UH
_iﬁ
L2 ¥ Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

BACHELOR THESIS

Learning to Kick from Demonstration
with Deep Reinforcement Learning

Department of Informatics
MIN Faculty
Universitat Hamburg

Timon Engelke

timon.engelke@studium.uni-hamburg.de
B. Sc. Informatik

Thesis Advisors: Dr. Matthias Kerzel
Marc Bestmann

Abstract

In this thesis, reinforcement learning from demonstration is applied to train a humanoid
robot to kick in simulation. As demonstration, an existing kick engine from the RoboCup
Humanoid League is used. The proximity to the demonstration is included into the re-
ward function. Thereby, a kick is produced that follows the trajectory of the demonstra-
tion while simultaneously improving the kicked distance. To gain a deeper understanding
of the neural network, an ablation study on different observation spaces is conducted,
i.e. different sensor data is given to the network. The resulting kicks are evaluated
with regards to the kicked distance, stability, and sample efficiency. The results show
that an observation containing minimal data can already improve an existing solution,
adding information about the robot’s orientation improves the stability of the motion,
and particularly noisy sensor input worsens the result.

Zusammenfassung

In dieser Arbeit wird verstirkendes Lernen mit einer Demonstration genutzt, um einem
humanoiden Roboter das Schiefen eines Balls in der Simulation beizubringen. Als
Demonstration wird eine bestehende Losung aus der humanoiden Liga im RoboCup
genutzt. Die Ndhe zu dieser Bewegung wird beim Lernprozess in die Belohnungsfunk-
tion integriert. Es resultiert ein Schuss, der der Trajektorie der Demonstration folgt
und gleichzeitig die zuriickgelegte Entfernung des Balles im Vergleich zur Demonstration
erhoht. Um ein besseres Verstindnis des neuronalen Netzes zu erhalten, werden ver-
schiedene Beobachtungsrdume, also verschiedene Sensordaten als Eingabe, untersucht.
Die resultierenden Schiisse werden in Hinblick auf die Schussdistanz, die Stabilitét und
die Lerngeschwindigkeit evaluiert. Die Ergebnisse zeigen, dass eine Beobachtung mit
wenig Informationen bereits ausreichen kann, um eine bestehende Lésung zu verbessern,
Informationen iiber die Orientierung des Roboters die Stabilitdt der Bewegung erhéhen
und verrauschte Sensordaten das Frgebnis verschlechtern.

Contents

1. Introduction 1
2. Fundamentals 3
2.1. RoboCup e 3
2.2. Robot Platform 5)
2.3. Inverse Kinematics L 6
24, ROS . . e 7
2.5. Reinforcement Learning 8
2.6. Proximal Policy Optimization 10
2.7. Learning from Demonstration 11
2.8. Multiobjective Tree-structured Parzen Estimator 12

3. Related Work 15
3.1. Reinforcement Learning for Motions 15
3.2. Learning from Demonstration 16
3.2.1. DeepMimic L 16

3.2.2. Learning Agile Robotic Locomotion Skills by Imitating Animals . . 17

3.3. Other Kick Approaches 18

4. Approach 21
4.1. Demonstration Lo o e 21
4.2. Simulation Environment 00000 23
4.3. Training o . 24
4.3.1. Training Process oL 24

4.3.2. Network Architecture 25

4.3.3. Observation 26

4.3.4. Action 27

4.3.5. Rewards L 28

4.4. TImplementation L 30

5. Experiments 33
5.1. Observation and Action Spaces 33
5110 Setup ..o 33

5.1.2. FEvaluation. L 34

5.2. Stability 37
521, Setup 37

v

5.2.2. Evaluation .

. Discussion

6.1. Experiments. . . .
6.2. Critical Discussion

. Conclusion

. Kick Engine Parameters

. Evaluation Graphs

Contents

39
39
41

43

46

47

List of Figures

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.

o.1.
5.2.

6.1.

