
MA ST E R ’ S   T H E S I S

Sound Source Localization using the Azure
Kinect’s Microphone
Array on a Robot

Department of Informatics
MIN Faculty

Universität Hamburg

Hamburg, July 19, 2023

Roland Fredenhagen

dev@modprog.de
M.Sc. Informatics
Matriculation Number: 7031533

First Reviewer: Prof. Dr.‐Ing. Timo Gerkmann
Second Reviewer: Dr. Norman Hendrich
Supervisor: M.Sc. Julius Richter





Abstract

While visual tracking is well established in robotics and can provide accurate
and precise measurements of visually distinct targets, there are reasons to use
sound based localization and tracking solutions. This might be due to unfavor-
able conditions for visual sensors, or the target not being trivially detectable via
visual cues alone. One such situation could be detecting the location of an active
speaker.

In this thesis, a sound source localization node is implemented for integration
with the Robot Operating System (ROS ) using the established Steered Response
Power with Phase-Transform (SRP-PHAT ) algorithm. This algorithm exploits
the time difference in a single source’s signal reaching spatially separated micro-
phones to estimate its direction of arrival. 

i





Contents

1 Introduction and Motivation ......................................................................... 1
2 Related Work ................................................................................................ 3
3 Approach ...................................................................................................... 5

3.1 Sound Source Localization ...................................................................... 5
3.1.1 GCC-PHAT .................................................................................... 7
3.1.2 SRP-PHAT ..................................................................................... 8

3.2 Tracking .................................................................................................. 9
3.3 Beamforming ......................................................................................... 10

4 Implementation ........................................................................................... 12
4.1 Hardware ............................................................................................... 12
4.2 Ssloc ...................................................................................................... 13

4.2.1 Library .......................................................................................... 14
4.2.2 CLI ............................................................................................... 15

4.3 Ssloc ROS Package ................................................................................ 16
4.3.1 ROS .............................................................................................. 16
4.3.2 Ssloc – Node ................................................................................. 17
4.3.3 Messages ....................................................................................... 19
4.3.4 rosrust_dynamic_reconfigure ....................................................... 20

4.4 Published ............................................................................................... 21
5 Evaluation ................................................................................................... 22

5.1 Experimental Setup ............................................................................... 22
5.2 Data Collection ..................................................................................... 23

5.2.1 Ground Truth Location Data ....................................................... 23
5.2.2 Audio Data ................................................................................... 25

5.3 Results ................................................................................................... 25
5.3.1 General ......................................................................................... 25
5.3.2 Grid Resolution ............................................................................ 28
5.3.3 Microphones .................................................................................. 30
5.3.4 Multiple Sources ........................................................................... 31

6 Conclusion ................................................................................................... 32

iii



Contents

7 Future Work ................................................................................................ 33
Bibliography ................................................................................................... 35

iv



Figures

3.1  Microphone array with wave geometry of sound sources in far field ........ 6
3.2  TDoA change due to distance/angle changes ........................................... 6
3.3  Grid of possible sound source locations for SRP-PHAT .......................... 9
3.4  Delay-and-Sum Beamformer ................................................................... 11
4.1  Azure Kinect on PR2 ............................................................................. 13
4.2  Azure Kinect Schematic with Microphones ............................................ 13
4.3  Configuration in rqt_reconfigure .......................................................... 19
5.1  AprilTag with ID 165 .............................................................................. 23
5.2  Speaker (Phone) with tracked AprilTag ................................................. 23
5.3  Tracking phone with AprilTag through Kinect, visualized in RViz ........ 24
5.4  Setup with secondary webcam ................................................................ 24
5.5  Plot of estimated and ground truth azimuth angle ................................ 25
5.6  Boxplot of azimuth estimation errors in ° at different elevations ........... 26
5.7  Elevation estimation error ...................................................................... 26
5.8  Estimated and ground truth elevation angle .......................................... 26
5.9  Mean elevation error at different elevations ............................................ 27
5.10 Symetric sound sources with respect to the microphone array ............... 27
5.11 Sound source localization in lower hemisphere ....................................... 28
5.12 Azimuth estimation error in lower hemisphere ....................................... 28
5.13 TDoA change due to distance/angle changes ......................................... 29
5.14 Azimuth estimates at 1° and 25° resolution ........................................... 29
5.15 Sub-arrays tested .................................................................................... 30
5.16 Box plot of different microphone configurations ..................................... 31
5.17 Azimuth estimates for two speakers ....................................................... 31

v



Tables

4.1 Topics published by ssloc ........................................................................ 18

vi



Listings

4.1 Help output of ssloc executable .............................................................. 15
4.2 Offline Sound Source Localization using a Wave file ................................ 15
4.3 ssloc configuration for Azure Kinect ....................................................... 16
4.4 Localization and tracking messages .......................................................... 20
4.5 Sound source speparation mapping message ............................................ 20

vii



1 Chapter 1

Introduction and Motivation

Sound source localization is the process of using audible signals to estimate the
position of a sound source. While its estimations are not on par with e.g., visual
tracking, in terms of accuracy, it can still provide valuable additional data.

To estimate the sound source location, the difference in the arrival time of the
sound wave at the different microphones is most commonly used. There exist
both conventional algorithms and machine learning based solutions, though in
this thesis, the SRP-PHAT [1] a conventional algorithm is implemented.

TAMS, the robotics research group at the University of Hamburg, equipped one
of their robots, Willow Garage’s PR2 [2], with an Azure Kinect [3], a multi-modal
sensor module containing, e.g., RGB-cameras, depth sensors, and accelerometer.
Importantly for this thesis, it also contains a 7-microphone array that will be
used for sound localization.

While the other sensors available to the PR2 like Lidar and cameras can produce
reliable and high resolution data, not all sources that can be located auditorily
can also be tracked visually. This might be due to the sound source not producing
visual cues for producing sound, such as a loudspeaker, or due to sound being
able to overcome visual obstructions. Another advantage is enabling the robot
to localize speakers outside the otherwise forward facing sensors of the PR2 and
Kinect.

1



Introduction and Motivation

In this thesis a sound source localization software, named ssloc, was developed
to use the aforementioned SRP-PHAT algorithm to provide sound source local-
ization on the robot. It also includes an additional tracking layer on top of the
SRP-PHAT based localization and a sound separation module.

In the evaluation, ssloc produced usable tracking in combination with the Azure
Kinect’s microphone array. It performed best in single speaker scenarios with
the speaker above the Kinect, but it was not able to reliably track two speakers.
Notably, the setup performed just as well when only using three to four micro-
phones instead of the full 7-microphone array.

