be a challenge to simulate this behavior correctly.
Further, the custom combination of the PR2 system with the anthropomorphic hand, a
Shadow Dexterous hand [7], introduces additional difficulties. Such a composite system is
challenging to calibrate correctly, as no standard implementation can be applied. Instead,

2

1.2. Outline

each system needs individual calibration. Combined, it results in a system with significant
contributions to the sim-to-real gap besides the usual issues.
Finally, implementing such a learning system on a real robot can provide use even when a

similar, simulation-trained model should emerge. Because of the difficulties described above,
any such model will need help with deployment on the actual system. To compensate for
this, such a pipeline to further train the model on the actual system could be a viable option.

1.2. Outline

The structure of this thesis starts with chapter 2 explaining fundamental concepts for the
rest of this work. These involve robot kinematics, a robot’s workspace, metrics for grasp
stability, the hand synergies concept, and an introduction to reinforcement learning, including
an explanation of Soft Actor-Critic, the reinforcement learning algorithm used in this thesis.
Afterward, chapter 3 investigates related work in respective research fields. These are grasping
approaches for anthropomorphic hands, reinforcement learning on real-world robot setups,
and existing implementations for bimanual handovers. Next comes chapter 4 explaining the
implementation of this approach. This explanation comes in three parts. They cover the
used robot setup, the structure and individual components of the handover pipeline, and the
reinforcement learning process. Following is an explanation and evaluation of the experiments
performed with this setup in chapter 5. The two experiments of this thesis involve the
mentioned workspace analysis for different grasp types, as well as training reinforcement
learning models and testing them by executing the pipeline with them. Finally, chapter 6
discusses the results of the experiments and the pipeline structure in general, ending with the
conclusion to this thesis in chapter 7.

3

2. Fundamentals

This chapter covers relevant fundamental concepts for this thesis. It starts by introducing
robot kinematics, which is relevant to the control of the robot used in this thesis. Next
comes an introduction to the concept of a robot’s workspace, which is relevant for workspace
analysis in a later experiment. Following comes the concept of grasp stability, which is part
of the handover pipeline and the grasp training process. Afterward, this chapter covers the
concept of hand synergies, which is relevant for controlling the anthropomorphic hand of the
robot setup with the learned grasping model. Finally, the last section covers the basics of
reinforcement learning and the specific algorithm used for training in this thesis.

2.1. Robot Kinematics

Robots allow for motion per design. Consequently, it is necessary to model the motion
capabilities of a robot, as it allows plan and control of the robot’s movements. Attempts to
do so while ignoring the forces and torques applied to the robot fall in the field of kinematics
[8].
Regarding this thesis, the most essential part of kinematics is the analysis of the serial

chains of a robot, e.g., a robot arm. Such a chain consists of links, typically assumed to be
rigid bodies that connect at joints. Each link connects to two others, except the first and
last ones, which connect to only one other link. The first link’s unconnected end is usually
assumed to be mounted at a static position and called the base. Correspondingly, the end of
the last link is called the end-effector, which, for robot arms, would be the point capable of
manipulation, such as a gripper. Figure 2.1 depicts an example of such a setup. Therefore,
the kinematic description of such a chain is called a kinematic chain.

end-effector

base

joints

links

Figure 2.1.: Example schematic of a 2D robot arm with 3 joints.

A typical tool for describing such a kinematic chain are Denavit-Hartenberg (DH) param-
eters [9], which describe the relationship between two joints. These parameters are the link

5

2. Fundamentals

length, link twist, link offset, and joint angle. Link twist and offset are usually fixed parame-
ters, while the link length is variable for prismatic and the joint angle for revolute joints, the
two most common joint types in robotics.
There are two parts to describing robot kinematics: Forward and Inverse Kinematics. The

straightforward part is Forward Kinematics (FK) [10]. It describes the problem of mapping
a joint configuration for a robot’s kinematic chain from a base frame to the corresponding
pose of an end-effector in cartesian space. A pose in this context means the position and
orientation in cartesian space. Using these parameters, applying a transform from one joint
to the next for each joint in the kinematic chain can compute the transform from the base
to the end-effector. In an example with a kinematic chain of seven joints, as is the case for
the arms of the robot used in this thesis, such a transform chain would be

T base
end-effector = T 0

1 (q1)T
1
2 (q2)T

2
3 (q3)T

3
4 (q4)T

4
5 (q5)T

5
6 (q6)T

6
7 (q7) (2.1)

with an transform T i−1i of joint variable qi for joint i. In this case, qi describes either the link
length or the joint angle for a prismatic joint or revolute joint in the DH description model,
respectively. Writing these transforms as

T =

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2.2)

where px, py, pz are the values of the position vector and rkj are the rotational values of the
transform, allows calculating these values from the DH parameters of the joint combined with
the corresponding joint variable q. The resulting transform can be computed and applied to
the base to get the deterministic end-effector pose for the provided joint configuration.
Inverse Kinematics (IK) describes the problem of generating a joint configuration for a

robot’s kinematic chain for a given end-effector pose in the cartesian space. In that sense, IK
maps a cartesian pose to a corresponding pose in the robot’s joint space. Contrary to FK, the
IK problem is significantly more challenging to solve. Generally, the two types of strategies to
solve IK are analytical and iterative methods. As with FK, the first step to analytically solving
IK is to create a chain of transforms from the base to the end-effector. This time, however,
only the resulting transform is known through the provided goal pose of the end-effector.
Each other transform contains the unknown rotation and translation variables between one
joint and the next.
Considering the same example as previously, by transferring the first transform to the left

side of Equation 2.1, this side now only contains the known values of transform T base
end-effector and

values depending on q1. In contrast, the right side only depends on the values of all remaining
joint variables q2, ...q7. Using the representation in Equation 2.2 results in 12 equations to
be solved. Suppose this gets repeated with the second transform. In that case, it results in
12 additional equations, so together with Equation 2.1, this example would produce 12 sets
of seven non-linear equations, one set for each rotational and translational element. Each
equation set must be solved to get possible solutions for the IK problem.

6

2.2. Workspace

Analytically solving IK provides all possible solutions and determines if solutions exist.
Additionally, once all required equations are derived, calculating new solutions becomes fast.
However, it is usually challenging to derive all equations, which must be derived for each
robot independently. On the contrary, iterative or numerical approaches aim to find sequences
of joint variables that minimize the error between their resulting end-effector pose and the
desired pose through iterative optimization. Consequently, these approaches are applicable
independently of the robot’s kinematic structure. However, they are more computationally
expensive and may get stuck in local minima, never finding an optimal solution. This results
in the need to check any solutions afterward again with FK. Nonetheless, most applications
use these iterative solutions, as does this thesis.

2.2. Workspace

As defined by Gupta [11], a robot’s workspace consists of all reachable points by the corre-
sponding end-effector. A robot arm’s workspace is defined relative to its base or shoulder,
depending on whether it is fixed or mounted on a robot torso, and contains all reachable
end-effector poses for the entire arm. Kumar et al. [12] further differentiate between the
reachable workspace, which follows the previous definition, and the dexterous workspace.
The dexterous workspace is a subset of the reachable workspace and describes every point
any desired end-effector orientation can reach.
For a bimanual robot, the workspace can also be reported as the combined workspace of

both arms if a task only requires reaching a position with one end-effector. However, in-
formation about all reachable positions is often only one of the required information. Tasks
involving a robot’s end-effector commonly also require a specific orientation. Further, some
joint configurations are more desirable than other viable configurations if they are less restric-
tive to further arm movements after reaching it has reached the goal. Consequently, operating
in the dexterous workspace of both arms would be ideal. However, these do not always have
an intersection, so bimanual tasks often have to find a part of the reachable workspace that
is suitable for the task.
To assign a measure of desirability to these configurations, Yoshikawa [13] presented a

manipulability measure. It assigns a numeric value to each viable joint configuration based
on its distance to singular configurations. This measure has been extended further, e.g., by
Vahrenkamp et al. [14]. They added further penalizations based on closeness to joint limits
or obstacles in the environment or the robot itself.
Since a robot’s workspace is continuous, analyzing the quality of different workspace parts

commonly involves using a discrete grid. Such a grid is the basis for identifying the optimal
region to perform a task, e.g., the best region to sample grasps. One such approach can be
seen in the work by Zacharias et al. [15], where a capability map for the workspace of their
robot gets computed based on the number of valid IK solutions in each region for different
end-effector orientations. Such a map then allows for finding a suitable robot configuration to
perform a task, such as grasping a bottle. Due to the number of IK computations required to
perform a workspace analysis and, for example, create such a contact map, computing such an
analysis is done offline. Zacharias et al. reported a computation time above 12 h. Even though

7

2. Fundamentals

they mention having an unoptimized algorithm, this duration shows this necessity. During
online task execution, only the best options, according to the analysis, are then chosen.

2.3. Grasp Stability

Figure 2.2.: The left image shows the multi-fingered hand used as one manipulator in this
thesis, while the right image shows the two-finger gripper used as the other.

During a bimanual handover, grasping an object is an essential part. Consequently, finding
a grasp for the robot and evaluating its stability is also essential. In this context, a grasp
means a configuration for a robot manipulator where the manipulator makes contact with
the object, allowing the manipulator to hold the object. The robot manipulators relevant
to this thesis are two-fingered grippers and multi-fingered hands, seen in Figure 2.2. As the
names suggest, two-finger grippers have two movable fingers that are typically opposite to
each other. This configuration allows them to exert forces on an object opposing each other.
Conversely, multi-fingered manipulators have multiple movable fingers in various configura-

tions. However, multi-fingered hands are a specific subgroup of these multi-fingered manipu-
lators that aim to have their fingers in a configuration similar to a human hand. Consequently,
these typically have a thumb and some parallel fingers. Especially for this last category, it is
challenging to find grasps that manage to hold an object. Therefore, it is essential to have a
method to evaluate the stability of different grasp candidates to allow for the selection of a
suitable candidate.
There are multiple ways to predict grasp stability for multi-fingered robotic hands. A typical

way is to consider the geometric properties of a grasp, such as the grasped volume. Further,
the properties of the grasp can be analyzed based on the hand configuration, e.g., analyzing
the distance to the joint limits for all finger joints. A list of methods in these categories
was composed by Roa et al. [16]. One way is to measure the contact forces of the fingers
on the object. The goal is to ensure the hand applies enough force so enough friction can
be applied to prevent the object from slipping. This option is called slip-detection, as in
work by Zapata-Impata et al. [17]. They present the two types of slippage, translational and

8

2.4. Hand Synergies

Figure 2.3.: The three options of slippage during robot grasps: translational, rotational, or
no slip. [17]

rotational, as seen in Figure 2.3.
In their work, the authors present a tactile-based deep-learning approach to detect possible

slippage. An overview of other techniques, such as friction, vibrational, or optical-based
techniques, can be found in the survey by Romeo et al. [18]. This thesis uses a simplified
friction-based approach to decide on grasp stability through slippage detection.
This detection method aims to prevent translational slippage. As seen in Figure 2.4, the

fingers apply a normal force Fn to the object when grasping, while a tangential force Ft also
applies through gravity. With the simplified Coulomb friction model, it is stable if

µS ≥
Ft
Fn

(2.3)

where µS is the static friction coefficient of the object.
It exploits the bimanual nature of grasps in the used setup to circumvent the limitation men-

tioned by Zapata-Impata et al. of manually labeling successful grasps. For more information,
subsection 4.2.4 provides a more detailed explanation.

2.4. Hand Synergies

Human hands are versatile and complex natural manipulators. As robotics advanced, the de-
sire arose to utilize similar capabilities for robots. This advancement resulted in the creation
of anthropomorphic robot manipulators. While they have evolved into capable manipulators
resembling human hands, such as the Shadow Dexterous hand [7], these high DOF manip-
ulators now face the issue of controlling them to perform tasks such as object grasping. To
solve this issue, researchers again took inspiration from us humans. One controlling concept
arising from this research is the concept of hand synergies.
First discovered by Santello et al. [20], we humans do not operate our hands by controlling

each joint independently. Instead, we control them in a lower DOF space. They recorded a
dataset of human grasps by recording the hand poses of humans. Utilizing principal com-
ponent analysis (PCA), the authors then investigated how much each principal component

9

2. Fundamentals

Figure 2.4.: Simplified model of acting forces during an object grasp. [19]

contributed to the variance in the data. They found that the first two components could
already explain over 80% of the variance.
This potential of controlling a complex, high DOF manipulator in such a low-dimensional

space caught the interest of roboticists, and attempts to utilize this concept in robotics
emerged. Ciocarlie et al. [21] directly used the data collected by Santello et al. They mapped
the values for each finger joint of the human hand to corresponding joints for various robotic
hands. They derived two hand posture subspaces for each robotic hand, which they referred
to as eigengrasps. Proceeding, they used these eigengrasps to generate new grasps for each
hand. Generating new grasps can be done by adding all eigengrasps, with a corresponding
weight for each, and adding the corresponding vector to an origin posture. Specifically,
Ciocarlie et al. defined any posture possible with their eigengrasps through

p = pm +
b∑
i=1

aiei (2.4)

with p as the resulting hand posture and pm as the origin or default posture. With b as the
number of eigengrasps, ei is the eigengrasp i, and ai is the corresponding weight assigned
to the eigengrasp. Therefore, one can describe a hand posture through only a vector a =
[a0, ..., ab] instead of specifying values for each robotic hand joint.

Consequently, it is possible to significantly reduce the dimensionality of controlling an
anthropomorphic hand if such an eigengrasp or synergy dataset is available for the used hand.

10

2.5. Reinforcement Learning

Liang et al. [22], and Bernardino et al. [23] already generated such a dataset for the same type
of robotic hand as the one in this thesis in their previous works. They made the data available
for use in this thesis. The remainder of this thesis will relate to the posture subspaces or
eigengrasps as synergies or hand synergies.

2.5. Reinforcement Learning

Most task assignments for a robot involve interacting with a complex environment to achieve
its goal. Manually programming a robot to always perform the best actions in every scenario is
often impossible. It would require perfect knowledge of all possible states of the environment
and the robot, which are unknown even to humans in uncontrolled scenarios such as moving
around in the real world. If robots ever are to be used in the real world, solving this issue
is critical. Since humans and animals manage to work in the real world just fine without
perfect information, researchers investigated how we learn to operate in such an uncontrolled
environment.
Reinforcement Learning (RL) is an approach to implement a computational version of this

learning process [24]. As can be observed by infants, the learning process involves repeated
interaction with the environment and evaluating the response from the environment, given
that action. For living creatures, the most simple rewarding responses are pleasure or pain,
depending on whether the action was successful or detrimental. RL tries to emulate this
simplified concept, reducing the process to an agent interacting with an unknown environ-
ment. More specifically, the agent performs an action and then observes how the state of
the environment changes and what reward the chosen action produces. Figure 2.5 illustrates
this simplified process. The goal of this learning process is now to find a decision process to
choose the best actions with the information provided by the environment.

Agent

Environment

ActionState Reward

Figure 2.5.: Simplified model of the relationship between an agent and its environment in the
context of RL.