A game in the Humanoid Kid Size League 4
A game in the Standard Platform League 4
The Wolfgang Open Platform 6
Inverse Kinematicso oo 7
Nlustration of Reinforcement Learning 8
Clipped objective function in PPO 10
Learning from Demonstration 12
Backflip motion learned in DeepMimic 16
A forward kick generated by the kick engine L. 22
Demonstration with side kicko 000000 22
Training in PyBulleto oo 23
Policy Network Architecture 26
Class diagram of implementation 31
Sequence of the robot during the kick 35
Resistance against pushes oo 38
Comparison of sensor values for different kicks 40

vi

List of Tables

4.1. Full list of hyperparameters used during the training
4.2. The different partial observations of which each state consists

5.1. Results of the experiments on observation and action spaces

vii

1. Introduction

In the RoboCup Humanoid Soccer Competition [KA98|, teams of robots play soccer
against each other. In soccer, kicking the ball plays a crucial role, as it is an effective
way of moving the ball across the playing field. A good kick leads to faster and more
reliable scoring of goals, which in turn leads to winning games and competitions. In
addition, kicks can improve the team play of the robots since they make passes possible.
Kicking the ball faster than the opponent also leads to a higher chance of winning duels
against opponent players. The robot’s environment during the game is highly dynamic:
During its motions, it can be disturbed by unexpected perturbations due to the uneven
surface of the ground or contacts with other players, and the resulting falls usually lead
to ball losses. Therefore, a high resistance against external forces is also helpful.

Currently, there are two prevalent approaches to kicking the ball. In keyframe animations,
a set of motor positions is prerecorded and played back when the motion should be
executed. The disadvantage of this method is that it requires manual fine-tuning and
cannot react to its environment. In the other approach, kick engines, a trajectory for
the feet is dynamically calculated to kick the ball and react to its environment using
techniques from classic control theory. While good results can be achieved with this
approach, programming the controllers requires extensive knowledge and adaptation to
the exact desired motion.

This thesis proposes a learned approach that can reduce the programming effort and
increase the stability compared to previous methods. The approach uses deep rein-
forcement learning with the Proximal Policy Optimization algorithm [Sch+17] to train a
neural network to perform the motion instead of manually programming it. Specifically,
learning from demonstration is employed. This technique uses a reference motion, the
demonstration, during the learning process to produce a motion that resembles it while
also optimizing other objectives, e.g. stability or ball velocity. This way, an existing
approach, for example a keyframe animation, can be used as demonstration and thereby
be improved with regards to these objectives. Learning from demonstration also avoids
common problems of reinforcement learning, mainly because it is less prone to exploits
of the reward function, for example by sticking to global minima [3], and less likely to
produce the peculiar movements often seen with reinforcement learning, like excessive
arm movements [Hee+17].

In this thesis, a static kick generated by the kick engine that is currently used by the
Hamburg Bit-Bots RoboCup team is used as demonstration for the learning process.

1. Introduction

The resulting kick is compared to the demonstration to observe whether the kick has
been improved. To analyze which parts of the neural network’s input play a role in the
resulting kick, an ablation study on the observation space is conducted. Two different
action space representations are implemented and compared to each other to see if the
results differ. The stability of the resulting kicks is evaluated by applying random pushes
to the robot during the kick. The findings of these experiments are not limited to the
kicking motion but can also be applied to other motions that could be learned from
demonstration.

The environment and techniques used in this thesis are described and explained in Chap-
ter 2. This includes the used robot platform and fundamentals of reinforcement learning
and learning from demonstration. Chapter 3 gives an overview of related work to this
thesis. Especially, other approaches to kicking the ball and approaches to learning from
demonstration are detailed. Most notably, DeepMimic: Fzample-Guided Deep Rein-
forcement Learning of Physics-Based Character Skills |Pen+18] is described, which is
the principal model for the work in this thesis. Chapter 4 explains the kick used for
demonstration, the general setup of the learning process, including observation and ac-
tion spaces, as well as the used reward functions and other details of the approach. This
setup is then used to conduct the experiments described in Chapter 5, which are consec-
utively evaluated. These results and the general setup are then discussed in Chapter 6.
To conclude, the findings are summarized in Chapter 7, and future work is proposed.
The code used for the training has been made publicly available of GitHub!.