After giving a short overview over existing work on sound source localization
Chapter 2, the SRP-PHAT based sound source localization and tracking aproach
will be detailed in Chapter 3, as well as the basic Delay-and-Sum beamformer
for sound source separation. Chapter 4 outlines the implementation of these al-
gorithms in the developed software ssloc and the robot hardware. It also includes
the integration in the robot operating system ROS. Chapter 5 documents the
experiments conducted for evaluating the capability of the ssloc software and
their results, with the conclusion and possible future work in Chapter 6 and 7.

2



2 Chapter 2

Related Work

Signal processing on multi sensor arrays is a well researched subject, with some
established conventional algorithms like the GCC-PHAT dating back to 1976
[4]. In more recent years the field was widened by including machine learning
approaches, though this thesis will use a conventional implementation.

Due to the ability to exploit the time difference of arrival (TDoA) at the different
sensors, multichannel signals enable reliable estimation of sound source locations.

Sound source localization has a long history, with first uses of TDoA based
methods in World War I., e.g., in form of the “Schallmeßverfahren” (sound mea-
surement method) developed by Löwenstein [5] to locate firing artillery.

Modern computer algorithms can perform more accurate localization on the very
small TDoAs of microphone arrays on the centimeter scale. For these the LO-
CATA Challenge provided a comprehensive data corpus to evaluate localization
and tracking algorithms [6], and an extensive comparison of the submitted im-
plementations [7], with submitted methods ranging from machine learning based
approaches to ones based on conventional algorithms like SRP-PHAT [1] and
MUSIC [8].

For machine learning based submissions, there was Pak and Shin’s [9] proposed
deep neural network (DNN)-based approach, outlining a method to encode the
phase difference in a structure they call PDAS to make it fit for a DNN regression
model as well as Ağcaer and Martin’s [10] use of an amplitude modulation spec-

3



Related Work

trum based feature extractor for classifier based estimation of the azimuth angle,
achieving real-time capable performance while beating the MUSIC baseline in
accuracy.

For the microphone setups in the LOCATA corpus matching the Azure Kinect’s
microphone array most closly, the implementations by Salvati et al. [11] and
Lebarbenchon et al. [12] perform best with overall comparable performance.
The former is based on diagonal unloading beamforming [13] with an additional
Kalman Filter [14] based tracking layer, while the latter uses the steered response
power with phase-transform (SRP-PHAT) [1]. The SRP-PHAT based approach
was ultimately chosen, having a reference implementation available [15] and be-
ing real-time capable. It is detailed in Section 3.1.2.

4



3 Chapter 3

Approach

In the following the choice of algorithms will be explained as well as their func-
tion. For localization this is the SRP-PHAT algorithm (Section 3.1.2), a sound
source localization algorithm based on time differences of arrival (TDoA). The
tracking is achieved through a very straight forward remembering of past localiza-
tions and updating their positions iteratively. The Delay-and-Sum beamformer
is used for sound separation.

3.1 Sound Source Localization

The SRP-PHAT algorithm exploits the fact that, depending on the 3D-locations
of the microphones in the array, the exact set of time differences with which a
signal arrives at each microphone is unique for many directions of arrival (DoA).¹

¹Depending on the array geometry, there are ambiguities, e.g., the planar array of the Kinect
cannot differentiate upper and lower hemisphere.

The TDoA estimation required is provided by the GCC-PHAT (Section 3.1.1), a
method of finding the time delays between signals using their cross-correlation,
which will therefore be presented first.

As the approach to sound source localization taken is based solely on the different
times of arrival a single signal has at the different microphones, estimating the
distance of a source is not possible with the time resolution available. This is due

5



Approach

to the microphone array’s diameter being very small compared to the expected
distances between speaker and array, meaning that any expected sound sources
lie in the far field of the array. The impact this has on the ability to estimate
distance can be explained by the diameter of the approximately spherical sound
wave behaving like a plane wave at the microphones’ location and scale (visual-
ized in Figure 3.1).

(a) Overview (b) Close view of the microphone ar-
ray

Figure 3.1: Microphone array with wave geometry of three sound sources, 1𝑚
with 10° difference (yellow and blue) and 2𝑚 away (red)

Azimuth angle in °
-90 0 90

T
D

oA
 in

 𝜇
𝑠

16

18

20

(a) Change due to a 5° increase in az-
imuth angle

Distance in 𝑚
1 1.5

T
D

oA
 in

 𝜇
𝑠

1

1.5

2

(a) Change due to doubling distance

Figure 3.2: Maximum change in TDoA of any of the Kinect’s microphone pairs

6



Approach

Figure 3.2 shows the stark difference between angular and distance changes with
respect to the TDoA using this small array. When the azimuth angle of a speaker
1𝑚 away from the microphones changes by 5°, the resulting maximum change
of TDoA averages around 18𝜇𝑠, more than an order of magnitude above that
of doubling the distance, which is about 1𝜇𝑠 for a sound source at one meter
compared to two meters. This effect only worsens with higher distances, making
any accurate distance estimations only possible in the immediate proximity of
the Kinect. With it mounted on top of the robot, sound sources closer than 30𝑐𝑚
are unrealistic, therefore in the following only the direction of arrival (DoA) is
analyzed.

3.1.1 GCC-PHAT

The “Generalized Correlation Method for Estimation of Time Delay” proposed
by Knapp and Carter [4] is a maximum likelihood estimator for the TDoA of a
signal at two sensors. In this setup these will be microphone pairs of our array
and the audio source. The delay estimate ̂𝜏  is the time that maximizes the gen-
eralized cross-correlation 𝑅 between the filtered signals,

̂𝜏 = arg max
𝜏

𝑅𝑚1𝑚2
(𝜏). (3.1)

The GCC function 𝑅 for two microphone signals 𝑚1 and 𝑚2 for the time delay
𝜏  is

𝑅𝑚1𝑚2
(𝜏) = ∫

+∞

−∞
Ψ𝑚1𝑚2

(𝑓)𝑋𝑚1
(𝑓)𝑋∗

𝑚2
(𝑓)𝑒𝑗2𝜋𝑓𝜏d𝑓, (3.2)

where Ψ is a weighting function in frequency-domain, and 𝑋𝑚 is the Fourier
transform of the microphone 𝑚’s signal.

While there exist different proposed weighting functions, e.g., the Smoothed Co-
herence Transform (SCOT) by Carter et al. [16], the phase transform (PHAT)
will be used, as it performs in general better for speech sound sources [4, 17].

As the information relevant for TDoA estimation is held by the phase rather
than amplitude, the phase transform method will use the filter

7



Approach

Ψ𝑚1𝑚2
(𝑓) =

1
|𝑋𝑚1

(𝑓)𝑋∗
𝑚2

(𝑓)|
, (3.3)

to discard the amplitude and preserve the phase.

3.1.2 SRP-PHAT

The Steered-Response Power with Phase Transform, short SRP-PHAT, was pro-
posed by DiBiase et al. [1] as a method for “Robust localization in reverberant
rooms”. It uses the time differences of arrival (TDoA) to estimate the direction of
arrival (DoA), which in turn is estimated using the Generalized Cross-correlation
with Phase Transform GCC-PHAT shown in Section 3.1.1.