To apply this concept to the overlying problem, the agent must utilize the given information
and decide which action to choose. A standard model for this decision process is a Markov
Decision Process (MDP). It models the process in discrete timesteps t, where the agent starts
in the st, one state s at time t. Based on the action a it decides to perform at time t, namely
at, it then transfers to state st+1 and gets the associated reward r at that timestep, rt+1.
Each state also has to follow the Markov property. This property states that each state st
must depend only on the previous state st−1 and the previous action at−1. Consequently,

11

2. Fundamentals

each state has to include all relevant information to decide on an action in the future. Such
a restriction allows the training to only consider the current state at each timestep instead of
evaluating all previous states.
With that, the goal is to find a policy, which decides what action maximizes the discounted

reward over the episode. Usually, this policy represents a function assigning a probability
to each action a given the state s, commonly written as π(a|s). Any algorithm generating
such a policy must also balance the concepts of exploitation and exploration. Ultimately, the
goal is to find the policy that chooses the actions resulting in the best rewards. This idea is
the concept of exploitation. However, suppose the agent would only focus on exploiting its
learned relationship between actions and rewards. In that case, it might miss out on better
action it has not sufficiently tested. Testing actions that are not optimal is the concept of
exploration. Neither concept can be solely applied to any agent, as an entirely exploitative
agent would most likely not find the best actions, and a fully explorative agent is incapable
of learning a suitable policy. There is no optimal solution to this conundrum, and finding a
balance between both concepts is essential for any algorithm learning a policy.
RL algorithms describe how the policy should change concerning past experiences. Most

algorithms utilize a value function to derive such a policy change. The value function is
a numerical representation of the value for any state, then named a state-value function or
state-action pair, noted as an action-value function. Such a value is usually calculated through
the expected return, the expected value of all future rewards. By using the expected return
instead of just the next expected reward, the value considers the possibility of performing
worse actions in the short term to achieve better rewards in the long term. Formally, one can
write the return at timestep t as

Gt =

T∑
k=t+1

γk−t−1Rk (2.5)

with T as the episode length and the expected return the corresponding expected value. Here,
γ ∈ [0, 1] is the so-called discount factor to value short-term rewards higher than rewards
expected later, ensuring the expected reward to be a finite value even for potentially infinite
models. Resultingly, one can note a state-value function as

vπ(s) = Eπ

[∞∑
k=0

γkRt+k+1|St = s

]
,∀s ∈ S (2.6)

and an action-value function as

qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2.7)

for a policy π. As the real result distributions are unknown, the agent has to estimate these
value functions based on the rewards it has already experienced. An alternative representation
of the value function is

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
,∀s ∈ S (2.8)

12

2.5. Reinforcement Learning

Here, s′ is a successor state to state s, and p(s′, r|s, a) is the probability of receiving reward
r and arriving at state s′ when selecting action a at state s. The Equation 2.8 is called the
Bellman equation. It is essential for many RL algorithms, as it allows the expression of the
value function as a recursive relation between a state and all its successor states.
One can now evaluate different policies by their value function. If a policy’s value function

provides better values for all states than the value function of another policy, it is a better
policy to use. Theoretically, finding the optimal policy can be done by finding the policy with
the best value function through optimizing all policies.
While this simplified assumption is generally the foundation of RL problems, one further

attribute splits these problems into two categories. This attribute is whether or not a model of
the environment exists for the agent. This model does not need to represent the environment
perfectly but should either try to mimic the environment or allow for predictions of the
behavior of the environment. Such a model would allow an agent to plan actions to some
extent. Methods relying on such a model are called model-based methods. On the contrary,
model-free methods do not require such a model and try to solve the problem through trial
and error. In the following, the focus lies only on model-free approaches, as Valencia et al.
[25] have shown that these are better suited for the tasks in this thesis, as later explained in
section 3.2.
More realistic RL tasks typically do not fulfill the previously explained fundamentals. Ana-

lytically calculating a value function is often impossible, not to mention optimizing all possible
policies about their value function. Modern RL algorithms, therefore, approximate the policies
and corresponding value functions. However, the available RL algorithms are generally split
again into two additional types, on-policy and off-policy algorithms.
On-policy algorithms try to optimize the policy with which they collect their data. In

theory, they converge faster to their optimal policy. However, this comes with the cost of
a suboptimal policy, as it always has to balance exploration and exploitation to ensure new
samples can be collected.
Off-policy algorithms, on the other hand, use two policies. One exists for data collection

with a stronger focus on exploration. The other is the policy optimized regarding exploitation.
While off-policy algorithms often converge slower, they are considered more potent. Further,
modern off-policy algorithms often have mechanisms to reuse samples, making them more
sample-efficient. For this thesis, the chosen algorithm is SAC, an off-policy algorithm. It gets
further explained in subsection 2.5.1.

2.5.1. Soft Actor-Critic

SAC [26] stands for Soft Actor-Critic and is an off-policy RL algorithm. As the name sug-
gests, the algorithm uses an actor-critic architecture. Such an architecture learns two models
simultaneously. One network, called the actor, decides which action to take at a current state
and represents the current policy. The second one, the critic, represents the value function
and provides the estimated values for each state. Both networks train simultaneously, where
the actor learns the optimal policy relative to the critic’s values, and the critic learns the
values of the states reached by the actions the actor decides.

13

2. Fundamentals

The "Soft" part in SAC implies using a softmax function for the actor to decide the following
action. This decision transforms the actor into a stochastic actor, choosing actions based
on a probability distribution instead of the deterministic action that maximizes the currently
expected reward.
Further, SAC expands the maximum expected reward objective by an additional entropy

term. This entropy term describes how much information different actions provide from the
given state. By aiming to maximize the long-term entropy as well as the expected reward,
the agent is encouraged to increase exploration. One can compute the entropy values from
the probability distributions of the actions. The entropy parameter, also referred to as the
entropy coefficient or through its inverse as a reward scale, regulates the influence of the
entropy term.
Additionally, SAC employs a method called double Q-learning. It involves training two

separate Q-functions, the functions that estimate the value function, and using the lowest
value of both functions to calculate the gradients used for updating the actor and value
functions. In practice, this measure allows for faster training. Overall, Haarnoja et al. [26]
describe their algorithm SAC as relatively resistant to hyperparameter changes, except for the
entropy coefficient, and sample efficient, making it a suitable choice for this thesis.

14

3. Related Work

This chapter covers previous work in related fields. Object grasping is an essential concept
for bimanual handovers. As the robot used in this thesis has an anthropomorphic hand, the
chapter starts with a section about object grasping with anthropomorphic hands. Afterward, it
provides an overview of existing work that used reinforcement learning in a real-world setting.
Finally, the chapter covers other implementations of bimanual handover pipelines.

3.1. Grasping

Most recent approaches use RL as part of their manipulation approach. Yu et al. [4] provide
an overview of RL methods applied to various dexterous manipulation tasks, including object
grasping. They present different multi-fingered manipulators and review applications using
these about their training methods, such as training from scratch or demonstration. The
authors find that the typical challenges for RL, such as sample inefficiency and the reality gap,
still exist, and several complex tasks regarding manipulation remain unsolved. Consequently,
the aim of this thesis to circumvent the reality gap remains supported by their findings.

Figure 3.1.: An example from the work of Liang et al. [22] of their trained model grasping a
bleach bottle.

In one recent work, Liang et al. [22] utilize the same hand as the setup used in this thesis.
They utilize grasp synergies to reduce the required dimensionality for hand control significantly.
With these grasp synergies, they train a neural network using reinforcement learning. They
generate an initial grasp configuration and refine the grasp using the network. This results

15

3. Related Work

in the ability to grasp various objects of different object instances, as seen in Figure 3.1.
However, they only test this approach on an unimanual system. Further, they trained their
model in simulation, so transferring the ability to train a similar model on the real robot still
needs to be investigated.
Another approach by Brahmbhatt et al. [27] performs grasp synthesis based on optimization

for contacts. They use contact maps generated by human demonstration to create optimized
grasps to simulate these contacts. For grasp generation, they use the popular GraspIt! simu-
lation. The contact database splits the contact maps into two categories: one for object use
and one for object handover. Therefore, their algorithm can generate grasps for both cases
as well. Their tests show that the approach works with different hand models. However,
the testing was only done in simulation and not on real hardware. Further, generating con-
tact maps for novel objects would require significant additional work, making this approach
difficult to expand to be able to generalize.
The paper by Li et al. [28] explores a grasp generation method based on Gaussian pro-

cesses. Since correctly identifying the shape of an object during grasping is very difficult,
their probabilistic model aims to take that uncertainty into account for grasp generation. By
generating an object model from the detected point cloud of an object, their model samples
several grasp point candidates from the object. An optimizer then aligns the targeted grasp
point with a virtual grasp frame designed for the hand to get the desired grasping configura-
tion. During grasping, the focus shifts to a closing control scheme focusing on the measured
contact forces. However, this approach requires prior knowledge of the object to generate
the online model from the point cloud. Further, they test this approach only on hands with
significantly lower DOFs than the Shadow hand.
In their work, Roa et al. [29] present a grasp planner focused on generating power grasps

to hold an object. Sampling through slices of the object first allows for selecting the best
candidate region that enables the circular finger configuration required for a power grasp.
Afterward, the algorithm samples the contact point for the palm. Next, contact points with
as many fingers as possible are generated through a sequential closing strategy of the fingers,
resulting in a power grasp on the object. Besides focusing on only power grasps, models of
the objects and the hand are required for this grasp generation. Such an approach would
require modeling each new object before grasping it, contrary to the approach in this thesis.
Shao et al. [30] present a grasp generation approach that aims to be gripper-independent.

By combining a gripper’s URDF file with the point cloud readings of the gripper, they train an
autoencoder to produce a model of the gripper used. They then use the autoencoder to extract
features for the gripper representation. Together with features extracted from the point cloud
of the object, they use it as input for another neural network. This process generates contact
points for each finger of the gripper on the object surface, which describes a grasp with enough
force closure. While the authors claim this process applies to anthropomorphic hands, they
only trained with two- and three-finger grippers. Even though they performed experiments
with anthropomorphic hands, they manually limited the number of used fingers for these
hands to three fingers, so applying this approach to hands with significantly more DOFs will
most likely prove to be complicated.
In another approach, Aktas et al. [31] present a deep learning approach to generate grasps

16

3.2. Real Robot Reinforcement Learning

from a single object view. When viewing the object, the model uses the generated point
cloud as input for a generative model to generate possible grasp candidates at this point
cloud. They train the model in simulation based on demonstrated grasps. It generates grasp
configurations for anthropomorphic hands by reproducing the recorded contact points from
the demonstrated grasp. To improve the generated grasp’s success, they train an evaluation
model to predict if the generated grasp will be successful. This model is trained in simulation
as well. They experiment with different models for the generative and evaluative parts in
simulation and on a real robot.

3.2. Real Robot Reinforcement Learning

Real-world training scenarios for reinforcement learning are rare in robotics. Due to sam-
ple efficiency, hardware damage risk, and increased training time, most approaches prefer
simulations to real robot deployments. However, with more modern reinforcement learning
algorithms, some work exploring this possibility has emerged, as it provides a possible solution
to the prevalent reality gap.
Dulac-Arnold et al. [32] provide an overview of the challenges regarding real-world RL. It lists

nine challenges, including the limited number of available samples and the high dimensionality
of the continuous state and action spaces. They also propose an evaluation method for each
challenge to compare various approaches. To this end, they also propose a benchmark to
evaluate the varying RL algorithms. This thesis focuses on solving the two named challenges.
In their work, Mahmood et al. [33] benchmark several reinforcement learning algorithms

directly on real-world tasks, including reaching specific positions, docking to a loading station,
and tracking motions. They investigate four reinforcement learning algorithms, TRPO, PPO,
Soft-Q, and DDPG, on tasks employed on a robotic arm and a mobile platform. Their focus
is to determine the sensitivity of hyperparameters for the different tasks. While encountering
severe challenges, including a very long run time of the experiments of over 950 hours,
they prove the possibility of employing reinforcement learning algorithms directly in real-
world scenarios. Unfortunately, this benchmark did not investigate the reinforcement learning
algorithm used in this thesis, SAC.
Testing SAC for real robot applications was done by Haarnoja et al. [34], including some of

the original authors of the SAC paper. They employ it in two real-world scenarios: movement
for a quadrupedal robot and dexterous manipulation by a robot hand. They managed to solve
both tasks without using any simulation of their environment. Further, they also compared
the performance of SAC with PPO on the manipulation task and found SAC to significantly
outperform PPO in terms of training time while succeeding on the task. These findings show
that SAC might also suit this thesis’s scenario.
Further research by Valencia et al. [25] compares model-free and model-based reinforcement

learning approaches in real robot manipulation scenarios. The learned tasks involve turning a
valve and manipulating a cube. They compared the efficiency and performance of both kinds
of RL. Results show a clear advantage of the model-free reinforcement learning approach
compared to the model-based one, even with a well-performing model. The authors explain
these findings, which contradict previous research, with the difference between training in

17

3. Related Work

simulations and on the real robot. Points of failure in the real world, such as friction and signal
noise, apparently disrupt the model-based training significantly. These findings encourage a
model-free approach for real-world reinforcement learning, such as the one in this thesis.

Figure 3.2.: The training setup of Gu et al. [35] for training their robot to open doors in the
real world.

Gu et al. [35] propose an off-policy reinforcement learning algorithm utilizing asynchronous
updates from multiple agents. They let their agents learn to reach for and open doors, as
seen in Figure 3.2. The agents train this complex task in simulation and the real world. Their
results show that real-world training allows their agents to successfully learn this complex task
in a reasonable time of 2.5 - 4 hours. However, having multiple agents of the same type of
train in the real world can be difficult, especially with more complex robot setups like the one
used for this thesis. Nonetheless, their work shows that even a single agent can learn complex
tasks in the real world with modern off-policy reinforcement learning algorithms, such as the
one employed in this thesis.

3.3. Bimanual Handover

Performing bimanual handovers is a specific subtask of the field of dual-arm manipulation.
Smith et al. [2] provide an overview of this general field. First, they compare different dual-arm
robotic platforms, including the PR2. Afterward, they review different approaches regarding
their setups and concepts. These include comparisons regarding system modeling, grasping
strategies, and learning strategies.
A recently published approach by Li et al. [36] focuses on bimanual handover. They

use two similar Franka Emika Panda industrial arms to perform multiple handovers of block-
shaped objects. In their implementation, they learned a grasping policy utilizing reinforcement
learning. They employ the symmetry of their arms to enhance the efficiency of their training.
By mirroring the learned SAC policy on one arm to the other, they learn a better-performing
policy more efficiently. This thesis cannot apply this strategy due to the difference in both
manipulators and their use of only two-finger grippers.
Saut et al. [37] propose a planner capable of planning object pick-and-place tasks involving

18

3.3. Bimanual Handover

the bimanual handover of the object. Their planner can work with a humanoid upper-body
robot with two anthropomorphic hands. The planning process involves an analytical process
for the grasp planning instead of a learned grasping policy. It calculates possible grasps by
computing possible intersections of the object surface with the workspaces of the fingers on
each hand. These grasps are computed offline for faster computation of possible grasping so-
lutions. Bimanual grasps are computed by comparing lists of grasps for each arm and filtering
and scoring all possible combinations to find a solution. However, this approach requires a
scanned point set of the object beforehand to generate these grasps, adding additional work
for adding new objects. Further, the authors tested this approach only in simulation with one
object, contrary to the approach of this thesis.
In contrast to most work in the field, Cruciani et al. [38] define a planner capable of bimanual

re-grasping through a dexterous manipulation graph. Their planner derives the graph from
a point cloud reading of the manipulated object. It contains possible configurations of the
gripper along the object surface in its nodes and movement between two configurations along
the object surface as its edges. This graph combines the capability of in-hand manipulation
with bimanual re-grasping if the desired in-hand manipulation is impossible in the current
configuration. It can then generate possible grasps for the second gripper to grasp the object
while the first gripper still holds it. While allowing for complex re-grasping procedures, the
process is only designed and tested for two two-finger grippers, contrary to the approach of
this thesis.
Another implementation, which allows bimanual handover, can be found in the work by

Haschke et al. [39]. The authors implement a geometry-based grasping pipeline for a bimanual
Shadow hand setup. While the focus is to solve pick-and-place tasks, it is capable of per-
forming a bimanual object handover if required for the task. It utilizes geometric information
about the objects instead of a deep learning approach. Modeling the object’s rough shape
uses super quadrics on a segmented point cloud. Different possible grasp candidates for this
shape are evaluated based on a previously defined grasping frame for the hand. Planning the
different steps for pick, place, and handover uses the MoveIt task constructor. However, their
grasp candidates are limited to fixed, previously chosen grasp types.
One paper published by Vezzani et al. [40] works with a humanoid upper body with two an-

thropomorphic hands. They present a pipeline to perform a stable initial grasp and handover.
They successfully hand over various objects using grasp stabilization with a three-finger pre-
cision grasp with tactile feedback. Similar to this thesis, they gather information about the
objects through point cloud filtering. However, their grasping pose selection relies on a priori
assigned grasping poses for each object, requiring prior object modeling to generate these
poses. This process requires significant work for each object, making it difficult to add new
objects.
In another publication, Balaguer et al. [41] propose an algorithm for bimanual in-air re-

grasping utilizing a supervised machine learning algorithm. They generate initial grasping
points on an object through image preprocessing on a stereo image. Together with a point
cloud of the object, they use the preprocessed image and the initial grasp points as input
for a machine learning algorithm initially developed for unimanual grasping. The generated
configurations for the grasps of both manipulators are then further optimized to find the most

19

3. Related Work

efficient handover configuration regarding execution time. This approach has two significant
downsides compared to this thesis. First, the authors only used hands with four degrees of
freedom and did not consider the complexity of performing a grasp with a hand with higher
degrees of freedom. This issue makes it not applicable to anthropomorphic hands. Second,
they rely on human-annotated data to train their machine-learning algorithm. Extending it
for further object types not in their datasets takes significant time of manual data collection
beforehand, unlike the approach in this thesis.