"https://github. com/timonegk/DeepKick

https://github.com/timonegk/DeepKick

2. Fundamentals

In this chapter, the general environment of this thesis and the basic techniques used
in the approach are described. The chapter starts with a presentation of the RoboCup
competition, which forms the environment for this thesis. The Wolfgang Platform, the
robot used in this thesis, is then described in Section 2.2. The concept of inverse kine-
matics used for the different action spaces is described in Section 2.3, followed by a brief
introduction to the Robot Operating System, ROS, in Section 2.4. Section 2.5 gives an
introduction to reinforcement learning, and the reinforcement learning algorithm that is
used in this thesis, Proximal Policy Optimization, is described in Section 2.6. Section 2.7
explains the fundamentals of learning from demonstration. Finally, the Multiobjective
Tree-structured Parzen Estimator, an algorithm for optimizing hyperparameters, is in-
troduced in Section 2.8.

2.1. RoboCup

The RoboCup is an international competition that organizes games of robotic soccer. It
was founded in 1997 after a Pre-RoboCup was held at the International Conference on
Intelligence Robotics and Systems 1996. The Pre-RoboCup-96 was the first competition
using soccer games for the promotion of research and education [1]. In 1997, the first
official RoboCup was held, and the RoboCup mission was defined as having a team of
robots that can win against the human soccer World Cup champions by 2050 [KA98].
Since 1997, the competition was held annually and split up into different leagues.

The Hamburg Bit-Bots are participating in the Humanoid Kid Size League. Figure 2.1
shows a typical game situation. In this league, a robot’s appearance and equipment are
restricted to resemble humans. The robot’s structure must be humanoid, i.e. it has to
have a head, two arms, and two legs. Further restrictions regulate the ratio of the body
length to the head and leg lengths, the foot size, the width, and the arm length of the
robot. The sensors of the robots are also restricted to human-like sensors. Therefore,
cameras, force sensors, microphones, accelerometers, gyroscopes, and similar sensors also
present in humans are allowed, but other sensors typically used in robotics (e.g. lidars,
infrared sensors, or compasses) are prohibited. In the Humanoid Kid Size League, the
robot’s height is additionally limited to 100cm. [Com21]

2. Fundamentals

Figure 2.1.: Two robots in the Humanoid Kid Size League. On the left, the Wolfgang-OP
used by the Hamburg Bit-Bots, on the right the SigmaBan Platform used by
Team Rhoban. Differences between the robots in the Humanoid League are
clearly visible. (Image used with permission of the owner.)

Figure 2.2.: A game in the Standard Platform League. (Image used with permission of
the owner.)

2.2. Robot Platform

In another league, the Standard Platform League, the robots are not constructed by the
teams themselves. Instead, all teams use the same robot, the NAO robot by SoftBank
Robotics. Its proportions are human-like, and it is equipped with 25 motors, two cameras
(pointing forwards and downwards), force sensors in the feet, an inertial measurement
unit, and two ultrasonic sensors [2]. An exemplary photo from a game in the Standard
Platform League can be seen in Figure 2.2.

There are various challenges in RoboCup Soccer, ranging from hardware and electronics
design to high-level behavior planning. To successfully play soccer, a robot has to be
able to walk and kick reliably. It has to be able to fall without damaging its hardware
and be able to stand up from the ground. A vision system must exist in order to detect
the ball, goals, field lines, and other robots on the field. In order to localize itself on the
field, the robot must keep track of its own position on the field and use field markers
like lines to update its position estimate. Finally, the robots of a team must be able to
communicate their strategy in order to play together.

To drive the development forward, the laws of the game are continually updated to
make the game more similar to an actual game of human soccer. An incremental, event-
triggered roadmap is used to update the rules when specific achievements (e. g. walking
speed, kick distance, number of goal kicks, etc.) are reached by a minimum number of
teams [Com20).

2.2. Robot Platform

The robot used in this thesis is the Wolfgang Open Platform [Bes+21]. This humanoid
robot platform is based on the Nimbro Open Platform [Sch+12] and was designed and
developed by the WF Wolves and refined and improved by the Hamburg Bit-Bots. The
robot has twenty degrees of freedom, six per leg, three per arm, and two in the head. It
weighs approximately 7.5 kg and is 80 cm tall. To provide robustness against falls, series
elastic actuators are used in the shoulders and in the neck. They consist of compliant
elements that reduce the impact of sudden external forces on the motor and prevent
damages. In addition, a torsion spring is added to each knee to reduce the load on the
knee joint, especially in situations where the robot stands only on one leg. Its root, or
base link, is located at the bottom of its torso, between the legs.