The Steered-Response Power 𝑃  is the sum of the generalized cross-correlations
𝑅 (3.2) at the time delay, corresponding to a sound source at location 𝑠 with
respect to the microphone pair. While only DoA are estimated, the algorithm
is based on absolute 3D-locations to calculate the expected TDoAs, therefore 𝑠
will be a location on a 1𝑚 “unit-sphere” around the array center,

𝑃(𝑠) = ∑
{𝑚1,𝑚2}∈[𝑀]2

𝑅𝑚1𝑚2
(𝜏𝑚1

(𝑠) − 𝜏𝑚2
(𝑠)). (3.4)

[𝑀]2 is the set of all pairs of microphones {{𝑚1, 𝑚2},{𝑚1, 𝑚3}, …,{𝑚𝑛−1, 𝑚𝑛}}.
𝜏𝑚 is the expected travel time from the source 𝑠 to a sensor 𝑚,

𝜏𝑚(𝑠) =
|𝑠 − 𝑚|

𝑐
, (3.5)

with 𝑐 being the wave’s speed, i.e., in this context the speed of sound in air.

A maximum value of the SRP means that the GCC for the TDoAs corresponding
to all microphone pairs and the sound source location are maximal. Under the
assumption that the sound source to locate is more prominent than background
noises or reverberation, this maximum value relates to the sound source to locate
̂𝑠:

̂𝑠 = arg max
𝑠∈𝐺

𝑃(𝑠), (3.6)

where 𝐺 is a spherical grid of possible sound source locations, shown in Fig-
ure 3.3.

8



Approach

Figure 3.3:  Grid of possible sound source locations (blue) used in SRP-PHAT.
The yellow lines represent the distance of each sound source and microphone,

used for the TDoA calculation.

3.2 Tracking

The localization approach outlined until now only considers a single static source,
in the following the system will be extended to support the more realistic setup
of multiple moving sources.

Only a preliminary tracking system was implemented to enable initial use cases.
It only takes into account the source’s location and attempts to keep track of
moving sources by repeatedly updating their location.

To be able to locate more than one sound source, the singular position estimation
in Equation (3.6), finding the position maximizing 𝑃 , is replaced by taking all
values 𝑠 ∈ 𝐺 that satisfy a threshold 𝑃(𝑠) > 𝜃 and are local maxima.

Additionally, a restriction is imposed to ensure a minimum distance between de-
tected sources, to avoid detecting multiple peaks 𝑃  from the same sound source.
This minimum distance 𝛿min is tested against the angle 𝛿(𝑎, 𝑏) between two sound
sources 𝑎 and 𝑏, with az𝑎 and el𝑏 being the azimuth of 𝑎 and elevation of 𝑏
respectively [18],

9



Approach

𝛿(𝑎, 𝑏) = arccos(sin(az𝑎) ⋅ sin(az𝑏) +

cos(az𝑎) ⋅ cos(az𝑏) ⋅ cos(el𝑎 − el𝑏)).
(3.7)

Assuming that values of 𝑃(𝑠) are injective,² i.e., 𝑠 ≠ 𝑠′ ⇒ 𝑃(𝑠) ≠ 𝑃(𝑠′)
∀𝑠, 𝑠′ ∈ 𝐺, the estimated set of sound sources ̂𝑆 is,

²In the implementation we take the source with lower azimuth and elevation in ambiguous
cases.

̂𝑆 = {𝑠 ∈ 𝐺 | 𝑃(𝑠) > 𝜃 ∧

𝑃(𝑠) > 𝑃(𝑠′)∀𝑠′ ∈ 𝐺 ∖ {𝑠} where 𝛿(𝑠, 𝑠′) < 𝛿min}.
(3.8)

The tracking happens over the discrete time windows used for the localization³
and keeps a set of tracked sound sources 𝑇  and updates them iteratively.

³This window is 0.1𝑠 by default.

When a new set of sound sources ̂𝑆 is detected, for every new sound source 𝑠 ∈ ̂𝑆,
the decision is made whether it is added as a new source or an existing source’s
position is updated.

If 𝑇  already contains a sound source at, or near the location of 𝑠, i.e.,
∃𝑡 ∈ 𝑇  𝛿(𝑡, 𝑠) < 𝛿min, 𝑡 is updated with the new location detected for 𝑠. If multi-
ple 𝑡 exist close to 𝑠, only the one with the highest SRP 𝑃  is preserved, otherwise,
if no 𝑡 is close to 𝑠, 𝑠 is inserted into 𝑇  and is assigned a unique ID.4 These

4The ID is a monotonously increasing integer.

IDs are used e.g., to associate source location and the audio signal separated by
beamforming (Section 3.3).

After some time, which should be chosen long enough to allow a track to sur-
vive short pauses by a speaker, e.g., taking a breath, tracked sound sources are
removed from 𝑇 .

3.3 Beamforming

A Delay-and-Sum beamformer (DaS) was implemented to allow separating the
signal of detected sound sources. The DaS is the simplest form of beamformer
solely taking into account the TDoA for each microphone for steering [19, 20].

10



Approach

As a signal reaches each microphone at a slightly different time for any single
source, aligning the signals by this delay can amplify a source through construc-
tive interference, illustrated in Figure 3.4. As the name suggests, the signals are
then just added and normalized by the number of microphones |𝑀|, to not in-
crease overall volume. The output 𝑦𝑠 for a source 𝑠 is,

𝑦𝑠(𝑡) =
1

|𝑀|
∑

𝑚∈𝑀
𝑥𝑚(𝑡 − 𝜏𝑚𝑛

(𝑠) + 𝜏𝑚(𝑠)), (3.9)

where 𝑚𝑛 is the furthest microphone from source 𝑠, i.e., the microphone the
signal reaches last, 𝜏𝑚(𝑠) the signal’s travel time from 𝑠 to 𝑚 (3.5), and 𝑥𝑚 the
microphone 𝑚’s recorded signal.

𝛿(𝑡 − 𝜏)
∑

1
|𝑀|

Figure 3.4: Delay-and-Sum Beamformer with two inputs, containing the red
wanted signal and the blue interference (adapted from [21]).

11



4 Chapter 4

Implementation

After detailing the algorithms chosen for this project, this chapter will concern
the software written as well as its integration in the Robot Operating System
ROS [22] and the robot’s hardware.

The Software was developed in Rust [23] using the ROS client library rosrust
[24]. It accesses the Kinect’s microphones as a USB audio device and outputs
the processing results via ROS messages (Section 4.3.3).