Figure 3.3.: An example for a functional re-grasp from the work of Pavlichenko et al. [42].

One paper utilizing a similar setup to this thesis, published by Pavlichenko et al. [42], uses
a humanoid upper body equipped with a three-finger gripper as well as an anthropomorphic
Schunk hand. They use both arms to pick up an object with the three-finger gripper and
perform a functional re-grasping with the other hand, seen in Figure 3.3. The re-grasping
is planned by reshaping meshes of previously known objects of the same object class to
match the point cloud perceived of the current object. This mesh reshaping also shifts the
predetermined functional grasp pose to the new object. While this allows the performance
of functional grasps on various objects of the same instance, the reliance on several meshes
of objects of the same kind makes it difficult to broaden this approach to multiple objects of
different types when functional grasps are not required.
Further, Vahrenkamp et al. [43] present their efficient IK-based motion planner. This

planner can quickly plan joint configurations for single and double-arm object grasps. They
test it in simulation and a real-world scenario on a bimanual setup with anthropomorphic
hands. Similar to this thesis, the authors precompute a reachability space to speed up the
process of generating their solutions online. However, they only tested their planners with
one object with fixed grasp annotations.

20

4. Approach

This chapter covers the implementation of this thesis’s approach. The first section of this
chapter describes the robot platform used in greater detail. Afterward, the second section
explains the implementation of the overall handover pipeline. Finally, the last section explains
the implementation of RL training for a grasping model on the real-world system.

4.1. Setup

Figure 4.1.: PR2 robot with an Azure Kinect attached on its head and a Shadow Dexterous
Hand.

The robot used in this thesis is a Willow Garage PR2 [6]. It is a bimanual, mobile robot
platform. Figure 4.1 shows this modified version. Each arm has a corresponding kinematic

21

4. Approach

Table 4.1.: Joint limits for the joints of both arm manipulation groups.
Joint Name Lower Limit Upper Limit Left Arm Right Arm
Shoulder Pan -32° 122° 3 3

Shoulder Lift -20° 74° 3 3

Upper Arm Roll -37° 215° 3 3

Elbow Flex -122° -9° 3 3

Forearm Roll Continuous Continuous 3 3

Wrist Flex -115° -6° 3 7

Wrist Roll Continuous Continuous 3 7

Hand Wrist J2 -30° 10° 7 3

Hand Wrist J1 -40° 28° 7 3

Figure 4.2.: Joint schematic of a left Shadow hand without BioTac sensors. [22]

group. Further, Table 4.1 lists each joint with its corresponding upper and lower limits.
As the first modification, the PR2 has a Microsoft Azure Kinect RGB-D camera mounted

on its head. Additionally, it has its right lower arm and manipulator replaced by a Shadow
Dexterous Hand [7] from the Shadow Robot Company. This hand has two wrist joints and
usually 22 finger joints, as seen in Figure 4.2. However, the Shadow hand in this setup
has its fingertips replaced with SynTouch BioTac tactile sensors. While it allows for tactile
sensing with the fingertips, it also disables the first joints for all fingers, including the thumb,
reducing the number of finger joints to 17. Two tendons control each joint by pulling the

22

4.2. Pipeline

joint to either stretch or contract. The force difference can be sensed through force sensors
at each tendon and used as an effort measurement for each joint. In the wrist of the left arm
with the two-finger gripper, the PR2 has a force/torque sensor installed.
This thesis utilizes the Robot Operating System (ROS) [44] as the underlying commu-

nication framework. Planning and robot control utilizes the MoveIt [45] framework. Any
implicit IK calls use the default MoveIt IK solver. For explicit calls, this thesis uses BioIK
[46], developed by Ruppel et al. It is a memetic algorithm utilizing various optimization meth-
ods that allow the consideration of different goal types for solving IK problems. For motion
planning to get to the IK configurations, the pipeline also uses the default motion planner
in MoveIt from the Open Motion Planner Library (OMPL) [47], Rapidly-exploring Random
Trees (RRTConnect) [48].

4.2. Pipeline

Grasp point

Object in gripper

Sample handover poses

Move to handover pose

Close Shadow hand

Test grasp

Retract gripper

Move to goal pose

success

failure

azure kinect
pointcloud

left arm
force sensor

shadow hand
effort sensors

Figure 4.3.: Simplified structure of the handover pipeline.

23

4. Approach

Figure 4.3 depicts a schematic of the pipeline structure. This pipeline works with the
following assumptions. First is the assumption that the handover object starts in the left
gripper of the PR2. Second is the assumption that the object is in a stable grasp while held
by the gripper. Correspondingly, the pipeline ignores any movement of the object during
gripper movements. As all objects used are rigid, and several frameworks to perform stable
grasps of objects with a two-finger gripper already exist, these assumptions are reasonable to
assume, as it is not the focus of this thesis. Further, this handover procedure aims to move
the object in an area that the left arm of the PR2 can not reach without the object falling.
Any work done with the object afterward is not the focus of this thesis.
The pipeline only enables handovers from the two-finger gripper to the shadow hand. Since

the robot has different manipulators on each arm, performing a handover in either direction
has challenges in different areas from each other. When the object starts in the two-finger
gripper, the object is more likely to be in a stable grasp without too much movement during the
handover. However, controlling the anthropomorphic hand is significantly more challenging
than controlling the gripper, which would be the case in the other direction. On the other
hand, starting with the object in the Shadow hand makes object movement more likely, adding
the challenge of in-hand object pose estimation. For this thesis, the focus is, therefore, to
tackle the challenges of one direction.

4.2.1. Grasp Point

Figure 4.4.: Fixed pose to capture a point cloud of the handover object.

Point Cloud Filtering:
This pipeline uses the point cloud perceived by the Azure Kinect camera to choose the

grasp point relative to the object in the gripper. The left arm moves into a predetermined
pose to perceive the object. Figure 4.4 shows this pose. Besides having each object’s height
and width visible, it also ensures that the top of the object is visible in the point cloud for

24

4.2. Pipeline

Figure 4.5.: On the left, an unfiltered point cloud received by the camera. On the right is the
resulting point cloud after both filters are applied.

all objects used. The grasp selection process requires a reading of the depth of the object.
While possibly problematic for other objects with a larger height or more complex shapes, this
process works well for the chosen objects. A more refined strategy to generate the needed
depth information for the object would require a full object exploration strategy and further
point cloud refining, which goes above the scope of this thesis. For further discussion of the
resulting issues from this simplified perception approach, refer to section 6.1.
Once it perceives the point cloud, the next step in the pipeline is to apply a crop-box filter

above the gripper. This box spans an area above the gripper. Its dimensions extend 30 cm
above the gripper and 10 cm along each direction of the x- and y-axes. Consequently, it
ignores any points below the gripper, so the part of the object that the robot should grasp
needs to extend above it. Filtering the point cloud this way in the first step ensures the
background is filtered out, reducing the size of the point cloud significantly.
Finally, the remaining point cloud still contains parts of the gripper. These artifacts get

filtered out by the already existing robot_body_filter package [49]. The resulting point cloud
now only contains the object. Figure 4.5 shows an example of this two-step filter process.

Grasp Pose Selection:
The next step first transforms the point cloud correspondingly to a fixed gripper pose,

allowing the selection of a grasp pose for the hand. This pose aligns the point cloud with the
global coordinate frame. In this alignment, the z-axis corresponds to the height of the point
cloud, while the x- and y-axes correspond to the depth and width.
The resulting point cloud then determines where to grasp the object with the Shadow

hand. Currently, the pipeline allows two possible grasp modes at the start: top or side
grasp. This choice determines the grasp pose. As it is only the starting hand pose for the
later grasping process, the grasp pose only describes the pose of the rh_manipulator frame,
which is attached to the Shadow hand, relative to the l_gripper_tool_frame of the gripper.
Figure 4.6 shows both frames at their respective manipulator.
Now, the pipeline must calculate the pose according to the point cloud and grasp type.

25

4. Approach

Figure 4.6.: The frames for defining the grasp pose for both manipulators. Left is the end-
effector l_gripper_tool_frame for the left arm with the gripper. On the right is
the rh_manipulator frame for the right arm with the Shadow hand.

Both types set fixed orientations of the hand relative to the gripper. Figure 4.7 shows examples
of the orientation of both types. The flexible part of the grasp pose selection is the position.
It also has static offsets, which apply to a position determined by the point cloud. For the top
grasp, this flexible position has its z-value determined by the highest point of the point cloud.
On the other hand, its x- and y-coordinates equal half the distance between the minimum
and maximum values of the point cloud along these axes, respectively.

Figure 4.7.: Both available grasp types for the handover pipeline. The left image shows the
default configuration for the side grasp, while the right one shows the configura-
tion for the top grasp.

The hand has a fixed z-coordinate relative to the gripper for the side grasp. Further,
the y-coordinate of the position for the side grasp follows the same method as for the top
grasp. However, the x-coordinate equals the maximum x-coordinate in the point cloud.

26

4.2. Pipeline

As mentioned, static offsets then apply to this flexible position to compensate that the
rh_manipulator frame does not align with the desired grasp point of the hand. Therefore,
these offsets are the same for every object. The pipeline then passes the chosen grasp pose
to the next part.

4.2.2. Handover Pose Sampling

This thesis follows the approach by Pavlichenko et al. [42] to decide where to perform the
handover. They sample possible poses and assign a cost to every corresponding joint config-
uration. The pose sampling follows a predetermined grid in front of the robot. There are two
possible sampling strategies available in this thesis. The first one is to sample from a subset
of predetermined low-cost poses. Second is the option to sample random poses from the
grid. Each pose results from a transform applied to the grasp pose generated by the previous
module.

Figure 4.8.: Fixed starting pose for the handover pose sampling process.

The chosen transformations are applied as follows. Figure 4.8 shows the starting pose from
where to apply the transformations. As described in the previous module, the gripper has
a fixed pose, while the object’s point cloud determines the hand’s pose, which is specified
relative to the gripper frame. Rotating both manipulators uses a new virtual handover frame.
This frame is between the l_gripper_tool_frame and the rh_manipulator frame and has
the same orientation as the global frame. For an example of the pose of this frame, refer to
Figure 4.9. The rotational part of the transformation is then applied to both manipulators
relative to this frame to ensure their relative orientation is maintained, keeping the previously
chosen grasp pose. Afterward, the pipeline applies the translational part to both manipulators
relative to the handover frame. Consequently, the pose of the handover frame can describe
the poses of both end-effectors during the handover process. Therefore, this thesis references
this pose further as the handover pose.

27

4. Approach

Figure 4.9.: The handover frame is a virtual frame between the two end-effector frames.

While this process describes how the sampling works for random handover poses, sampling
from a subset of possible transforms requires a previously offline computed workspace analysis.
Further description of this process follows in section 5.1.
During sampling, an IK solver calculates a corresponding joint configuration for each pose

resulting from one of the sampled transformations. As mentioned, the IK solver used is BioIK
[46]. First, it generates the configuration for the hand. Since the hand is more limited in
its workspace due to the lower joint range in the wrist joints compared to the gripper, it is
more likely not to find a valid configuration. The solver views configurations as invalid if they
would result in a self-collision. If it finds no valid configuration, the sampled transformation
is deemed invalid without generating the joint configuration for the left arm.
A valid configuration from BioIK needs further testing, as the solver allows approximate

solutions. These approximate solutions enable configurations with a negligible distance to the
correct pose, allowing the consideration of more transformations. However, this also means
the solver will output an invalid solution when no valid solution exists. Consequently, the
pipeline uses FK for the generated joint configuration to compute the resulting end-effector
pose and test for the difference to the goal pose. Should the distance between the resulting
pose and the target pose be over 1 cm, the process also regards this transformation as invalid.
If the test is successful, the process repeats with the joint configuration for the left arm.
Next, the pipeline applies a cost function to each generated joint configuration to pick

a transformation from all the sampled ones. It chooses the transformation with the lowest
cost. The cost function follows the design by Pavlichenko et al. [42]. The idea of the cost

28

4.2. Pipeline

function is to reward configurations with their joint values far away from their corresponding
joint limits. First, it calculates this distance using

δ(θ) = min(|θupper − θ|, |θ − θlower|), (4.1)

where θ is a vector of all current joint values and θupper and θlower are each respective joint’s
upper and lower joint limits. The cost function is then as follows

c(θ) =
1

|δ(θ)|

|δ(θ)|∑
i=1

1

ε2i
(δ(θi))

2 − 2

εi
δ(θi) + 1. (4.2)

Here, εi is the maximum possible distance for joint i to its corresponding limits. While
Pavlichenko et al. might have chosen a fixed ε value for all joints, the differences in the joint
limits for the setup in this thesis make selecting individual values for each joint mandatory.
The resulting cost is a value in the interval [0, 1], where 0 would be the best and 1 the worst
cost. Figure 4.10 shows a plot of the cost function. As it shows, the emphasis of the cost
function is to have the joint values away from their limits, having a higher decrease in cost
toward the limits in contrast to values already close to the maximum distance. Since the
configurations of both arms need to be applied simultaneously, this process concatenates the
joint values of both arms before the evaluation through the cost function.

Figure 4.10.: Plot of the cost function used to evaluate the generated joint configurations for
the values of one joint.