Two inertial measurement units, one in the head and another one in the body, are used to
determine angular velocities and linear accelerations of the robot. These measurements
can be used to derive the current roll (rotation to the left /right) and pitch (rotation to the
front /back) of the robot. Each foot is equipped with four pressure sensors located at the
corners of the foot [BGZ19|. The actuators used in the robot are the Dynamixel MX-64,
MX-106, and XH540 servos. The applied torque is computed by internal PID controllers
that are given the servo’s target position. The current positions, velocities, and efforts

2. Fundamentals

Figure 2.3.: The Wolfgang Open Platform [Bes+21]

can be read from the servos. The control loop frequency, which is the frequency at
which the motors can be actuated and the sensor values of the servos, IMUs, and foot
pressure sensors can be read, is up to 715 Hz. The camera used in the Wolfgang-OP is
a Basler acA2040-35gc camera providing images of 2048x1536 px at 36 FPS via Gigabit
Ethernet.

For computation, the platform contains three computers. An Intel NUC is used for most
of the high-frequency computation, including the motion stack responsible for walking,
kicking, and standing up. The Odroid-XU4 can be used for other, less time-critical
tasks but currently remains unused. The computations for neural networks for the vision
pipeline happen on a dedicated device, an Intel Neural Compute Stick 2 that provides
hardware acceleration for deep neural networks.

2.3. Inverse Kinematics

In robotics, forward kinematics are used to calculate the position of a robot’s links or end
effectors from the positions of the individual joints. It can easily be solved by starting
at the root link and applying the transforms of successive joints until the end effector
is reached. The inverse problem is to calculate the joint positions required to place an

2.4. ROS

o

>

Figure 2.4.: With forward kinematics, the position of the red circle (i.e. x and y) can be
calculated from the angles o and 3. To get these angles from the position of
the circle, inverse kinematics has to be used.

end effector at a given position. The process of solving this problem is called inverse
kinematics (IK). A visualization of the problem can be found in Figure 2.4.

In general, there are two different approaches to inverse kinematics: analytic IK and nu-
meric IK. The former calculates the joint positions directly and is therefore significantly
faster than numeric approaches. However, many kinematic structures are not suitable
for analytic IK because no formula for deriving the target positions has been found. A
numeric IK is more general but also slower because the solution has to be derived itera-
tively. Different numeric algorithms, for example the pseudo-inverse Jacobian method or
gradient descent algorithms, exist. However, they are often prone to finding local minima
instead of the globally best solution.

In this thesis, the library BiolK [Rup17] is used, which implements a numeric approach. It
uses a memetic algorithm that combines evolutionary algorithms capable of finding global
minima more reliably with gradient-based optimization methods to quickly optimize the
solution found by the evolutionary algorithm.

2.4. ROS

ROS, the Robot Operating System, is a middleware framework commonly used in
robotics [Qui+09]. It mainly targets C++ and Python. Software for ROS is divided
into several independent nodes that communicate with each other. The ROS master
manages the connections between these nodes and provides common parameters. The
communication between the nodes happens asynchronously via messages. A message
defines a data interface and can be published on a topic. Other nodes can receive the
message by subscribing to the corresponding topic.

2. Fundamentals

There are also two bidirectional communication means: services and actions. While
services offer a simple request-response pattern and an infrastructure separate from the
topics, actions support longer-running queries with intermediate updates and are built
on top of the message infrastructure. An action consists of three message definitions:
the goal, the result, and the feedback. The goal is sent by the action client to the action
server when it requests an action. During the execution of the action, the action server
can send back information to the client using the feedback message. When the action is
finished, the server sends the result message containing whether the action terminated
successfully and further information on the result of the action.

2.5. Reinforcement Learning

Reinforcement Learning is a machine learning technique often used in robotics. Figure 2.5
shows the general cycle of reinforcement learning. An agent receives a representation of
its surroundings and its current state. Based on this information, it makes an action
that then interacts with the environment. The result of this action is interpreted and,
in combination with the new state of the environment after the action was performed, a
reward is given to the agent. In other words, the agent follows a trial-and-error approach
to finding a successful behavior.