4.1 Hardware

The target robot of this thesis’ developed software is the PR2 from Willow
Garage [2]. It is equipped with an Azure Kinect, containing the microphone ar-
ray, and an Intel NUC running the sound processing software mounted on its
head (Figure 4.1).

While the Kinect is equipped with multiple different sensors and cameras, only
the seven-microphone array is used in this thesis. It is positioned upwards facing
below the grill in a hexagon (Figure 4.2). As it registers as a standard USB audio
device, it can be accessed natively via ALSA [25] on the Linux system running
on the NUC.

12



Implementation

Azure Kinect

NUC

Figure 4.1: Azure Kinect and Intel NUC mounted on PR2′s head

Figure 4.2: Locations of Microphones in Azure Kinect [3]

4.2 Ssloc

The core of the software implementation is a Rust crate,5 both library and exe-
cutable, named ssloc. It implements the aforementioned algorithms and exposes

5Rust packages are called crates.

them both via a CLI,6 useful for debugging and testing, as well as a library

6Command Line Interface

13



Implementation

released as open source software, which is in turn used by the ROS package
ssloc_ros Section 4.3.

4.2.1 Library

The library, released as a Rust crate [26], provides access to the algorithms as
well as utilities for handling and recording audio data.

The sound source localization algorithm was implemented referencing the Matlab
implementation developed by Lebarbenchon et al. [15] and used to participate
at the LOCATA challenge [12], called mbss_locate (Multichannel Blind Source
Separation Localization).

The sound source localization is initialized with a config struct exposing set-
tings such as limits for elevation and azimuth to test and the resolution to
use when spanning the solution space. These settings are also exposed via
dynamic_reconfigure on the ROS node (Section 4.3.2).

With the array geometry the signal independent data required for the SRP-
PHAT algorithm (Section 3.1.2) is prepared. This includes, the grid of possible
sound source localizations, the TDoAs for each microphone pair and sound source
combination, and lookup maps for quick conversions between, e.g., Cartesian
and spherical coordinates of sound source locations. These precalculated matri-
ces and mappings can then be reused when analyzing multiple segments of data
without configuration changes, e.g., in a real-time situation, avoiding repetitions
of expensive calculations.

For analyzing the audio signals, functions are provided to return the raw value of
the steered response power (Section 3.1.2) for each possible sound source location,
as well as a filter finding peeks satisfying the distance requirements configured.

Additionally, an Audio container is provided allowing both reading of Wave files7

or generic PCM 8 data. The included ALSA based audio recorder allows captur-

7Common format for uncompressed audio files (.wav).
8Pulse-Code-Modulation, digital representation of signals.

ing of live audio on Linux systems for use with source localization, as well as the
Delay-and-Sum beamformer (Section 3.3).

14



Implementation

4.2.2 CLI

The executable provided by ssloc can be run as command line application (List-
ing 4.1), exposing the library’s features to the terminal. As it uses the same code
for, e.g., ALSA integration as ssloc and therefore ssloc_ros as well, it is useful
to diagnose issue and provides commands to list available audio devices and test
recording.

Usage: ssloc [OPTIONS] <COMMAND>

Commands:
  devices    Prints available capture devices
  test       Logs the volume for each channel of a audio device
  config
  print-ssl  Prints the angles found through the sound source localization
  sss        Does sound source seperation
  help       Print this message or the help of the given subcommand(s)

Options:
  -c, --config <CONFIG>  Use a custom config
  -h, --help             Print help

Listing 4.1: Help output of ssloc executable.

Furthermore, ssloc can perform sound source localization on live and recorded
data (Listing 4.2) and extract a single source via specified DoA, the configuration
is supplied via a TOML file (Listing 4.3).

❯ ssloc --config config.toml print-ssl --file audio_file.wav
Array zentroid: (8.673617379884035e-19, 0.0, 0.0)
          source   0              source   1
  azimuth  elevation      azimuth  elevation
-0.1315927  0.7700000    3.0884073  0.5600000

Listing 4.2: Offline Sound Source Localization using a Wave file.

15



Implementation

# Azure Kinect's microphone array
mics = [
    [  0.0000,  0.0000,  0.0000 ],
    [  0.0400,  0.0000,  0.0000 ],
    [  0.0200, -0.0346,  0.0000 ],
    [ -0.0200, -0.0346,  0.0000 ],
    [ -0.0400,  0.0000,  0.0000 ],
    [ -0.0200,  0.0346,  0.0000 ],
    [  0.0200,  0.0346,  0.0000 ],
]

# Recording configuration
alsa_name = "front:CARD=Array,DEV=0"
rate = 48000
format = "s32"
localisation_frame = 0.1

# Configuration for sound source localization
[mbss]
elevation_range = [0, 1.5708]
grid_res = 0.07

Listing 4.3: ssloc configuration for Azure Kinect.

4.3 Ssloc ROS Package

The ssloc library is packaged in the ssloc_ros package, which can be deployed
as a ROS node to provide the aforementioned functionality in a ROS system.

4.3.1 ROS

ROS, the Robot Operating System, is an open source framework and set of de-
veloper tools to develop and control robot software. It uses network protocols to
manage complex infrastructure by encapsulating software into nodes, communi-
cating via messages and services.

Nodes. In ROS nodes are any processes performing computations or measuring
and controlling hardware [27]. They communicate via Network protocols with
the ROS Master 9 and other nodes, allowing ROS systems to span multiple ma-
chines as well.

9The ROS Master is a single process in any ROS system, tasked with providing registration
and initiating communication for the other nodes. [28]

Messages. The communication of ROS nodes happens via message topics,
named unidirectional communication buses with multiple anonymous publishers
and subscribers [29], as well as services, exposing request and reply functionality
for bidirectional immediate communication [30]. Both topics and services are
based on messages, shared definitions of the data and structure for communica-
tion [31].

16



Implementation

4.3.2 Ssloc – Node

ssloc_ros can be deployed both on the system connected to the audio device,
using the library’s ALSA bindings for recording, or receiving the recorded audio
via messages. To support the latter use case better, the ssloc node can also run
in a recording mode to produce the audio messages from hardware recording.

On top of the computations from the ssloc library (Section 4.2.1), the tracking
outlined in Section 3.2 is implemented in this package.

Threading. To ensure gap-less recording, the audio recorder runs in a sepa-
rate thread from the computations. It pushes each recorded audio segment onto
a queue and annotates it with the matching time stamp. This is either, when
recording audio from hardware, the timestamp at the time the audio data were
recorded or, when receiving audio messages, the timestamp in the audio message.
This timestamp will be attached to the computation results, ensuring accurate
timestamps independent of computation time.

The node can also run its analyzation step multithreaded. The queue with audio
data is consumed by one or more worker threads, taking audio data whenever
pushed, performing the outlined calculations and producing the messages with
the results.

Should the computations be too slow, i.e., the audio recorder produces more
recordings than the computing threads can consume, unused audio will be, log-
ging a warning, discarded to emit the latest tracking data possible.