These configurations allow more flexibility for movement around the generated joint values.
This characteristic is helpful for three aspects of this pipeline. First, it makes it more likely

29

4. Approach

for the gripper to have the flexibility to retract from the grasped object once the handover
finishes. Configurations with a higher cost would have more likely scenarios where the gripper
could only move away from the handover by moving through the object or pushing it away.
This movement could push the object out of the hand’s grasp or shift it so the grasp is less
stable.
The second use of this flexibility is to ensure that the grasp test with the Shadow hand

executes. Further description of this test follows in subsection 4.2.4. However, it involves a
slight cartesian movement of the hand. With joints close to their limits, this movement might
be impossible, resulting in no way to evaluate the grasp in training and normal execution.
The final benefit of having more flexibility with the joint configuration is the higher likelihood
for the approach of the hand to work, as later described in this section. As this approach is
not tested for during the sampling, having the final configuration far from their joint limits
makes it more likely to find a close configuration for the approach waypoint.
The sampling procedure stops if it has tested every configuration or the cost for one

sampled transformation is below a threshold. Refer to section 5.1 for more information about
this threshold. The sampling process returns the valid transformation with the lowest score
if it evaluates all configurations without one passing the threshold. The robot then moves
the gripper holding the object into the pose specified by the best transformation applied
to the starting pose. Afterward, it moves the hand to its corresponding pose. First, the
pipeline generates an additional hand configuration for a pose before the desired pose to help
increase the likelihood of the hand moving to its sample configuration without colliding with
the object. This pose is set at a fixed distance along a predefined axis for each grasp type.
As no previous tests ensure this pose is reachable, the process skips this generated waypoint
if it finds no joint configuration. Otherwise, the hand moves into this configuration and then
to its sampled configuration. Then, the pipeline continues with the next step.

4.2.3. Grasping

This pipeline allows for two options to perform the grasp for the handover. All options use
the same joints to perform the grasp and the same initial configurations. The Shadow hand
joints used for the closing motion are the second and third joints on the four fingers and the
thumb joints. The thumb starts by having its fourth joint set to 1.13 in radians to start in a
pose that encourages moving the thumb parallel to the fingers. Depending on the grasp type,
a top or side grasp, the fourth joints of the four fingers are set to either a slightly spread-out
configuration or zero, resulting in a parallel setup. These initial values result in one of the
two starting configurations shown in Figure 4.7. These initial configurations ensure a possible
closing motion for all grasping options.
Both closing procedures also employ the same principles for detecting when the fingers

have made contact with the object. This contact detection uses the tendon force sensors for
each joint motor of the hand. Specifically, it uses the values of joints 2 and 3 for the parallel
fingers and joint 5 of the thumb since the joints move the most during a closing motion,
further referred to as the closing joints. It records these values before the grasping motion
when the hand is in its initial grasping configuration at its grasping pose. Each contact check
now compares the current value of a joint to these initial values. It perceives a contact if the

30

4.2. Pipeline

difference is above a set threshold. When one finger makes contact, it ignores its assigned
values in further motions until all fingers have made contact. The effort difference for both
joints of one finger must be above the threshold for the finger to have made contact.
The first closing option performs the grasping motion by adding a constant value to the

joints at each timestep. Each joint has a fixed target value and a fixed number of steps for
the closing motion to determine this constant value. The difference between the starting
configuration for each joint and its target value is then divided by the number of allowed
steps, giving the change applied to each joint during each step. After each step, the module
checks all fingers for contact with the object. This option needs manual parameters set by a
human with prior knowledge, acting as a baseline for further improvements.
The second option uses a neural network instead of human-designed fixed values to control

the hand. It controls the hand using the concept of hand synergies explained previously in
section 2.4. The network generates the weights for the first three synergies of the Shadow
hand, which determine the joint changes at each timestep. However, unlike the second option,
the neural network generates new weights at every step to determine how the joint values
change. Later, section 4.3 explains this network’s architecture and training process further.
Adding together the weighted synergies results in a vector with a value for each joint.

These values are the changes for each joint and get added to the current value of all joints,
resulting in the following joint configuration for the hand. As this can lead to erratic joint
movements, especially during training, the pipeline limits the maximum change of each joint.
If the maximum change of any joint would result in a change above 10°, it normalizes the
change to 10°. The same normalization applies to all other joints to keep their relative
movements. Adapting the grasp during execution allows reacting to sudden changes, such as
object movement, during this process.
Once all fingers have made contact with the object using either closing option, the next

module tests the grasp.

4.2.4. Grasp Testing

This pipeline utilizes the force/torque sensor in the wrist of the left arm to test an executed
grasp. Since the force sensor is always in the same orientation relative to the gripper, its y-axis
force measurement is perpendicular to the gripper’s two fingers, as seen in Figure 4.11. Once
grasping the object is finished, this module records the force values along this axis. Moving
the hand about 5 mm along this axis while grasping the object allows for comparing the
resulting force with the previously recorded values. The grasp is estimated to be successful if
the difference is above a threshold.
This testing relies on Equation 2.3. The fingers apply a normal force against the object

through the previous grasp closing. By pulling up the object, the tester measures the resulting
tangential force. If it is large enough, it indicates the grasp to have enough quality to avoid
slippage.
Once the test estimates the grasp to enact sufficient force, the gripper opens, releasing the

object to be held by just the hand, and retracts. The hand can then move the object towards
the goal pose.

31

4. Approach

Figure 4.11.: The wrist-mounted force sensor relative to the gripper end-effector frame.

4.3. Training

As mentioned in subsection 4.2.3, the training only aims to provide a model for closing the
Shadow hand for an object grasp during the handover process. All of the training process
only uses the real-world robot. This thesis takes inspiration from the work of Liang et al. [22]
to allow this training process to work. It relies on their collected hand synergies. The first
section of this chapter describes the RL architecture for this training. Afterward, the second
section explains the execution of the training process on the real-world robot. For further
evaluation of this training procedure, refer to section 5.2.

4.3.1. Architecture

This part explains the structures used for the RL process. It starts with an overview of the
RL framework, algorithm, and hyperparameters. Afterward, it explains the definitions of the
action and state space. Finally, it covers how the RL process calculates the reward for the
training. As this training structure is the basis for the training and evaluation in section 5.2,
its design focuses on working with the three objects used later.

Parameters:
The training relies on the framework stable-baselines3 [50] for training the neural network.

It provides implementations for a variety of online reinforcement learning algorithms. As
mentioned, this thesis uses SAC as its RL algorithm. As an off-policy model, it uses a replay
buffer to be more efficient with the collected samples, which is beneficial for training on a real
robot. The hyperparameters for the training procedures are mostly left unchanged, as SAC

32

4.3. Training

is supposedly resistant to suboptimal hyperparameters, and an exhaustive hyperparameter
optimization process is unfeasible on a real-world robot. One exception to this is the entropy
coefficient for SAC. As it is one experiment, subsection 5.2.1 describes this selection process
since this parameter needs to be set for each task individually. The default architecture for
the MLPPolicy of the SAC algorithm in stable-baselines3 has it set for both actor and critic
to be two fully connected 256 hidden layers between the input and output layers. This layout
is also the network architecture for this thesis.

Action Space:
Two essential factors for the training time of a RL model are its action and state space.

In robotics tasks, they often have to be continuous, relating to sensor input or joint values.
This continuous nature is also the case in this thesis. Correspondingly, the amount of possible
states and actions the agent has to explore is already enormous. However, this property is a
requirement for these tasks. The other alternative to reduce the number of possible actions
and states, and, therefore, reducing the required training time, is reducing the dimensionality
for both. Using hand synergies, as explained in section 2.4, allows this reduction for the action
space. Liang et al. collected these already for a Shadow hand. As their Shadow hand is a
left hand, using them requires transferring the values to the corresponding joints on the right
hand used in this thesis. Since this hand has BioTac sensors, it also misses the first joints
on each finger. Correspondingly, the pipeline ignores the values for these joints when using
the hand synergies. Using only the first three hand synergies to control the hand enables a
reduction to three dimensions. These three values are the network’s output. They are values
normalized to the interval [−1, 1].

State Space:
The state space, and, therefore, the network input, contains three parts. The first one

also uses hand synergies, as does the action space. However, unlike previously, the joint
configuration gets projected onto the first three hand synergies. Through this projection,
one can compute the weights for the synergies that would generate this configuration most
closely. While this process loses some information about the exact joint configuration, the
network can learn to compensate for it. This encoding provides the network with information
about the current state of the joints in a significantly reduced dimensionality, the same as for
the action space. Specifically, it reduces the information to three values as the first part of
the state space.
Next are nine values corresponding to the effort difference for all nine closing joints. These

effort values are the same ones used for the contact check with the object. The Shadow hand
provides these values through the force sensors at the tendons that control the finger motors.
These sensors are very susceptible to environmental changes. Also, the simple movement of
the hand from one pose to another can significantly change these values. Since values that
change independent of the task required from the network would be unsuitable inputs, the
state space instead contains the difference in these values. This process is similar to the one
for contact detection explained in subsection 4.2.3.
Finally, a three-dimensional one-hot encoding of the current target object completes the

state space. This one-hot encoding is a vector where one value is 1 while the others remain

33

4. Approach

0. Each object corresponds to one of these values. While still requiring human input for this
value, it is the only information used on an object and does not require any information about
its shape. Further, while adding three more values to the dimensionality, these values are
static over one training episode, making it easier for the network to learn the impact of these
values. This value needs to be set for new objects to the object the network was trained with
that most closely matches the new object. Consequently, this results in a state space of 15
values normalized to [−1, 1].

Such a normalization is standard in RL approaches to improve the training results. Since
the one-hot encoding is already in the normalized range, only the synergy encodings and the
effort values need to be normalized. For the effort values, the normalization process caps
them at double the threshold value that would detect an object contact, both positive and
negative. Then, they get divided by this cap, resulting in the desired interval. The encodings
are more difficult to normalize, as no guaranteed limits exist for any component. For the first
three synergies, dividing the values by three has experimentally shown to let the values always
fall into the desired range.

Reward:
The reward function for the network takes inspiration from the one designed by Liang et al.

[22]. It defines two reward cases, which are dependent on the timestep of the training. Each
timestep is one change of the hand joint configuration through the network. One episode
includes all timesteps until one grasping attempt finishes. Consequently, the reward function
defines a reward as

rt =

{
rb + rcon, if t = Tfinal

rc, otherwise
(4.3)

with rt the reward at step t during on training episode and Tfinal as the episode length.
Therefore, the agent gets one reward type at the end of an episode, while it gets another at
the timesteps during the episode. The closing reward rc depends on how much the closing
joints change towards their closing direction. It equals the sum of the change in the joint
value for each closing joint in radians, specifically

rc =

17∑
i=1

qi(t)− qi(t− 1) (4.4)

where qi(t) is the value of joint i at timestep t for all 17 joints of the Shadow hand. All closing
joints for the Shadow hand have their highest value when the hand is closed. Correspondingly,
this reward is positive if the overall change moves the joints further toward a closing pose and
negative if the hand moves into an open pose. For the other rewards, rb is a binary reward
whether the grasp testing at the end of an episode deems the grasp stable. It has a value of
1 or -1, depending on whether the test succeeded or failed, specifically

rb =

{
1, if grasp successful
−1, otherwise

(4.5)

In addition to this reward, the end of an episode also provides a contact reward rcon. It
equals the number of all closing joints above the threshold for contact detection multiplied

34

4.3. Training

by a weight of 0.05, defined by

rcon = 0.05 ∗
9∑
i=1

con(i) (4.6)

con(i) =

{
1, if closing joint i made contact
0, otherwise

(4.7)

Consequently, the contact reward is a value in the interval [0, 0.45]. This additional reward
encourages grasps with more finger contacts, which are assumed to be more stable. While
it can improve the reward for a failed grasp, its maximum value ensures that the combined
reward remains negative.

4.3.2. Procedure

When starting training, the robot moves into the initial configuration by executing the first
step of the pipeline. Next, a human operator must specify the chosen object and the desired
grasp type. Afterward, the pipeline continues until the start of the grasp phase. This process
results in both gripper and hand being in the correct configuration to perform grasps on the
object. Now, the algorithm performs several grasp attempts on the object. These attempts
repeat until it has executed around 1000 steps on the current object, ending this iteration.
More specifically, since the episode length can vary but is limited to 50 steps as a maximum,
the training for the object stops when the first episode, which brings the number of executed
steps over 1000, finishes. Then, the robot moves into its initial configuration again, and a
human operator can exchange the object for the next one. This process repeats for 12000
steps.
Each grasp attempt consists of up to 50 grasp steps. Each step calls the previously defined

network to generate its three output values. These values produce the following joint configu-
ration for the hand, as explained in subsection 4.2.3. The resulting joint configuration is then
sent directly to the controller of the Shadow hand for execution. Unlike other movements,
this skips the collision-aware planning for the hand to speed up the training. However, this
speedup entails the cost of limiting the hand joints during execution to prevent the hand
from potentially damaging itself. Specifically, the training does not use the fourth joints of
each parallel finger, as they could produce collisions between the fingers. After each step, the
reward function described in subsection 4.3.1 generates the appropriate reward for this hand
movement.
The network output values are further limited to guide the synergy-controlled hand into a

closing motion. As seen in Figure 4.12, the first two synergies have a distinct closing direction
through negative weights. Therefore, before the pipeline uses the network’s first two output
values, it normalizes them to the range [−1, 0] to enable only a closing motion. On the other
side, the third component has no visible closing direction, so the original output value of the
network remains.
One grasping attempt stops once it has run for 50 steps or all fingers have made contact

with the object. This limit ensures that the grasping process does not go on indefinitely

35

4. Approach

Figure 4.12.: The first three synergies for the shadow hand and their respective movements
for positive or negative weights. [22]

while guaranteeing that each model attempts a minimum of 20 grasps during each 1000-step
iteration. At the end of each attempt, the reward function generates the final reward based
on the grasp testing described in subsection 4.2.4.
This training process allows for semi-self-supervised execution by the robot. Theoretically,

a human operator must only replace the training object every 1000 steps and specify the
grasp type. During each iteration, the gripper never releases the object, so it does not need
to be replaced by a human after each attempt. Further, the grasp testing strategy for reward
generation allows the process to reward the agent without necessary input by a human. In
practice, potential hardware failures or possible movements of the object in the gripper during
an iteration still require an operator always to be present. However, this reduced required
oversight is necessary for the process of real-world RL to be feasible.
Training on a real-world robot also needs to be able to handle training interruptions. These

can come, for example, from hardware failures or lost sensor information due to latency
issues. Stable-baselines3 allows the saving of model checkpoints after a set number of steps.
For this thesis, the training saves checkpoints after every 100 steps. Whenever an issue
interrupts a training process, it can continue after the problem is solved by loading the last
valid checkpoint.

36

5. Experiments

Two experiments comprise the pipeline’s evaluation. First is the workspace analysis mentioned
for the PR2 configuration. Second is the evaluation of different trained models for the grasping
part of the pipeline. This chapter presents both experiments in detail and their results.

5.1. Workspace Analysis

The analysis of the PR2’s available workspace for bimanual manipulation consists of sampling
different configurations over a grid in front of the robot. It performs this analysis offline.
This grid contains positions 6cm apart along all three axes. For each position, the analysis
also tests rotations. These rotations consist of all possible combinations of -90° to 90° in 30°
steps for each axis, resulting in 343 rotations tested for each position, as seen in Figure 5.1.
The rotations apply to the hand and the gripper around the handover frame to keep their
poses relative to each other the same.

Figure 5.1.: Example of sampled rotations for one handover pose (blue). Green shows a con-
figuration where both manipulators produced a valid solution, and red indicates
invalid ones. All sampled poses for both hand and gripper are on the left. Each
rotation for the hand has a corresponding rotation for the gripper opposite of the
handover pose and vice versa. The middle and right images show examples of
these corresponding rotations.