Topics. The computations are published both as standard messages that can
be e.g., easily visualized in RViz [32], and where useful, in custom messages de-
tailed in Section 4.3.3. Table 4.1 gives an overview over all published topics, as
well as their visualizations in RViz where applicable.

17



Implementation

audio
Raw audio recording as audio_common messages [33].
Can be used as input for another ssloc instance.

audio_info

audio_stamped

intensity/compressed

SRP-PHAT value as image:

ssl
Sound Source Locations, i.e., any DoA satisfying the
threshold.

ssl/points

Sound Source Locations as PointCloud2 [34]:

sst Tracked Sound Sources.

sst/poses

Tracked Sound Sources as PoseArray [35]:

sss/audio

Sound seperated audio in audio_common messages.sss/audio_info

sss/audio_stamped

sss/mapping
Mapping from audio channels in sss/audio to sound
sources in sst.

Table 4.1: Topics published by ssloc.

18



Implementation

Configuration. The ssloc node exposes all its configuration via
dynamic_reconfigure [36]. Due to upstream dynamic_reconfigure missing sup-
port for Rust, I developed an implementation for rosrust10 (Section 4.3.4).

10ROS client library for rust.

The advantage of dynamic_reconfigure is that it allows manipulating settings in
runtime, even enables via a graphical user interface, and through configuration
files. The configuration options made available are shown in Figure 4.3. On top
of the configurability in the ssloc library, this also exposes the configuration for
audio recording and tracking.

(a) Recording configuration.

(b) Microphone positions.

(c) SRP-PHAT and tracking configuration.

Figure 4.3: Configuration in rqt_reconfigure.

4.3.3 Messages

The custom messages for ssloc_ros were published seperately as ssloc_ros_msgs
[37], to allow integration without the propagated dependency of ssloc_ros and
ssloc, e.g., the Rust build chain.

The localization and tracking data, published via Ssl and Sst messages respec-
tively, share most of their fields, with the exception being the added id for
tracking messages. The messages (Listing 4.4) also contain the DoA in spherical
coordinates, i.e., azimuth and elevation, as well as the Cartesian coordinates of
the point at a 1-meter radius, (x, y, z). P is the value for SRP-PHAT.

19



Implementation

Header header
ssloc_ros_msgs/Ssl[] sources

(a) SslArray.msg
int64 id
float64 x
float64 y
float64 z
float64 azimuth
float64 elevation

(b) Ssl.msg

Header header
ssloc_ros_msgs/Sst[] sources

(c) SstArray.msg
int64 id
float64 x
float64 y
float64 z
float64 azimuth
float64 elevation
float64 P

(c) Sst.msg
Listing 4.4: Localization and tracking messages.

While the separated audio is published as multichannel audio_common messages,
the mapping of channel to track ID is published as SssMapping.msg (Listing 4.5),
where the sources contains for each index the corresponding ID.

Header header
int64[] sources

Listing 4.5: Sound source speparation mapping message.

4.3.4 rosrust_dynamic_reconfigure

To be able to use dynamic_reconfigure even though no library for Rust ex-
isted, rosrust_dynamic_reconfigure [38] was developed. While the messages
used by dynamic_reconfigure are public, they and their usage was largely un-
documented, as the only expected usage is through their provided libraries
for C++ and Python, so prior to developing the library, the API, i.e., how
dynamic_reconfigure compatible clients comunicate over the ROS topics and
services, was reverse engineered and documented [39].

The library only supports a mid-level interface, meaning while a user needs to
manually implement a Config trait¹¹ defining how to extract and validate con-

¹¹Traits in Rust are comparable to interfaces in other languages.

figuration changes, the handling of the interaction via the dynamic_reconfigure
service and topics is handled by rosrust_dynamic_reconfigure.

20



Implementation

4.4 Published

The source code for all libraries and packages is published on GitHub
[37, 39, 40, 41], with permissive Open Source licenses (MIT [42] and Apache [43])
and the Rust crates also to the crates.io Registry.

21

https://crates.io


5 Chapter 5

Evaluation

Even though the software developed in this thesis is targeted at running on the
robot in real time, the experiments were conducted offline. This allows rerunning
of localization and tracking algorithms with identical data, comparing perfor-
mance of different configurations.

This is possible due to the ssloc ROS node being able to use ROS messages not
only for outputting localization results but optionally for audio input as well
(see Section 4.3.2), allowing it to run on prerecorded audio. Additionally the
ground truth data will be collected using messages as well, produced using visual
tracking with AprilTags (see Section 5.2).

5.1 Experimental Setup

The experiments were executed in TAMS’ robotic lab, a reverberant room, with
some background noises from computers and robots, such as fans.

The Kinect was placed on a tripod connected to a laptop running the ssloc node
recording the audio messages. For collecting ground truth tracking data a sec-
ondary webcam was used (Section 5.2.1).

The audio input was human voice, male and female, played through a phone
speaker.

22



Evaluation

5.2 Data Collection

All data are collected through ROS messages and rosbag. The ground truth data
are produced with AprilTags (Section 5.2.1) and the audio data are recorded
through an ssloc node running in a recording only mode (Section 5.2.2).

5.2.1 Ground Truth Location Data

To evaluate the performance of the implementation, ground truth data are re-
quired. For a stationary scenario, it would be sufficient to measure the setup by
hand and calculate the expected output. To better represent real world usage, we
need data with moving sound sources as well, making a manual process tedious
to impossible.

To solve this, an established visual tracking approach in robotics is used, April-
Tags [44, 45]. The software, also available as ROS package [46, 47] uses QR-code
like looking tags (Figure 5.1) to accurately estimate distance, position, and ori-
entation relative to a camera in 3D-space.

Figure 5.1: AprilTag with ID 165 [48] Figure 5.2: Speaker (Phone) with
tracked AprilTag

By putting said AprilTags on smartphones (Figure 5.2), we get small, portable,
capable, and trackable speakers for ssloc to locate. When testing a static Kinect
configuration, i.e., placing the Kinect on a tripod, using the Kinect camera can
be used to get location tracking to the front of the Kinect (Figure 5.3). The issue
with this approach is that this severely restricts possible angles to test, especially
ones with high elevation and to the back of the device.

23



Evaluation

Figure 5.3:  Tracking phone with AprilTag through Kinect, visualized in RViz.

Camera perspective with overlay on the left-hand side. On the right-hand side
the red arrow represents the located audio source, while the small coordinate

frame ( ) is the visually tracked AprilTag.

To be able to test with arbitrary angles, a secondary camera angle is required
(Figure 5.4). Using a webcam, we can then produce tracking data and collect it
through ROS messages using rosbag [49].

Figure 5.4: Setup with secondary webcam, Kinect’s location is also measured
through AprilTag.

24



Evaluation

5.2.2 Audio Data

ROS messages are used for audio collection as well, using stamped audio mes-
sages that can be produced by the audio_capture node from audio_common [33].
These messages can then be consumed by ssloc and produce localization messages
in the analyzation step (Section 5.3). Due to the audio_capture node having
compatibility issues with our 7 channel recording setup, the ssloc node was used
instead in a recording only mode.

5.3 Results

The collected bags were replayed and put through the localization algorithm us-
ing ssloc’s ability to consume audio messages as input. The output was again
collected using rosbag and then extracted and analyzed in Python.

5.3.1 General

As the SRP-PHAT algorithm is not frequency dependent, apart from the fre-
quencies included in the computations, which is up to 24kHz using the Kinect’s
microphones, a strong difference in performance based on the type of source au-
dio was therefore not expected. This could be reproduced comparing the tracking
behavior for a male and female speaker, replayed at the same volume. Figure 5.5
shows the measured and the estimated azimuth angle, both averaging around
11.9° and 14.0° respectively. Even when switching to non-human signals, the
performance is comparable, we tested this with an electric drill, also ending up
with a 12.0° error on average.

-120

-60

0

60

120

(a) Male speaker

-120

-60

0

60

120

(a) Female speaker
Figure 5.5: Estimated (yellow) and ground truth (blue) azimuth angle in °.

25



Evaluation

On the other hand, a difference is very noticeable comparing the error at different
elevations (Figure 5.6), increasing significantly with higher elevations. This is
probably explained by the choice of coordinate system having a very high density
at these points, i.e., the actual distance between two points with high elevation
is very low, independent of a high azimuth difference.

≤ 75° > 75°

0
10
20
30
40
50
60
70

Figure 5.6: Boxplot of azimuth estimation errors in ° at different elevations.

The average error of the elevation estimation is around 9.2° (Figure 5.7), similarly
to the azimuth estimation error, it is also dependent of the actual DoA, though
its elevation dependent error might allow mitigation through post-processing. In
Figure 5.9 the mean elevation error is plotted, it is clear that on average elevation
estimates are too low, especially for higher elevations, this could be compensated
with an elevation dependent offset.

0
5

10
15
20
25

Figure 5.7: Elevation estimation
error in °.

20

40

60

80

Figure 5.8: Estimated (yellow) and ground
truth (blue) elevation angle in °.

26



Evaluation

10 20 30 40 50 60 70 80

-7
-6
-5
-4
-3
-2
-1
0

Figure 5.9: Mean elevation error at different elevations in °.
Negative values mean the estimated elevation is too low.

The most dramatic difference in performance though is between the two hemi-
spheres above and below the array. It is apparent that a two-dimensional
microphone array cannot differentiate signals coming from above and below, as
the TDoAs are identical when mirrored at the array’s plane (Figure 5.10).

Without microphones’ directivity and the Kinect’s housing, one would expect
the identical performance, just with mirrored elevation. But, Figure 5.11 shows
while azimuth estimation is worse than the upper hemisphere but still usable,
with an average error of 17° (Figure 5.12), elevation plateaus at 0 for many of
the sound source positions below the microphone array.

(b)

(a)

Figure 5.10: Two symetric sound sources (a) and (b) and their distances to the
microphones.

27



Evaluation

-120

-60

0

60

120

(a) Azimuth

-60

-30

0

30

60

(a) Elevation
Figure 5.11: Sound source localization below the microphone array, ground truth

in blue and estimation in yellow.

0

10

20

30

40

Figure 5.12: Boxplot of azimuth estimation error for a sound source below the
microphone array.

5.3.2 Grid Resolution

The parameters with the largest influence on system load are the grid resolu-
tion and the limits for azimuth and elevation, i.e., what part of the sphere is
considered for possible sound source locations. While the latter has very obvious
implications, just restricting the possible output directions, the former might
allow reducing system load with none to low actual loss in resolution, as the
average errors in Section 5.3.1 of around 10° already exceed the resolution tested
at of 4°.

28



Evaluation

Figure 5.13 plots the estimation error exhibited at different grid resolutions,
suggesting that the angle between DoAs contained in the grid can be increased
significantly without loosing much accuracy.

Grid resolution in °
5 10 15 20 25 30 35 40 45 50

Es
tim

at
io

n 
er

ro
r 

in
 °

5

10

15

20

Figure 5.13: Mean azimuth (yellow) and elevation error (blue) at different dis-
tances between tested DoA

In Figure 5.14 the azimuth estimates for 1° and 25° resolution are plotted, vi-
sualizing that, while the mean error stays low, there is a clearly visible loss in
fidelity with such a drastic drop in resolution.

-120

-60

0

60

120

(a) 1° resolution

-120

-60

0

60

120

(a) 25° resolution
Figure 5.14: Azimuth estimates (yellow) plotted against ground truth (blue)

for 1° and 25° resolution.

29



Evaluation

5.3.3 Microphones

While the Azure Kinect is equipped with 7 microphones, using all of them not
necessarily offers the best trade-off between computational expense and tracking
performance. To investigate this, the localization performance was evaluated for
different representative sub-arrays (Figure 5.15).

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5.15: Sub-arrays tested

Note, that these exclude any linear sub-arrays, e.g., all microphone pairs, as
those loose much of the possible DoA, only being able to locate in a half-circle
unambiguously, due to signals from different elevations being identical.

Figure 5.16 shows a difference in performance for azimuth and especially for el-
evation errors with smaller arrays, but the difference is small enough to warrant
considering using only a sub-set of microphones, as due to SRP-PHAT’s iteration
of microphone pairs the runtime cost growths quadratically. For the experiments
ran, the 4-microphone sub-array (d) performt best, on par or better than the full
7-microphone array, while the big triangular array (b) came close as well.

30



Evaluation

Azimuth Error

0
5

10
15
20
25
30
35
40

Elevation Error

(a) (b) (c) (d) (e) (f) (g) (h)
0
5

10
15
20
25
30

Figure 5.16: Azimuth and elevation error in ° for the different microphone con-
figurations in Figure 5.15. The red line is the 7-microphone baseline.

5.3.4 Multiple Sources

Figure 5.17 shows the tracking performance with two simultaneous speakers.
While the first sound source is tracked similarly well as in the single source tracks,
the output of the second sound source did not produce any usable tracks.

Another detail illustrated in Figure 5.17 (a) is how often even in the more suc-
cessful tracking, the track is discontinued, and a new track is started.

-120

-60

0

60

120

(a) Source 1, switches between yellow
and red for every new track ID.

-120

-60

0

60

120

(b) Source 2, only single color due to
switching track too often.

Figure 5.17: Azimuth estimates (yellow and red) for two sources plotted against
ground truth (blue) in °.