This analysis uses three metrics for every position to evaluate its performance. First is the
number of rotations for the position that results in a valid solution. This metric explains how
flexible a position is for the considered configuration. More possible solutions allow a higher
likelihood of finding a solution when including this position in the online sampling. Next is the
average cost of all valid solutions for one position. On its own, this metric favors position with
few low-cost solutions. Combined with the previous metric, however, it could allow one to
find a position with high flexibility that generally produces low-cost solutions. Finally, the last

37

5. Experiments

metric is the best solution cost for one position. This metric gives an insight into a possible
threshold for an early stop during the online sampling. Further, combined with the previous
two metrics, it may provide a region of positions that can generate multiple, low-cost, valid
solutions with the potential for early stopping to speed up the online sampling process.

Figure 5.2.: An example of creating the grid-based workspace analysis for the side grasp.

The grid is dynamically grown in front of the robot to ensure the analysis tests the entire
workspace of the robot, independent of possibly faulty human intuition. This growth starts
with a single position in front of the robot. The analysis then calculates the previously defined
metrics of all transformations related to this position, so all combinations of the previously
specified rotations with this position. Only the number of valid solutions for this position is
relevant to growing the grid. Along all axes, in both the positive and negative directions, a
check is made to determine if any border positions still have valid solutions. If that is the
case, the size of the previously checked block extends by one step in this direction. Once it
has checked every side for expansion, the analysis calculates the performance for all added
positions again. Figure 5.2 shows an example of creating the grid through this process. This
process repeats until no further expansion is required, resulting in a wholly grown area for
the workspace analysis. The number of tested transforms will likely change depending on the
tested configuration.

This experiment aims to apply the previously defined grid search and metrics to both
available grasp types and slight deviations from one of these. As the analysis requires the
same grasp pose for each checked transformation, it works with fixed values instead of getting
the hand pose relative to the gripper from a point cloud. For each configuration, it generates
the best sampling regions according to the metrics and investigates the change between them.

38

5.1. Workspace Analysis

5.1.1. Side Grasp

The first workspace analysis regards the side grasp. It applies each of the three metrics to the
resulting workspace. The grid of the analysis grew according to the previous method until no
position on any border of the grid provided a valid solution. This procedure resulted in a grid
of 5670 positions.

Figure 5.3.: The left image shows all positions with at least one valid solution for the side
grasp. In the middle and right images, a cut of half of this distribution highlights
the inner structure along the xy- and xz-plane, respectively.

These valid solutions form an arc as shown in Figure 5.3. Each visualization and any other
workspace images in this section have additional views in section A.1. This part is central
in front of the robot. A spherical pattern is typical for manipulator workspaces, so having
a similar curved shape for the combined workspace is a plausible result. The arc’s cutout is
close to the robot’s body, as collisions with said body make solutions invalid. Also, the arc
ends at each side with a manipulator where the range of the other manipulator ends. This
end is sudden at the left arm’s side, indicating a high manipulability even at the edge of the
reachable space for the right arm.
So far, this is the expected behavior of the workspace. However, the inner part of this

workspace is more interesting. While it has the expected structure of an inner core with
the most valid solutions, while the number of solutions shrinks towards the edges of the arc,
this core is not central in front of the robot. Instead, it leans towards the left arm with the
two-finger gripper. One explanation could be limited flexibility in the wrist joints of the hand.

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure 5.4.: Best 5% of positions according to the three defined metrics of number of valid
solutions, average cost, and minimal cost for the side grasp.

39

5. Experiments

Consequently, reaching poses close to the arm, where the arm would need to be angled more,
is more challenging. The gripper, on the other hand, has a more flexible wrist structure. This
flexibility also allows it to reach poses where the left arm needs to be angled significantly
more, explaining the observed core shift.
Like Zacharias et al. [15], the analysis also considers the top percentage of valid solutions

in Figure 5.4. In this case, this is the best 5% of solution. As expected, it coincides with
the inner core of all viable solutions. It also has the observed shift toward the left arm. The
analysis also applies this process to the other metrics, namely average and minimal cost, as
seen in the figure. These also correspond to the inner core with only slight variation in shape.

Figure 5.5.: The intersection of the best 5% of positions for each metric for the side grasp.

The final step computes the intersection of the best 5% of positions for each metric to filter
out these differences. Refer to Figure 5.5 for the result. It follows the other three metrics in
general shape but with reduced size due to the minor differences. According to the metrics,
this region now contains several positions likely to produce multiple valid, low-cost handover
poses. However, because the analysis only used one fixed pose for the hand relative to the
gripper, the pipeline needs to check these handover poses online again, as the handover pose
varies based on the point cloud of the object. The following section repeats this analysis
for variations of the side grasp to investigate how this variation might influence the optimal
sampling region.
However, to ensure the online chosen handover pose also has a low score, the sampling

proceeds until a pose has a score below a threshold. The cutoff point for the best 5% of the
minimal cost metric determines this threshold. This process set the threshold to 0.178 for the
side grasp. Table 5.1 provides an overview of this and other cutoff values for this and every
other analyzed grasp. Another part of the analysis viewed the distribution of all metrics and
looked for anomalies. As Figure 5.6 shows, no metric has such an anomaly. Both cost metrics
have a skewed normal distribution, while the number of valid solutions shrinks linearly. This
shape is identical to the plots for each tested configuration in this chapter. Consequently,
these plots are in Appendix A.

40

5.1. Workspace Analysis

Table 5.1.: Overview of cutoff values for the different workspace analyses. Grid size equals
the number of investigated positions for the corresponding workspace analysis of
the specified grasp type. Cutoff values are the limiting values between the top
5% of positions according to that metric and the rest. For the number of valid
solutions metric, the top 5% have equal or more than the given value, while the
value needs to be equal or lower than the value for the other two metrics.

Side Grasp
Side Grasp
X-Shifted

Side Grasp
Y-Shifted

Top Grasp

Grid size 5670 5940 5670 7392

Valid Solutions
Cutoff

59 57 54 47

Average Cost
Cutoff

0.291 0.289 0.292 0.298

Minimum Cost
Cutoff

0.178 0.183 0.184 0.137

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure 5.6.: The distribution of all valid solutions for the side grasp according to the three
defined metrics of number of valid solutions, average cost, and minimal cost.

5.1.2. Shifted Side Grasp

As mentioned, this chapter repeats the analysis for slight variations of the side grasp. Specif-
ically, it considers two variations: a shift along the positive x-axis along the handover frame
and a shift along the negative y-axis. As the side grasp has a fixed value along the z-axis
relative to the gripper, these are possible variations that can occur by changes in the point
cloud for the different objects.
For the x-shift, the structure of all valid solutions is similar to the side grasp, as seen in

Figure 5.7. As with the side grasp, additional views exist in section A.2. Interestingly, it
does not have a clear shift along the x-axis, as might be expected. Instead, the grid extends
by one layer of positions along the positive y-axis. This extension is likely the result of the

41

5. Experiments

Figure 5.7.: The left image shows all positions with at least one valid solution for the x-shifted
side grasp. In the middle and right images, a cut of half of this distribution
highlights the inner structure along the xy- and xz-plane, respectively.

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure 5.8.: Best 5% of positions according to the three defined metrics of number of valid
solutions, average cost, and minimal cost for the x-shifted side grasp.

Figure 5.9.: The intersection of the best 5% of positions for each metric for the x-shifted side
grasp.

greater distance between the hand and the object, enabling these positions through rotations
that change this distance towards the y-axis. As previously observed with the side grasp, the
manipulability is still high along this edge. Further, the inner structure is also similar.
Neither is a clear shift visible for the top 5% of positions according to each metric, shown

42

5.1. Workspace Analysis

in Figure 5.8. This similarity is also visible for the cutoff value of each metric. While slightly
worse regarding the number of valid solutions and the minimum cost metric, the values remain
similar. Correspondingly, the intersection visible in Figure 5.9 also remains similar.

Figure 5.10.: The left image shows all positions with at least one valid solution for the y-shifted
side grasp. In the middle and right images, a cut of half of this distribution
highlights the inner structure along the xy- and xz-plane, respectively.

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure 5.11.: Best 5% of positions according to the three defined metrics of number of valid
solutions, average cost, and minimal cost for the y-shifted side grasp.

The y-shifted side grasp also produced a similar structure for all valid solutions, seen in
Figure 5.10. As before, section A.3 has additional views for each visualization. The grid has
the same extension towards the positive y-axis but one less layer along the negative y-axis.
Correspondingly, the analysis covered the same number of positions as the original side grasp.
Otherwise, the inner and outer structures remain similar to the previous two grasp types.

The metric analysis remains, therefore, very similar to the side grasp, as seen in Figure 5.11.
As with the x-shift, no significant changes occurred. The intersection, depicted in Figure 5.12,
also remains similar to the side grasp. Only minor changes happened for the cutoff values,
each performing slightly worse than for the side grasp.

These minor changes for both shifts show that using the same sampled handover poses for
one grasp type is possible even when variations during the online handover change the exact
handover pose. As the cutoff value for the minimum cost climbed above 0.18 for the two
shifted grasps, online sampling for side grasps will use 0.19 as its threshold.

43

5. Experiments

Figure 5.12.: The intersection of the best 5% of positions for each metric for the y-shifted
side grasp.

5.1.3. Top Grasp

Finally, the workspace analysis also covers the top grasp. As seen in Figure 5.13, the shape
of all valid solutions differs significantly compared to the side grasp. Additional views in
section A.4 further highlight this. First, the grid size increased significantly to now consisting
of 7392 positions. These positions come from three additional layers along the positive x-axis,
two along the negative z-axis, and one along the negative y- and positive z-axis. However, it
also lost two layers along the negative x-axis. Second, the still present inner core, where the
positions with the most valid solutions lie, is more centered and no longer moved toward the
left arm. Since the top grasp likely has more distance between the hand and the gripper, this
observation adds to the previous theory about the shift for the side grasp. Additionally, it is
further away from the robot’s body.

Figure 5.13.: The left image shows all positions with at least one valid solution for the top
grasp. In the middle and right images, a cut of half of this distribution highlights
the inner structure along the xy- and xz-plane, respectively.

The metric analysis for the top grasp also produced significant differences from the side
grasp. As seen in Figure 5.14, every metric contains more positions in its top 5%, since the
overall number of valid positions also increased. For the minimum cost, the top grasp has
the slightest difference compared to the other metrics. It is still a centered, continuous core,

44

5.1. Workspace Analysis

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure 5.14.: Best 5% of positions according to the three defined metrics of number of valid
solutions, average cost, and minimal cost for the top grasp.

Figure 5.15.: The intersection of the best 5% of positions for each metric for the top grasp.

which extends further along the negative z-axis and starts further away from the robot, as
was already observed to be the case for the entire structure. On the other hand, while still
having a centered, continuous block, the number of valid solutions metric now also has a
smaller, almost separate block towards the right arm. This block is not far from the central
one but further towards the robot. It likely highlights a region where the right arm might
reach easily, even with limited wrist flexibility, producing an optimal zone. Nonetheless, it
highlights why such a workspace analysis is helpful for further understanding such a complex
problem, as this behavior is counter-intuitive to human expectation.
Finally, the average cost metric produced the most different results. Instead of remaining a

shifted block, it formed a relatively flat shape that follows an arc towards the negative z-axis.
While still central, it also starts further away from the robot than the other two metrics for
the top grasp. An explanation for this behavior would be that these positions only produced
a low number of valid solutions, as they were not part of the number of valid solutions 5%,
which had a relatively low cost. They are not part of the top 5% of minimal cost, so their
cost is likely just above this threshold. However, according to the minimal cost metric, the
best positions likely produced several other valid poses with higher costs. Since the average

45

5. Experiments

cost metric only considers valid solutions, it prefers these positions. More surprisingly, this
phenomenon did not occur for the side grasp.
Due to the significant differences between the metric results, the resulting intersection,

seen in Figure 5.15, contains fewer positions than the side grasp. As expected from the grid
shift along the x-axis, it is further away from the robot’s body. Due to the increased number
of positions in the grid, the cutoff value for the number of valid solutions is also lower. The
average cost also has a worse threshold, increasing to almost 0.3. However, the minimum
cost significantly decreased to 0.137. It indicates that the workspace for the top grasp allows
for more optimal handover poses. Since the threshold varied for the side grasp with shifts,
the threshold for an online sampling of top grasps will, therefore, be 0.15. Ultimately, the
analysis provided several positions to sample from for online top grasps. However, it showed
how different the workspace can be for varying grasp types. This difference highlights the
requirement to perform such an analysis for any future additional grasp type.

5.2. Model Training

As mentioned, the entire RL training runs exclusively on the real-world robot system. The
training procedure follows the outline explained in subsection 4.3.2. Training the models and
comparing them with the baseline grasp closer uses the objects depicted in Figure 5.16. The
chips can and bleach bottle are part of the YCB Object and Model Set [51]. However, the
plastic cap is colored with white paint to prevent issues with the point cloud readings for the
top of the chips can. The paper roll also has a paper cap on its top for the same reason.

Figure 5.16.: The three objects used for training and testing the grasping models and the
handover baseline. They consist of a chips-can, a bleach bottle, and a paper
roll from left to right. The left image shows the front view, while the right
image depicts a top view.

5.2.1. Hyperparameter Selection

Since the training runs entirely on the real-world system, a standard hyperparameter opti-
mization is unsuitable for this thesis. Such an optimization usually consists of a grid search

46

5.2. Model Training

Table 5.2.: Configuration for all training scenarios during hyperparameter selection.
Training Attempts

Number 1 2 3 4 5 6
Steps 24000 12000 12000 12000 12000 12000
Entropy
Coefficient

1.0,
Adaptable

1.0,
Adaptable

0.1,
Adaptable

0.05,
Constant

0,
Constant

0.001,
Constant

Input Full Full Full Constant Full Full
Poses Variable Fixed Fixed Fixed Fixed Variable

Reward Original Original
No Inter-
mediate

No Inter-
mediate,
Timescaled

No Inter-
mediate,
Timescaled

No Inter-
mediate,
Timescaled

Training
Time

5.0 h 1.5 h 1.4 h 1.7 h 2.6 h 3.5 h

over different hyperparameter combinations and training a new model with each combination.
Such a strategy is unfeasible with the training time on a real-world robot. Fortunately, the
original SAC paper [26] highlights the relative robustness of SAC to suboptimal hyperparam-
eters. Unfortunately, they also mention one exception to this rule, the entropy coefficient or
reward scale. The authors mention that this parameter needs tuning for each environment.
Therefore, determining a suitable value for this coefficient requires some exploration, which
the rest of this section explains. All these explorative training uses the side grasp setup
explained in subsection 4.2.3.
All in all, tuning the hyperparameter required six training attempts. Refer to Table 5.2 for

a list of configurations for each attempt. Details about these configurations and attempts

Figure 5.17.: Average episode length for all training attempts. The Table 5.2 shows the
configurations for all attempts.

47

5. Experiments

Figure 5.18.: Average reward per episode for all training attempts Table 5.2 shows the config-
urations for all attempts. The reward function changed over different training
attempts, so higher values do not necessarily relate to better attempts.