31



6 Chapter 6

Conclusion

The implemented software provides, especially in the upper hemisphere with re-
spect to the microphone array, adequate estimations for the direction of arrival.
If the information of interest is the azimuth angle, measurements in the lower
hemisphere are usable as well.

Depending on the use case the angular error of about 9° to 14° can be too large
and in these situations it could be desirable to supplement the rough sound based
localization with more precise visual tracking.

While in static setups during the experiments locations for multiple speakers
seemed to be produced reliable, verifying this with moving sources was not pos-
sible, on the contrary ssloc produced mostly unusable tracks for the second sound
source.

The tracking is also lost too frequently assigning a new ID to the same sound
source if it moved too quickly or some other interference made ssloc’s simple
tracking approach incorrectly assume a sound source had disappeared.

The experiments also showed that the number of microphones availible on its
own has little influence on the tracking performance, more important being the
overall array radius. It was also apparent that due to the large angular errors
present either way, reducing the resolution at which the solution space for direc-
tions of arrival is sampled has little impact on overall performance until over 25°.

32



7 Chapter 7

Future Work

There is still large room for further improvements to the software and setup. One
of them is that, while a planar array on it’s one cannot differentiate upper and
lower hemisphere, it is mounted on top of a robot head, that can be moved and
rotated. Incorporating this information in the tracking could allow the robot to
not only differentiate upper and lower hemisphere but depending on the distance
of the robot movement even triangulate a sources distance.

Furthermore, the tracking implemented was an ad hoc solution, only consider-
ing a source’s current and last frame’s DoA. To improve tracking performance
the sources’ spectrum and, if moving, their velocity and acceleration could be
included. As the microphone array is not stationary, movement, especially rota-
tions of the robot head can result in fast motions of actually stationary sources,
with the robot’s movement known through ROS, it would be desirable to com-
pensate them.

The submissions to the LOCATA challenge [7], that implemented tracking used
more advanced solutions such as the Kalman filter [14], something future devel-
opment into the tracking module should consider.

The tracking could also be supplemented by a multi-modal approach, e.g., using
the sound localization to rotate the robot head to position the source in the field
of view of the forward facing sensors and continue the tracking with those.

33



Future Work

Currently, the raw audio messages’ length is equal to the frame length used by
the sound localization module, in the future this should be decoupled to have
consistent e.g. 100Hz audio messages for better integration with other tools com-
patible with audio_common [33].

Ssloc only supports a single sound card as input, this means, that it could not
use the additional information collected from e.g., a second microphone array.
Extending support here would possibly require additional calibration options as
different sound cards could behave differently e.g., with respect to delay or fre-
quency response, but it could support more reliable tracking in the Kinect’s blind
spot, the lower hemisphere, or even allow distance estimates when far enough
apart.

The bad performance for the lower hemisphere should also be investigated fur-
ther, e.g., if the Kinect’s Housing is responsible, and if it could be improved by
removing or modifying it.

The basic Delay-and-Sum beamformer could be replaced with a more capable
beamformer such as MVDR [50] or LCMV [51]. When moving the computation
off of the NUC a machine learning based approach to beamforming could be
implemented as well, allowing much stronger separation e.g., using DNN based
spatially selective filters by Tesch and Gerkman [52].

34



Bibliography

[1] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localization
in reverberant rooms,” Microphone Arrays: Signal Process. Techn. Appl.,
pp. 157–180, 2001.

[2] AprilRobotics, “Pr2 – overview, archived.” https://web.archive.org/web/
20200805082228/http://www.willowgarage.com/pages/pr2/overview (ac-
cessed: Aug. 5, 2020).

[3] Microsoft, “Azure kinect DK hardware specifications.” https://
learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification (ac-
cessed: Jun. 10, 2023).

[4] C. Knapp, and G. Carter, “The generalized correlation method for estima-
tion of time delay,” IEEE Trans. Acoustics, Speech, Signal Process., vol. 24,
no. 4, pp. 320–327, 1976.

[5] F. Menges, “Löwenstein, leo,” Neue Deutsche Biographie, vol. 15, pp. 106–
107, 1987.

[6] H. W. Löllmann, C. Evers, et al., “The locata challenge data corpus for
acoustic source localization and tracking,” in 2018 IEEE 10th Sensor Array
Multichannel Signal Process. Workshop (Sam), 2018, pp. 410–414.

[7] C. Evers, H. W. Löllmann, et al., “The locata challenge: acoustic source lo-
calization and tracking,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 28, pp. 1620–1643, 2020.

[8] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, 1986.

[9] J. Pak, and J. W. Shin, “Locata challenge: a deep neural networks-based
regression approach for direction-of-arrival estimation,” in Proc. LOCATA
Challenge Workshop-a Satell. Event Iwaenc, 2018.

35

https://web.archive.org/web/20200805082228/http://www.willowgarage.com/pages/pr2/overview
https://web.archive.org/web/20200805082228/http://www.willowgarage.com/pages/pr2/overview
https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification


Bibliography

[10] S. Ağcaer, and R. Martin, “Binaural source localization based on mod-
ulation-domain features and decision pooling,” Arxiv Preprint Arxiv:
1812.02399, 2018.

[11] D. Salvati, C. Drioli, and G. L. Foresti, “Localization and tracking of an
acoustic source using a diagonal unloading beamforming and a kalman fil-
ter,” Arxiv Preprint Arxiv:1812.01521, 2018.

[12] R. Lebarbenchon, E. Camberlein, et al., “Evaluation of an open-source im-
plementation of the srp-phat algorithm within the 2018 locata challenge,”
Arxiv Preprint Arxiv:1812.05901, 2018.

[13] D. Salvati, C. Drioli, and G. L. Foresti, “A low-complexity robust beam-
forming using diagonal unloading for acoustic source localization,” IEEE/
ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 3, pp. 609–622,
2018.

[14] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
1960.

[15] Romain Lebarbenchon, Ewen Camberlein, and Nancy Bertin, “Mbss_lo-
cate.” https://gitlab.inria.fr/bass-db/mbss_locate (accessed: Jul. 11, 2023).

[16] G. C. Carter, A. H. Nuttall, and P. G. Cable, “The smoothed coherence
transform,” Proceedings of the IEEE, vol. 61, no. 10, pp. 1497–1498, 1973.

[17] J. Benesty, J. Chen, and Y. Huang, “9,” in Microphone Array Signal
Process., vol. 1, Springer Science & Business Media, 2008.

[18] Institut national de l’information géographique et forestière , Comment
Obtenir La Distance Entre Deux Points Connus En Longitude Et Lati-
tude Sur La Sphère?. Accessed: Jul. 10, 2023. [Online]. Available: https://
geodesie.ign.fr/contenu/fichiers/Distance_longitude_latitude.pdf

[19] B. D. Van Veen, and K. M. Buckley, “Beamforming: a versatile approach
to spatial filtering,” IEEE Assp Mag., vol. 5, no. 2, pp. 4–24, 1988.