Figure 5.19.: Entropy coefficient for all training attempts with a variable one. The Table 5.2
shows the configurations for all attempts.

follow in the rest of this section. The first training attempt was to determine if the default
settings provided by stable-baselines3 were already suitable for the scenario of this thesis.
For the entropy coefficient, the default option is a method to adapt the coefficient during
the learning process. Starting with a value of 1, it gets learned in parallel to the network
parameters. However, this setting led to a deteriorating policy. As seen in Figure 5.17,
the average episode length increases over time while the average reward decreases, visible

48

5.2. Model Training

Figure 5.20.: Deteriorating behavior of the second training attempt. The model manages
to make contact with the parallel fingers on the object after only 100 training
steps, as shown on the left. On the right, the image shows how the model no
longer made this contact after the training of 12000 steps.

in Figure 5.18. Such behavior is the opposite of a converging policy. To ensure that this
was not a result of a training time that was too short, the training time for this initial test
was extended to 24000 steps, twice the usual amount. As can be seen, the outcome did
not change over time. For the entropy coefficient, Figure 5.19 shows a monotonic decline
of the parameter of this attempt. A possible explanation for this phenomenon would be
that the entropy coefficient induces too much exploration of worse actions, and the initial
well-performing actions are becoming less likely to be executed again.
The training repeated with fixed poses for the grasp and handover poses to rule out that

this structural variance in the pipeline caused the deteriorating behavior. Reward and average
episode length showed the same deteriorating behavior as before. This deterioration is also
visible when executing a grasp with the same model at an early and final timestep. As seen
in Figure 5.20, the grasp of the early policy managed to get contact with the object. On the
other hand, the final policy moved the parallel fingers by a negligible margin, making contact
with only the thumb. The adaptable entropy coefficient also showed the same monotonic
decline. These results indicate that the training parameters caused this behavior, not the
pipeline structure. To further explore this behavior and to find a suitable entropy coefficient,
the following training run started with a significantly lower entropy coefficient of 0.1. It
continued to utilize the adaptable coefficient learning method from stable-baselines3. One
further observation was the value of the average reward. Values between 3 and 5 for the
reward are remarkably high, given that the final reward for a successful grasp could only have
been 1.45. The difference must have been received as rewards through the closing reward for
the intermediate steps, as stated in Equation 4.3. Since this might have incentivized the model
to explore longer closing trajectories, the third training set this intermediate reward to 0, so
only a successful or failed grasp provided a meaningful reward. However, the deteriorating
behavior remained, even with this lower reward. Further, the adaptable entropy coefficient
also had the same decline as previously. This decline indicates that the coefficient might
still not be low enough, or the adaptable method of determining the coefficient might cause

49

5. Experiments

issues.
The fourth training turned off the coefficient learning procedure and used a constant entropy

coefficient of 0.05 instead. Correspondingly, the coefficient values for this and the following
training attempts no longer show in Figure 5.19. Further, it scaled the reward at the end of
a grasp attempt by the required timesteps to increase the incentive for fast closing motions.
This scaling changes Equation 4.3 to

rt =

{
rb + rcon) ∗ (1− t

tmax
), if t = Tfinal

0, otherwise
(5.1)

where tmax is the maximum limit of timesteps allowed for one grasping attempt. Finally, to
determine if the state space causes training issues, the state space was reduced to just the
one-hot encoding of the current object. Without changing information, the model should learn
one best action for each object. As the results show, the policy stopped deteriorating over
time. However, the average episode length and reward fluctuated greatly and depended on
the recently grasped object. Without any meaningful state information, this is an expected
behavior. Consequently, it only produced constant values as actions, seen in Figure 5.21.
However, this setting showed that it is possible to learn a policy that does not deteriorate,
even though it is primitive.

Figure 5.21.: Action values over all timesteps for an example grasp of the chips can. The
used model only received the constant one-hot encoding as input.

Next, the fifth attempt keeps the time-scaled reward and restores the state space to the
original setting. However, to test if training at all is possible with the whole variable pipeline,
the entropy coefficient was set to 0, turning off the entropy exploration incentive. This coeffi-
cient drastically increases the training’s susceptibility to the initial policy values. However, the
initial reasonable performance of most previous models indicates that a suitable number of
well-performing training examples from a randomly initialized policy is likely to be obtained.

50

5.2. Model Training

As the results show, this was the case, and this training procedure showed the first stabilizing
policy, where the average episode length and reward stayed constant without the previous
deterioration. Therefore, to produce similar results with a model capable of some exploration
to be less influenced by the initial policy values, a final training was conducted with a low,
constant entropy coefficient of 0.001. As the training data depicts, the model performed
similarly to the previous training test. Therefore, this ended the further optimization of the
entropy coefficient. Overall, the training time for these attempts ranged between 1.4 and
3.5 hours for the standard training time and 5.0 hours for the double training time. These
variations occurred because of two reasons. First, different numbers of hardware errors re-
quired different amounts of training restarts. Second, faster closing motions required more
grasp tests, which consumed additional time. Nonetheless, the required time to train a model
remained reasonable for all attempts, showing the viability of the training setup for real-world
scenarios that require the constant presence of a human operator. The following section
continues with the evaluation of this seemingly well-trained model.

5.2.2. Side Grasp

Figure 5.22.: Examples of side grasp handovers for each object.

The last model trained for hyperparameter optimization is also the final model for side
grasps. As it showed suitable training performance, this section evaluates its performance as
part of the entire handover pipeline. To this end, the pipeline had to hand over each object
ten times, both with the model and the constant value hand closer as a baseline. Figure 5.22
shows examples of these handovers. An attempt was successful if the object stayed in the
robot’s hand for at least three seconds in a final pose after the handover. For examples
of successful grasp attempts ending in this pose, refer to Figure 5.23. Further, Table 5.3
lists the results for all attempts. In these results, two things are notable at a glance. First,
the model performed slightly worse than the baseline. Second, the bleach bottle performed
notably worse than the other objects for both baseline and model.
There are some possible explanations for the first observation. First, both versions per-

formed equally well for the paper roll. Next, the two failed grasping attempts for the chips
can by the model happened because of an odd behavior of the policy for the can. Initially,
all fingers were closing around the object, but after the ring and little finger had made con-

51

5. Experiments

Figure 5.23.: Examples of successful side grasps for all three objects in the final evaluation
pose. The top row shows grasps generated by the baseline, while the bottom
row depicts model-generated grasps.

Table 5.3.: Success rates of pipeline executions for model and baseline generated side grasps.
Each grasp counted as successful if the robot held the object for at least three
seconds with its hand in the final pose.

chips can bleach bottle paper roll
baseline 10/10 7/10 10/10
model 8/10 5/10 10/10

tact with the can, the speed of closure for the first and middle fingers slowed. Usually, they
still managed to contact the can, but in some instances, they only did so after reaching the
maximum step limit. In these instances, the object was more unstable and could fall out, as
happened twice. One explanation would be that, due to still suboptimal hyperparameters,
it explored this behavior during the end of the training time and needed more experience to
counteract it completely.
Interestingly, the last three objects during training of this model contained the chips can

twice. As Figure 5.24 shows, the model had no such behavior before these last 3000 training
steps. Together with the slight increase of the average episode length for this model visible
in Figure 5.17 indicates that it might deteriorate with further training again, requiring further
hyperparameter optimization in scenarios with longer training time. However, this also indi-
cates the model’s ability to learn different behaviors for different objects, as no such issues
occurred when handling the other two objects. It is remarkable due to the similarity in shape

52

5.2. Model Training

Figure 5.24.: Final model grasping behavior for the chips can. The first and middle fingers
slowed during the closing motion, sometimes failing to contact the can. The
right image shows an example of this. However, the left image shows the model
after only 9000 training steps, not demonstrating this behavior.

Figure 5.25.: The development of model-generated actions during an example side grasp for
all three objects. From left to right, show the plots of this development for the
network’s first, second, and third output dimensions.

between the chips can and the paper roll, as they both are cylindrical with different radii.
This difference is also visible when looking at the development of action outputs for the

different objects in Figure 5.25. The model made contact with all fingers for the bleach
bottle and paper roll before the maximum step limit, so the output stopped early. Due to the
previously mentioned chip can issue, the model did not stop early for it. Since the pipeline
normalizes the first and second action between 0 and -1 before generating the joint configu-
ration through the synergies, 1 in the graphs corresponds to no weight for that synergy. At
the same time, -1 is the maximum weight for a closing motion. The first synergy corresponds
to a general closing motion for all four parallel fingers without moving the thumb. As the
plots show, the model outputs -1 for the bleach bottle and the paper roll almost during the
grasping motion. For the chips can, the output changes to 0 around the time it finishes for
the other two objects, meaning it only continues to close the fingers at half the speed as
previously. Since it also started lower for the chips can, this might explain why it did not
manage to make contact with the object in time.
The model also had an almost constant output for the chips can as the second action for

a strong closing motion. This synergy moves the thumb. Interestingly, this output remained

53

5. Experiments

high even though the thumb made contact with the object. One theory is that the thumb
has already started too close to the chips can, so the change in effort was not high enough
to pass the threshold. This observation might be an explanation for the chips can behavior
as well. For the other two objects, this value switched to 1 at the end of the closing motion,
indicating that the thumb no longer had to be moved. It was already close to 1 at the start
with the paper roll, only slightly changing during the grasping motion. For the bleach bottle,
it started at a lower value and changed to 1 significantly later. One explanation is that the
thumb already starts closer to the paper roll than to the bleach bottle, so it has to move
less overall. The third action has no normalization, as it has no distinct closing direction, so
0 means almost no change, while 1 and -1 are the maximum changes in the two directions,
respectively. Here, the output for all three objects is similar. It changes relatively fast to a
low value of around 0, and for the chips, it can stay at that value while the grasping motion
terminates earlier for the other two objects. Seemingly, it is not significant for the grasping
motion of the side grasp, as expected.
For the bleach bottle, the difference in performance is not as different as the result seems.

In both cases, the bleach bottle is often twisted in the hand, either directly after the gripper
retracted from the object or during the three-second holding in the final pose. For the baseline,
this twisting sometimes pushed the top of the bottle against the side of the hand to prevent
further twisting and falling out, as in the example grasp for the baseline with the chips can in
Figure 5.23. About three of the successes for the baseline encountered this scenario. Without
these, both options would have performed similarly on the bleach bottle.
This observation leads to the second observation on why the bleach bottle performed

significantly worse than the other two objects. First of all is the material. The bottle is
significantly smoother than the other two objects. This smoothness can lead to the fingers
slipping, especially if the contact between fingers and object is not at the fingertips, where the
rubbery BioTac sensors can apply increased friction, but at either of the other two finger links.

Figure 5.26.: The left image shows the orientation of the bleach bottle with which the model
trained. In the right image, the bleach bottle’s orientation is rotated by 180° to
test the performance with this alternative insertion method.

54

5.2. Model Training

Figure 5.27.: The variable distances of handover poses where the hand is above or below the
object.

Next is also the more complex shape. Unlike the other two objects, which are cylindrical, the
bleach bottle is less uniform and symmetric. This shape makes the relative grasp pose and
its influence on the outcome of the grasp more significant. Another test rotated the bleach
bottle by 180°, as seen in Figure 5.26. However, tested with the model, this orientation
only managed to perform three successful grasps out of ten. Notable here is that the model
managed to produce grasps where all fingers made contact with the object, even though it
never trained with this new orientation.
There is one other issue regarding the grasp pose. Besides the variance introduced by

manually inserting the object in the left gripper and generating the grasp pose based on the
point cloud reading, another factor significantly influences the relative grasp pose. This factor
is whether the selected handover pose has the hand above or below the object. The most
common handover pose had the object completely horizontal. When the object faces towards
the robot, the hand hovers over it. While the object points away from the object, the hand is
below it. All successful grasps of the bleach bottle had the hand above, while most failures
had the hand below the object. As seen in Figure 5.27, the hand is significantly closer to the
object when it is above the object and farther away when below, even though the relative
pose between gripper and hand is the same according to both targeted pose and reported
robot state. One explanation for this would be a gravity-related calibration error in the right
arm. Since the Shadow hand is not the original lower arm on the PR2, some calibration errors
likely remained after the adaptation to the new hardware. While it might be negligible in most
scenarios, in this situation, where the hand-to-object pose rotates by 180°, this difference can
be noticeable in the distance between hand and object. For the other two objects with more
uniform shapes, this influence also does not influence the result too much. However, for the
bleach bottle, where more precision is required, this can significantly influence the success
rate.
Alternatively, the depth information generated using the point cloud might be less precise

than expected. As the side of the object is not visible from the static observation pose, all
object depth information has to come from viewing the top of the object. Consequently, the
pipeline might choose whether the hand is above or below the object by this variation. This

55

5. Experiments

theory would flip the causality of the observed correspondence between distance and hand
being below or above the object. Under that assumption, having a point cloud reading that
causes the hand to be closer to the object causes the pipeline to choose handover poses where
the hand is above the object and vice versa. Theoretically, such issues are why performing the
learning process on a real-world platform can be beneficial compared to simulation training.
In this case, however, the model did not counteract this difference, and it is difficult to tell if
a simulator-trained model would handle this situation similarly or worse.

Figure 5.28.: An example of the object twisting in the hand after the gripper retracts.

One final observation is the twisting motion already mentioned. While most prominent for
the bleach bottle, it also happened less severely for the other two objects. The reason for this
twisting motion is the ability of the object to rotate more freely when the gripper retracts
from the object. Grasp quality testing in the pipeline is only performed through a check for
translational slippage, not rotational movements. For example, when the parallel fingers and
the thumb enact forces on an object that are not directly facing each other, they create a
rotational movement of the object. With this motion, the object can rotate into a pose where
contact with the fingers is lost, and it can fall out of the grasp. While this is less likely to
happen for the chips can and the paper roll due to their symmetry, this is much more likely
to happen with an asymmetric object such as the bleach bottle. For the model training, this
is especially problematic since grasps that test as stable during training can now be unstable
during execution. Therefore, the model cannot learn a policy to counteract this issue. This
inability is another reason why the model underperformed with the bleach bottle.
Further discussion of solutions to these problems continues in section 6.2.

5.2.3. Top Grasp

To allow for grasping the models with the top grasp requires training a new model. This
training uses the same hyperparameters as the model for side grasps. The exception is the
reward function. As the top grasp is more likely not to allow all fingers to contact the object,
the reward is no longer time-scaled. For this reason, the average episode length will remain
at or close to the maximum step limit. Conversely, the reward fluctuates significantly, as seen
in Figure 5.29. While not optimal, that behavior likely results from the more complex nature

56

5.2. Model Training

Figure 5.29.: Average reward for the top grasp model during training.

of the top grasp. Interestingly, the significant reduction between steps 8000 and 9000 looks
like deteriorating behavior, but the reward climbs steadily afterward again. Consequently, this
section continues to use this model for further evaluation even with that negative spike.
The model required training for 2.25 hours. After the training, the evaluation uses the

same method described for the side grasp with examples of the performed handovers visible
in Figure 5.30. Similarly, Figure 5.31 shows examples of successful handover attempts, while
Table 5.4 lists the success rates of all grasping attempts. The significant improvement of the
model and baseline for the bleach bottle is notable. Also, the model performed similarly to
the baseline. That baseline shows a perfect success rate.
One explanation for the remaining difference between the model and baseline might be the

Figure 5.30.: Examples of top grasp handovers for each object.

57

5. Experiments

Figure 5.31.: Examples of successful top grasps for all three objects in the final evaluation
pose. The top row shows grasps generated by the baseline, while the bottom
row depicts model-generated grasps.

Table 5.4.: Success rates of pipeline executions for model and baseline generated top grasps.
Each grasp counted as successful if the robot held the object for at least three
seconds with its hand in the final pose.

chips can bleach bottle paper roll
baseline 10/10 10/10 10/10
model 9/10 9/10 9/10

significantly more angled fingers for model-generated grasps. As visible in Figure 5.31, the
model learned to close the second joints of the fingers more before making contact with an
object. This behavior can result in the fingers missing the object during closing if the hand
is higher above the object than usual. The distance between the object and the hand varied
greatly during training and testing. While it should have remained constant, it indicates
issues in the consistency of height estimation from the point cloud. Such differences might
occur when the human operator inserts the object slightly tilted in the gripper, resulting in a
higher point from one of the tilted object corners. Unlike during the side grasps, no pattern
emerged for these height differences during testing, increasing the likelihood of this hypothesis
about inconsistent readings extracted from the point cloud. While calibration errors might
still contribute to the findings for the side grasp, they are less likely to be the main reason
for the inconsistency issues.
However, this also highlights an achievement of the model. The model adapted to this

58

5.2. Model Training

Figure 5.32.: The development of model-generated actions during an example top grasp for
all three objects. From left to right, show the plots of this development for the
network’s first, second, and third output dimensions.

circumstance by curling the fingers before closing. This motion also shows in the actions
generated by the model, seen in Figure 5.32. They follow the same rules as those for the side
grasp. Correspondingly, the first action shows that the model initially generated values close
to 1 for all three objects, so the closing motion for the fingers is minimal at the start. Only
after several timesteps does the model change this value significantly, resulting in a strong
closing motion for the parallel fingers.
The same pattern emerged for the second action, so the thumb closed together with the

parallel fingers after similar timesteps. On the other hand, the third action started with a high
negative value, corresponding to the curling motion of the fingers without closing them. The
third action also changed when the other actions started their closing motion. This change
initially moved the values to higher positive values, likely as further adaptation during the
closing motion, after which they fell toward zero.
Consequently, the results indicate the ability of this training process to adapt more complex

solutions. Further, it shows that the hand synergies allow for a significantly different grasping
behavior than closing the fingers with a constant motion, even with the applied restrictions.
The difference in success rate for the bleach bottle likely results from the difference in

orientation for the finger contact points. While the side grasp at first looks like a power
grasp, the object does not have contact with the hand palm. Consequently, it is a precision
grasp, similar to the top grasp. Therefore, it cannot counteract the forces applied by the
thumb and parallel fingers with the palm. On the smaller sides of the bleach bottle, the
requirement to have the forces from the thumb and parallel fingers cancel each other out
without applying a rotational movement is significantly more complex than on the larger
sides used by the top grasp.
Overall, the results show the possibility of applying this training method to other grasp types

and the possibility for such a model to learn more complex behaviors. Further discussion of
these results follows in section 6.2.

59

6. Discussion

This chapter discusses the results of this thesis and possible solutions to the issues that
occurred. The first part involves the general structure of the pipeline as well as the corre-
sponding workspace analysis. Afterward, the second part discusses findings from the real-world
RL attempt to learn grasping strategies.

6.1. Pipeline Architecture

As mentioned above, the handover pipeline works successfully but has limitations. First of
all, the grasp poses selection. This process involves getting a point cloud of the object and
determining where to grasp the object. Without object exploration, the point cloud only
provides information from one viewpoint, disregarding object parts outside the predetermined
filter area. While being a limitation, the latter part is a reasonable assumption for simple
objects. However, for objects that, for example, do not fit entirely into the gripper, this can
produce issues even with the simple grasp selection process. Even more limiting is the point
cloud reading from a fixed angle. Since the current grasp pose selection relies on the depth
information of the object, any object with a more complex depth profile will likely result in
the hand being too far away from the object or colliding with it during the handover process.
As the results have shown, this issue has already occurred with the selected object set.
Additionally, the grasp pose selection only uses the point cloud’s minimum and maximum

values, with fixed offsets regardless of the object shape and without any outlier detection. A
human also previously set these offsets, so this significantly limits generalizability. While this
simple approach works for this thesis, due to the limited objects and as a proof of concept
for the general pipeline architecture, this is one of the most significant limitations of this
work in the future. Possible solutions could involve a more sophisticated object exploration
to get more information about the object’s shape. Further, by utilizing a neural network for
grasp estimation, i.e., PointNetGPD [52] or similar architectures, a more generalizable grasp
pose generation might be possible. However, these architectures would need to be adapted
to account for the shape of the Shadow hand during grasp pose generation. Also, the desired
grasp type has to be set by a human at the start of the handover process. However, this
issue might be easier to solve by deciding the grasp type based on the point cloud shape. For
example, switching between this thesis’s side and top grasp could depend on whether the size
of the point cloud above the gripper is large enough to support a side grasp.
Another point is the issue of handover pose selection. While this works very well in the

pipeline, due to the offline computed workspace analysis, it only works when the grasp types
are predetermined. If the pipeline should work with more grasp types, a previous workspace
analysis would need to be computed previously for every new grasp type to enable efficient

61

6. Discussion

handover pose sampling. Otherwise, if the grasp were not analyzed beforehand, only sampling
over the entire possible workspace would be a suitable option. One way to solve this issue
would be to take a closely related grasp as a basis for the optimal sampling region, but this
would require such a grasp to have such an analysis already.
Finally, there is the issue of expandability. The results show that the pipeline can perform

different grasp types on varying objects. While extending the pipeline seems possible, this
discussion is part of the following section. Another part of expandability is the possibility
of applying the pipeline to different robot systems. Such an expansion would be rather
challenging. The system would need very similar capabilities. For example, it would require
the same manipulator setup of having a two-finger gripper and a humanoid hand. Such a
setup is uncommon. Further, similar sensor setups are necessary to perceive the point cloud,
finger efforts, and forces applied to the two-finger gripper arm. While making expansion
theoretically possible, finding alternatives for these requirements would greatly benefit the
use of this thesis’s findings.

6.2. Training

The initial challenge for the model training was the selection of appropriate hyperparameters.
While it shows that training using SAC allowed most hyperparameters to remain at their
default value, it took several training attempts and human ingenuity to choose an appropriate
value for the final hyperparameter, the entropy coefficient. Even with this process, some
remaining deteriorating behavior indicates that it did not find an optimal parameter. Without
a feasible automatic optimization for selecting this hyperparameter, future pipeline, and real-
world system RL adaptations remain challenging. Possible solutions for this issue will be
required, especially when the complexity and training time increase for future tasks.
Next was the evaluation of the trained model. As previously explained, the results show

the possibility of training a working model on a real-world system. Compared to the previous
work by Liang et al. [22], this thesis achieved similar results. They reported a success rate of
50% for the bleach bottle and 100% for the chips can. This result highlights that the issues
with the bleach bottle are not exclusive to the thesis. While this thesis achieved a success
rate of 90% for the bleach bottle with the top grasp, this thesis has fixed grasp types, while
they were flexible in the work by Liang et al. While Haschke et al. [39] did not evaluate
their pipeline on the bleach bottle, they evaluated it on various cylindrical objects, including
the chips can. They report a success rate of 73.3% to 100%, with the latter one being the
success rate for the chips can. While the model in this thesis performed worse for the chips
can, the success rate for the chips can and the paper roll, both cylindrical objects, also lie in
that range. Consequently, the trained model performs competitively with other work in the
field.
However, as the results show, this model’s performance remained below the baseline, al-

though it managed to perform similarly. Multiple explanations already came up in subsec-
tion 5.2.2. Another issue raised was the performance difference for varying handover poses.
While the explanations likely involve variations during grasp pose selection and possible cali-
bration errors, this should have been a case where training on the real-world system can learn

62

6.2. Training

to counteract this. However, the model only partially learned such a compensation.
One reason for this is likely the limitations applied to joint control for the model. For

example, if the model could have also moved the wrist joints, it might have been able to
adapt the grasp pose slightly through wrist motions to counteract the distance difference.
In practice, this would cause other issues, e.g., preventing the hand from colliding with the
object during these wrist adjustments. This issue is one of the reasons why these limitations
exist in this thesis. Another reason for this and other joint limitations is the potential damage
to the hardware during training. The restrictions on the fourth joints of the parallel fingers or
the wrist joints are difficult to lift. To prevent the hand from colliding with the gripper during
the handover or the fingers from colliding with itself without these restrictions, every step
must be performed with collision-aware planning. This planning would significantly increase
the execution time for any grasp attempt, causing issues with the practicality of real-world
RL. Further, this would require reliable and precise calibration of the entire system, which, as
shown, can be an issue. While the compliance of the robot system should prevent significant
immediate damage, for example, fingers colliding with the sensors mounted on top of other
fingers is very likely to cause long-term issues.
Next is the observed twisting motion of the objects after the gripper retracts. As mentioned,

with only a translational slippage check for estimating the success or failure of a grasp, the
model cannot learn methods to prevent this twisting. However, extending the grasp stability
estimation to include rotational movements is challenging. First, there is no similar sensor
whose output can determine rotational twisting by one movement. Instead, a combination
of force readings from different directions would need consideration with a sensor like the
force sensor. Sensor readings from additional sensors, such as pressure sensors in the gripper
fingertips, would likely also need consideration to get an estimation. Alternatively, additional
grasp quality metrics could be considered, such as geometric calculations based on the contact
positions on the object point cloud. However, depending on the complexity of such an
estimation, it would require an individual research project.
This complexity is especially the case when considering that the quality estimation still

needs to work in the same self-supervised capacity as the simplified metric of this thesis to
allow for real-world RL. For the same reason, testing the grasp by releasing the gripper is not
feasible, as it would require constant human labeling during training. Another improvement
that can reduce this object twisting is further encouraging contact of the fingertips with the
object. With the rubber coating on the BioTac sensors, these grasps are likely to reduce
object slippage, especially for objects with smooth surfaces. One way might be to change the
reward to provide the additional contact reward only when the fingertips have made contact
with the object instead of any part of the finger.
Another significant issue in this thesis is the limited scope of objects and corresponding grasp

poses. Only three objects with similar shapes were used and evaluated for only two predefined
grasp types. These are also the only objects used for testing the model and general pipeline.
This limited scope was to first test the idea of RL on a real-world system in a simplified setup
and figure out potential sources of failure. As has been discussed, these emerging challenges
were plentiful, and further exploration of them is necessary before expansion to more complex
settings. That still leaves the question of how likely and feasible such an expansion would be.

63

6. Discussion

First, as discussed about the pipeline structure, expanding to more object and grasp types
would require a more sophisticated grapes selection strategy.
Additionally, generalizing to various objects would require replacing the current one-hot

encoding of the object in the state space. This replacement might be possible by an offline
trained encoder for the point cloud input. However, such an expansion also makes it likely
to increase the size of the state space and, therefore, the training time. With more varying
objects, this might already be the case, so any increase in the complexity of the model needs
to be monitored according to the increase in training time to keep it feasible for a real-world
training application.

64

7. Conclusion

The two focus points of this thesis were the following. First, how to implement a bimanual
handover pipeline on the PR2 platform used in this thesis that utilizes multi-modal feedback
but no previous data about the object’s shape or structure. As shown, this challenge was
solved successfully with the proposed pipeline. It manages to perform bimanual handovers for
multiple objects. No explicit shape information of the object, such as a previously recorded
point cloud from multiple views or an entire mesh of the object or any other objects, is
required. The pipeline generates information about the object through an online perceived
point cloud. Further, the pipeline uses this information with other modalities, specifically
joint efforts and force feedback, to perform a handover. However, there are limitations to
this pipeline and possible improvements. These involve needing a more sophisticated grasp
of pose selection and object exploration strategy.
One additional aspect of this topic was the analysis of the workspace for the handover task.

This thesis provided an analysis of the grasp types used. The analysis provided an optimal
region to sample handover poses during online pipeline execution. Further, it showed that
these regions remain relevant even for minor variations like the ones introduced by varying
object point clouds. However, it also highlighted the requirement to repeat such an analysis
for different grasp types, which makes expanding the pipeline to other grasp types challenging.
The second topic was whether it is feasible to use an RL-based approach to learn how

to perform the grasping part of the handover, which is trained entirely on the real-world
system. Results also show the feasibility of this idea. While the trained models showed
slightly worse performance than the tested baseline, they learned how to solve the grasping
task successfully. Further, they showed the possibility of generating more complex behavior
than the baseline and adapting to solve challenges arising from the real-world application.
However, the results also highlighted existing issues and limitations. Two significant ones are
the issue of hyperparameter selection and the need for further testing on a more extensive
variety of objects and grasp types.
Future work could explore multiple avenues to address the issues explored. One way is to

incorporate further modalities with the pipeline, such as the BioTac sensors at the hand’s
fingertips or pressure sensors on the two-finger gripper. With this additional input, strategies
to generate better grasps or better grasp quality metrics might be possible. Another direction
is to use object exploration strategies for more robust information about the object during
handover. Alternatively, future work could extend the pipeline’s capabilities further, such
as enabling the initial grasp of the object itself or attempting functional grasps with the
hand. Other directions involve pre-training the model, either in simulation or through human
demonstration, and then using the existing pipeline for further refinement.

65

Bibliography

[1] Valerio Ortenzi et al. “Object Handovers: A Review for Robotics”. In: IEEE Transactions
on Robotics 37.6 (2021), pp. 1855–1873. doi: 10.1109/TRO.2021.3075365.

[2] Christian Smith et al. “Dual arm manipulation—A survey”. In: Robotics and Autonomous
Systems 60.10 (2012), pp. 1340–1353. issn: 0921-8890. doi: https://doi.org/10.1016/
j.robot.2012.07.005.

[3] Adrià Colomé and Carme Torras. “Reinforcement learning of bimanual robot skills”. In:
Springer, 2020, p. 15.

[4] Chunmiao Yu and Peng Wang. “Dexterous Manipulation for Multi-Fingered Robotic
Hands With Reinforcement Learning: A Review”. In: Frontiers in Neurorobotics 16
(2022). issn: 1662-5218. doi: 10.3389/fnbot.2022.861825.

[5] Julian Ibarz et al. “How to train your robot with deep reinforcement learning: lessons
we have learned”. In: The International Journal of Robotics Research 40.4-5 (2021),
pp. 698–721. doi: 10.1177/0278364920987859.

[6] Willow Garage. PR2 User Manual. Accessed on February 27th, 2024. 2012. url: https:
//www.clearpathrobotics.com/assets/downloads/pr2/pr2_manual_r321.pdf.

[7] Shadow Robot Company. Shadow Dexterous Hand Technical Specification. Accessed on
March 29th, 2024. 2021. url: https://www.shadowrobot.com/wp-content/uploads/
2022/03/shadow_dexterous_hand_e_technical_specification.pdf.

[8] Kenneth J. Waldron and James Schmiedeler. “Kinematics”. In: Springer Handbook of
Robotics. Ed. by Bruno Siciliano and Oussama Khatib. Cham: Springer International
Publishing, 2016, pp. 11–36. isbn: 978-3-319-32552-1. doi: 10 .1007/978- 3 - 319-
32552-1_2.

[9] Jacques Denavit and Richard S Hartenberg. “A kinematic notation for lower-pair mech-
anisms based on matrices”. In: (1955).

[10] Serdar Kucuk and Zafer Bingul. “Robot Kinematics: Forward and Inverse Kinematics”.
In: Industrial Robotics. Ed. by Sam Cubero. Rijeka: IntechOpen, 2006. Chap. 4. doi:
10.5772/5015.

[11] K.C. Gupta. “On the Nature of Robot Workspace”. In: The International Journal of
Robotics Research 5.2 (1986), pp. 112–121. doi: 10.1177/027836498600500212.

[12] A Kumar and KJ Waldron. “The workspaces of a mechanical manipulator”. In: (1981).

[13] Tsuneo Yoshikawa. “Manipulability of Robotic Mechanisms”. In: The International Jour-
nal of Robotics Research 4.2 (1985), pp. 3–9. doi: 10.1177/027836498500400201.