[20] J. Grythe, and A. Norsonic, “Beamforming algorithms-beamformers,” Tech.
Note, Norsonic aS, Norway, 2015.

36

https://gitlab.inria.fr/bass-db/mbss_locate
https://geodesie.ign.fr/contenu/fichiers/Distance_longitude_latitude.pdf
https://geodesie.ign.fr/contenu/fichiers/Distance_longitude_latitude.pdf


Bibliography

[21] gfai  tech, “Delay-and-sum-beamforming.” https://www.gfaitech.com/de/
wissen/faq/delay-und-sum-beamforming-im-zeitbereich (accessed: Jun. 10,
2023).

[22] “Ros.” https://www.ros.org/

[23] Rust Team, “Rust programming language.” https://www.rust-lang.org/

[24] Adnan Ademovic, “Rosrust documentation.” https://docs.rs/rosrust/

[25] “Alsaproject.” https://www.alsa-project.org/

[26] Roland Fredenhagen, “SSLOC documentation.” https://docs.rs/ssloc/

[27] “Nodes – ROS wiki.” https://wiki.ros.org/Nodes (accessed: Jul. 12, 2023).

[28] “Master – ROS wiki.” https://wiki.ros.org/Master (accessed: Jul. 12, 2023).

[29] “Topics – ROS wiki.” https://wiki.ros.org/Topics (accessed: Jul. 12, 2023).

[30] “Services – ROS wiki.” https://wiki.ros.org/Services (accessed: Jul. 12,
2023).

[31] “Messages – ROS wiki.” https://wiki.ros.org/Messages (accessed: Jul. 12,
2023).

[32] Dave Hershberger, David Gossow, Josh Faust, and William Woodall, “Rviz
– ROS wiki.” https://wiki.ros.org/rviz (accessed: Jul. 13, 2023).

[33] Blaise Gassend, “Audio_common – ROS wiki.” https://wiki.ros.org/
audio_common

[34] Open Perception, “Pcl – ROS wiki.” https://wiki.ros.org/pcl (accessed: Jul.
13, 2023).

[35] Tully Foote, “Geometry_msgs – ROS wiki.” https://wiki.ros.org/
geometry_msgs (accessed: Jul. 13, 2023).

[36] Blaise Gassend, and Michael Carroll, “Dynamic_reconfigure – ROS wiki.”
https://wiki.ros.org/dynamic_reconfigure

[37] Roland Fredenhagen, “Ssloc_ros_msgs documentation.” https://
github.com/ModProg/ssloc_ros_msgs

[38] Roland Fredenhagen, “Rosrust_dynamic_reconfigure documentation.”
https://docs.rs/rosrust_dynamic_reconfigure/

37

https://www.gfaitech.com/de/wissen/faq/delay-und-sum-beamforming-im-zeitbereich
https://www.gfaitech.com/de/wissen/faq/delay-und-sum-beamforming-im-zeitbereich
https://www.ros.org/
https://www.rust-lang.org/
https://docs.rs/rosrust/
https://www.alsa-project.org/
https://docs.rs/ssloc/
https://wiki.ros.org/Nodes
https://wiki.ros.org/Master
https://wiki.ros.org/Topics
https://wiki.ros.org/Services
https://wiki.ros.org/Messages
https://wiki.ros.org/rviz
https://wiki.ros.org/audio_common
https://wiki.ros.org/audio_common
https://wiki.ros.org/pcl
https://wiki.ros.org/geometry_msgs
https://wiki.ros.org/geometry_msgs
https://wiki.ros.org/dynamic_reconfigure
https://github.com/ModProg/ssloc_ros_msgs
https://github.com/ModProg/ssloc_ros_msgs
https://docs.rs/rosrust_dynamic_reconfigure/


Bibliography

[39] Roland Fredenhagen, “Rosrust_dynamic_reconfigure source.” https://
github.com/ModProg/rosrust_dynamic_reconfigure/

[40] Roland Fredenhagen, “SSLOC source.” https://github.com/ModProg/
ssloc/

[41] Roland Fredenhagen, “Ssloc_ros documentation.” https://github.com/
ModProg/ssloc_ros

[42] “The MIT license.” https://opensource.org/license/mit/

[43] The Apache Software Fondation, “Apache license, version 2.0.” https://
www.apache.org/licenses/LICENSE-2.0

[44] D. Malyuta, “Guidance, Navigation, Control and Mission Logic for Quadro-
tor Full-cycle Autonomy,” Thesis, Jet Propulsion Lab., 4800 Oak Grove
Drive, Pasadena, CA 91109, USA, 2017.

[45] APRIL Robotics Laboratory, “Apriltags visual fiducial system.” https://
april.eecs.umich.edu/software/apriltag

[46] J. Wang, and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,”
in 2016 IEEE/RSJ Int. Conf. Intell. Robots Syst. (Iros), Oct. 2016, pp.
4193–4198, doi: 10.1109/IROS.2016.7759617.

[47] AprilRobotics, “Apriltag ROS package.” https://github.com/
AprilRobotics/apriltag_ros

[48] AprilRobotics, “Apriltag images.” https://github.com/AprilRobotics/
apriltag-imgs

[49] Tim Field, Jeremy Leibs, James Bowman, and Dirk Thomas. https://
wiki.ros.org/rosbag

[50] B. Rafaely, Fundamentals of Spherical Array Processing, vol. 8, Springer,
2015.

[51] J. Bourgeois, and W. Minker, Eds., “Linearly constrained minimum vari-
ance beamforming,” Boston, MA: Springer US, pp. 27–38.

[52] K. Tesch, and T. Gerkmann, “Multi-channel speech separation using spa-
tially selective deep non-linear filters,” Arxiv Preprint, 2023.

38

https://github.com/ModProg/rosrust_dynamic_reconfigure/
https://github.com/ModProg/rosrust_dynamic_reconfigure/
https://github.com/ModProg/ssloc/
https://github.com/ModProg/ssloc/
https://github.com/ModProg/ssloc_ros
https://github.com/ModProg/ssloc_ros
https://opensource.org/license/mit/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://april.eecs.umich.edu/software/apriltag
https://april.eecs.umich.edu/software/apriltag
https://github.com/AprilRobotics/apriltag_ros
https://github.com/AprilRobotics/apriltag_ros
https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-imgs
https://wiki.ros.org/rosbag
https://wiki.ros.org/rosbag




Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel — insbesondere keine
im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden,
sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die ein-
gereichte schriftliche Fassung der elektronischen Abgabe entspricht.

Hamburg, 19.07.2023
Ort, Datum Unterschrift

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek
eingestellt wird.

Hamburg, 19.07.2023
Ort, Datum Unterschrift

Roland Fredenhagen

Roland Fredenhagen