67

https://doi.org/10.1109/TRO.2021.3075365
https://doi.org/https://doi.org/10.1016/j.robot.2012.07.005
https://doi.org/https://doi.org/10.1016/j.robot.2012.07.005
https://doi.org/10.3389/fnbot.2022.861825
https://doi.org/10.1177/0278364920987859
https://www.clearpathrobotics.com/assets/downloads/pr2/pr2_manual_r321.pdf
https://www.clearpathrobotics.com/assets/downloads/pr2/pr2_manual_r321.pdf
https://www.shadowrobot.com/wp-content/uploads/2022/03/shadow_dexterous_hand_e_technical_specification.pdf
https://www.shadowrobot.com/wp-content/uploads/2022/03/shadow_dexterous_hand_e_technical_specification.pdf
https://doi.org/10.1007/978-3-319-32552-1_2
https://doi.org/10.1007/978-3-319-32552-1_2
https://doi.org/10.5772/5015
https://doi.org/10.1177/027836498600500212
https://doi.org/10.1177/027836498500400201

Bibliography

[14] Nikolaus Vahrenkamp et al. “Manipulability Analysis”. In: 2012 12th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids 2012). 2012, pp. 568–573. doi:
10.1109/HUMANOIDS.2012.6651576.

[15] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. “Capturing robot workspace
structure: representing robot capabilities”. In: 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2007, pp. 3229–3236. doi: 10.1109/IROS.2007.
4399105.

[16] Máximo A Roa and Raúl Suárez. “Grasp quality measures: review and performance”.
In: Autonomous robots 38 (2015), pp. 65–88.

[17] Brayan S. Zapata-Impata, Pablo Gil, and Fernando Torres. “Tactile-Driven Grasp Sta-
bility and Slip Prediction”. In: Robotics 8.4 (2019). issn: 2218-6581.

[18] Rocco A. Romeo and Loredana Zollo. “Methods and Sensors for Slip Detection in
Robotics: A Survey”. In: IEEE Access 8 (2020), pp. 73027–73050. doi: 10 . 1109/
ACCESS.2020.2987849.

[19] Takashi Maeno, Shinichi Hiromitsu, and Takashi Kawai. “Control of Grasping Force by
Estimating Stick/Slip Distribution at the Contact Interface of an Elastic Finger Having
Curved Surface”. In: Journal of the Robotics Society of Japan 19 (Jan. 2001). doi:
10.7210/jrsj.19.91.

[20] Marco Santello, Martha Flanders, and John F Soechting. “Postural hand synergies for
tool use”. In: Journal of neuroscience 18.23 (1998), pp. 10105–10115.

[21] Matei T. Ciocarlie and Peter K. Allen. “Hand Posture Subspaces for Dexterous Robotic
Grasping”. In: The International Journal of Robotics Research 28.7 (2009), pp. 851–
867. doi: 10.1177/0278364909105606.

[22] Hongzhuo Liang et al. “Multifingered Grasping Based on Multimodal Reinforcement
Learning”. In: IEEE Robotics and Automation Letters (RA-L) 7.2 (2022), pp. 1174–
1181. doi: 10.1109/LRA.2021.3138545.

[23] Alexandre Bernardino et al. “Precision grasp synergies for dexterous robotic hands”.
In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2013,
pp. 62–67. doi: 10.1109/ROBIO.2013.6739436.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
2nd ed. MIT Press, 2018.

[25] David Valencia et al. “Comparison of Model-Based and Model-Free Reinforcement
Learning for Real-World Dexterous Robotic Manipulation Tasks”. In: 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). 2023, pp. 871–878. doi:
10.1109/ICRA48891.2023.10160983.

[26] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 1861–1870.

68

https://doi.org/10.1109/HUMANOIDS.2012.6651576
https://doi.org/10.1109/IROS.2007.4399105
https://doi.org/10.1109/IROS.2007.4399105
https://doi.org/10.1109/ACCESS.2020.2987849
https://doi.org/10.1109/ACCESS.2020.2987849
https://doi.org/10.7210/jrsj.19.91
https://doi.org/10.1177/0278364909105606
https://doi.org/10.1109/LRA.2021.3138545
https://doi.org/10.1109/ROBIO.2013.6739436
https://doi.org/10.1109/ICRA48891.2023.10160983

[27] Samarth Brahmbhatt et al. “ContactGrasp: Functional Multi-finger Grasp Synthesis
from Contact”. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2019, pp. 2386–2393. doi: 10.1109/IROS40897.2019.8967960.

[28] Miao Li et al. “Dexterous grasping under shape uncertainty”. In: Robotics and Au-
tonomous Systems 75 (2016), pp. 352–364. issn: 0921-8890. doi: https://doi.org/
10.1016/j.robot.2015.09.008.

[29] Maximo A. Roa et al. “Power grasp planning for anthropomorphic robot hands”. In:
2012 IEEE International Conference on Robotics and Automation. 2012, pp. 563–569.
doi: 10.1109/ICRA.2012.6225068.

[30] Lin Shao et al. “UniGrasp: Learning a Unified Model to Grasp With Multifingered
Robotic Hands”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2286–
2293. doi: 10.1109/LRA.2020.2969946.

[31] Umit Rusen Aktas et al. “Deep Dexterous Grasping of Novel Objects From a Sin-
gle View”. In: International Journal of Humanoid Robotics (2022). doi: 10 . 1142/
s0219843622500116.

[32] Gabriel Dulac-Arnold et al. “Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis”. In: Machine Learning 110.9 (2021), pp. 2419–2468.

[33] A. Rupam Mahmood et al. “Benchmarking Reinforcement Learning Algorithms on Real-
World Robots”. In: Proceedings of The 2nd Conference on Robot Learning. Ed. by Aude
Billard et al. Vol. 87. Proceedings of Machine Learning Research. PMLR, 2018, pp. 561–
591.

[34] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2019. arXiv:
1812.05905 [cs.LG].

[35] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 3389–3396. doi: 10.1109/ICRA.2017.7989385.

[36] Yunfei Li et al. “Efficient Bimanual Handover and Rearrangement via Symmetry-Aware
Actor-Critic Learning”. In: 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA). 2023, pp. 3867–3874. doi: 10.1109/ICRA48891.2023.10160739.

[37] Jean-Philippe Saut et al. “Planning pick-and-place tasks with two-hand regrasping”.
In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010,
pp. 4528–4533. doi: 10.1109/IROS.2010.5649021.

[38] Silvia Cruciani et al. Dual-Arm In-Hand Manipulation and Regrasping Using Dexterous
Manipulation Graphs. 2019. arXiv: 1904.11382 [cs.RO].

[39] Robert Haschke, Guillaume Walck, and Helge Ritter. “Geometry-Based Grasping Pipeline
for Bi-Modal Pick and Place”. In: 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2021, pp. 4002–4008. doi: 10.1109/IROS51168.
2021.9635981.

69

https://doi.org/10.1109/IROS40897.2019.8967960
https://doi.org/https://doi.org/10.1016/j.robot.2015.09.008
https://doi.org/https://doi.org/10.1016/j.robot.2015.09.008
https://doi.org/10.1109/ICRA.2012.6225068
https://doi.org/10.1109/LRA.2020.2969946
https://doi.org/10.1142/s0219843622500116
https://doi.org/10.1142/s0219843622500116
https://arxiv.org/abs/1812.05905
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA48891.2023.10160739
https://doi.org/10.1109/IROS.2010.5649021
https://arxiv.org/abs/1904.11382
https://doi.org/10.1109/IROS51168.2021.9635981
https://doi.org/10.1109/IROS51168.2021.9635981

Bibliography

[40] U. Pattacini G. Vezzani M. Regoli and L. Natale. “A novel pipeline for bi-manual
handover task”. In: Advanced Robotics 31.23-24 (2017), pp. 1267–1280. doi: 10 .
1080/01691864.2017.1380535.

[41] Benjamin Balaguer and Stefano Carpin. “Bimanual regrasping from unimanual machine
learning”. In: 2012 IEEE International Conference on Robotics and Automation. 2012,
pp. 3264–3270. doi: 10.1109/ICRA.2012.6225095.

[42] Dmytro Pavlichenko et al. “Autonomous Bimanual Functional Regrasping of Novel
Object Class Instances”. In: 2019 IEEE-RAS 19th International Conference on Hu-
manoid Robots (Humanoids). 2019, pp. 351–358. doi: 10 .1109/Humanoids43949 .
2019.9035030.

[43] Nikolaus Vahrenkamp et al. “Humanoid Motion Planning for dual-arm manipulation and
re-grasping tasks”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2009, pp. 2464–2470. doi: 10.1109/IROS.2009.5354625.

[44] Morgan Quigley. “ROS: an open-source Robot Operating System”. In: IEEE Interna-
tional Conference on Robotics and Automation. 2009.

[45] David Coleman et al. Reducing the Barrier to Entry of Complex Robotic Software: a
MoveIt! Case Study. 2014. arXiv: 1404.3785 [cs.RO].

[46] Philipp Ruppel et al. “Cost Functions to Specify Full-Body Motion and Multi-Goal Ma-
nipulation Tasks”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). 2018, pp. 3152–3159. doi: 10.1109/ICRA.2018.8460799.

[47] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Library”.
In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012). https://ompl.kavrakilab.
org, pp. 72–82. doi: 10.1109/MRA.2012.2205651.

[48] J.J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to single-query
path planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
Vol. 2. 2000, 995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.

[49] Martin Pecka. Robot Body Filter. Accessed on March 10th, 2024. url: https://github.
com/peci1/robot_body_filter.

[50] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementa-
tions”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8.

[51] Berk Calli et al. “Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley
Object and Model Set”. In: IEEE Robotics & Automation Magazine 22.3 (2015), pp. 36–
52. doi: 10.1109/MRA.2015.2448951.

[52] Hongzhuo Liang et al. “PointNetGPD: Detecting Grasp Configurations from Point Sets”.
In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, May
2019. doi: 10.1109/icra.2019.8794435.

70

https://doi.org/10.1080/01691864.2017.1380535
https://doi.org/10.1080/01691864.2017.1380535
https://doi.org/10.1109/ICRA.2012.6225095
https://doi.org/10.1109/Humanoids43949.2019.9035030
https://doi.org/10.1109/Humanoids43949.2019.9035030
https://doi.org/10.1109/IROS.2009.5354625
https://arxiv.org/abs/1404.3785
https://doi.org/10.1109/ICRA.2018.8460799
https://ompl.kavrakilab.org
https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/ROBOT.2000.844730
https://github.com/peci1/robot_body_filter
https://github.com/peci1/robot_body_filter
https://doi.org/10.1109/MRA.2015.2448951
https://doi.org/10.1109/icra.2019.8794435

A. Workspace Analysis

A.1. Side Grasp

(a) Top (b) Side (c) Front

Figure A.1.: Additional views of all valid solutions for the x-shifted side grasp.

Figure A.2.: Additional views of the sliced version of all valid solutions for the side grasp.

71

A. Workspace Analysis

(a) Top (b) Side (c) Front

Figure A.3.: Additional views of the best 5% regarding the number of valid solutions for the
side grasp.

(a) Top (b) Side (c) Front

Figure A.4.: Additional views of the best 5% regarding the average cost for the side grasp.

(a) Top (b) Side (c) Front

Figure A.5.: Additional views of the best 5% regarding the minimal cost for the side grasp.

72

A.1. Side Grasp

(a) Top
(b) Side (c) Front

Figure A.6.: Additional views of the intersection of the best 5% regarding all metrics for the
side grasp.

73

A. Workspace Analysis

A.2. Side Grasp X-Shift

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure A.7.: Distribution of all valid solutions for the x-shifted side grasp according to the
three defined metrics of number of valid solutions, average cost and minimal
cost.

(a) Top (b) Side (c) Front

Figure A.8.: Additional views of all valid solutions for the x-shifted side grasp.

74

A.2. Side Grasp X-Shift

Figure A.9.: Additional views of the sliced version of all valid solutions for the x-shifted side
grasp.

(a) Top (b) Side (c) Front

Figure A.10.: Additional views of the best 5% regarding the number of valid solutions for the
x-shifted side grasp.

(a) Top (b) Side (c) Front

Figure A.11.: Additional views of the best 5% regarding the average cost for the x-shifted
side grasp.

75

A. Workspace Analysis

(a) Top (b) Side (c) Front

Figure A.12.: Additional views of the best 5% regarding the minimal cost for the x-shifted
side grasp.

(a) Top (b) Side (c) Front

Figure A.13.: Additional views of the intersection of the best 5% regarding all metrics for the
x-shifted side grasp.

76

A.3. Side Grasp Y-Shift

A.3. Side Grasp Y-Shift

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure A.14.: Distribution of all valid solutions for the y-shifted side grasp according to the
three defined metrics of number of valid solutions, average cost and minimal
cost.

(a) Top (b) Side (c) Front

Figure A.15.: Additional views of all valid solutions for the y-shifted side grasp.

77

A. Workspace Analysis

Figure A.16.: Additional views of the sliced version of all valid solutions for the y-shifted side
grasp.

(a) Top (b) Side (c) Front

Figure A.17.: Additional views of the best 5% regarding the number of valid solutions for the
y-shifted side grasp.

(a) Top (b) Side (c) Front

Figure A.18.: Additional views of the best 5% regarding the average cost for the y-shifted
side grasp.

78

A.3. Side Grasp Y-Shift

(a) Top (b) Side (c) Front

Figure A.19.: Additional views of the best 5% regarding the minimal cost for the y-shifted
side grasp.

(a) Top (b) Side (c) Front

Figure A.20.: Additional views of the intersection of the best 5% regarding all metrics for the
y-shifted side grasp.

79

A. Workspace Analysis

A.4. Top Grasp

(a) Number Solutions (b) Average Cost (c) Minimal Cost

Figure A.21.: Distribution of all valid solutions for the top grasp according to the three defined
metrics of number of valid solutions, average cost and minimal cost.

(a) Top (b) Side (c) Front

Figure A.22.: Additional views of all valid solutions for the top grasp.

Figure A.23.: Additional views of the sliced version of all valid solutions for the top grasp.

80

A.4. Top Grasp

(a) Top (b) Side (c) Front

Figure A.24.: Additional views of the best 5% regarding the number of valid solutions for the
top grasp.

(a) Top (b) Side (c) Front

Figure A.25.: Additional views of the best 5% regarding the average cost for the top grasp.

(a) Top (b) Side (c) Front

Figure A.26.: Additional views of the best 5% regarding the minimal cost for the top grasp.

81

A. Workspace Analysis

(a) Top (b) Side (c) Front

Figure A.27.: Additional views of the intersection of the best 5% regarding all metrics for the
top grasp.

82

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel — ins-
besondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe.
Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht habe.

Hamburg, den 30.03.2024 Björn Sygo

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 30.03.2024 Björn Sygo

	List of Figures
	List of Tables
	Introduction
	Real System Reinforcement Learning
	Outline

	Fundamentals
	Robot Kinematics
	Workspace
	Grasp Stability
	Hand Synergies
	Reinforcement Learning
	Soft Actor-Critic

	Related Work
	Grasping
	Real Robot Reinforcement Learning
	Bimanual Handover

	Approach
	Setup
	Pipeline
	Grasp Point
	Handover Pose Sampling
	Grasping
	Grasp Testing

	Training
	Architecture
	Procedure

	Experiments
	Workspace Analysis
	Side Grasp
	Shifted Side Grasp
	Top Grasp

	Model Training
	Hyperparameter Selection
	Side Grasp
	Top Grasp

	Discussion
	Pipeline Architecture
	Training

	Conclusion
	Bibliography
	Workspace Analysis
	Side Grasp
	Side Grasp X-Shift
	Side Grasp Y-Shift
	Top Grasp