Formally, reinforcement learning is based on Markov Decision Processes. A Markov
Decision Process is a tuple (S, A, P, R) where S denotes a set of possible states, A is a
set of actions that can be taken, P is a probabilistic function mapping a specific state

-

Environment
c
- i °
State <
Interpreter
R (00O
Warg Ot
Agent

Figure 2.5.: Tllustration of reinforcement learning (based on [4]).

2.5. Reinforcement Learning

and action to a new state, and R is a function mapping a transition between two states
to a reward. For continuous states and actions, like they are used in this thesis, S and
A are not sets of possible states or actions, as they cannot be described in a discrete
set. Instead, states and actions are described by the state (or observation) space and the
action space, and all possible states or actions lie in their respective spaces. Additionally,
a start distribution and terminal states may be specified. In a Markov Decision Process,
the goal is to find a (potentially probabilistic) policy 7 that maps states to actions and
optimizes the received reward. Reinforcement Learning is a way of finding such a policy.

In reinforcement learning, a discounted reward G is usually used that also takes into
account future rewards. It is defined as

o
Gy = Z 7 Rt
k=0

where v is the discount factor that describes how important future rewards are at a
certain point in time. The value function V(s) describes the value of a state s, that is
the discounted reward in state s when the policy 7 is followed. The action-value function
Qr(s,a) describes the value of the action a in state s, i.e. the discounted reward under
policy m when action a is taken in state s. [SB15]

The function A, (s,a) is the advantage of action a in state s under policy 7 [Sch+16]. It
describes how much the action a is better than the other possible actions. It is defined
as

Ar(s,a) = Qx(s,a) — Vz(s).

Usually, the real values of these functions are not known, and estimates of the functions
are used. They are denoted with V| @, and A, respectively.

In deep reinforcement learning, some of these functions are modeled by neural networks.
For the approach in this thesis, with continuous state and action spaces, this is the case
for both the policy m and the value function V. The input of the policy network is the
current state, its output is the action, and the reward is used to improve the network
incrementally. The value function network has the same input but only a single output.
To train the networks, different reinforcement learning algorithms exist. They are divided
into on-policy and off-policy algorithms. In off-policy algorithms, the network is trained
on data that was prerecorded using a different policy. As opposed to this, on-policy
algorithms can update and improve the policy that is used to record the training data
during the training.

The learning process can be divided into episodes. Each episode is one complete execution
of the robot’s task, for example one kick. The observed states, actions, and rewards
during the episodes are collected in a rollout buffer. Once the rollout buffer is filled,
the collected data is divided into random minibatches that are used to train the policy
and the value function networks according to the used reinforcement learning algorithm.

2. Fundamentals

One pass over the full rollout buffer is called an epoch, and usually, multiple epochs are
performed on the data of a rollout buffer. For on-policy algorithms, the rollout buffer is
then discarded, and the updated policy is used during the collection of new data. The
rollout buffer size, the minibatch size, the number of epochs, and the overall number of
timesteps (horizon) are hyperparameters to the learning process.

2.6. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [Sch+17| is a model-free on-policy algorithm for
deep reinforcement learning. It is based on policy gradient methods which estimate
the gradient of a policy and use a stochastic gradient ascent algorithm to optimize the
policy. The disadvantage of these methods is that they can produce very large policy
updates leading to a significant deviation from the previous policy. This can lead to
producing policies that never recover from the harmful update. PPO offers a solution to
this problem by introducing a clipped objective function that clips the advantage-based
objective function such that large policy updates are prevented. This function is defined

as
LEEIP(9) = By |min(ry(0) Ay, clip(r4(0),1 — €,1 4 €) Ay)

where E; denotes the expectation of the enclosed function. The function’s argument 6 is
a set of parameters for the policy 7. r; is the probability ratio between the new policy g

and the old policy g, which is defined as 7¢(0) = _me(arlst) 1 gther words, ¢ describes

old T o1q (@tlse)

A<O
[CLIP A>0

=
—_
I
)
—_

0 1 1+e€ ' LCLIP
Figure 2.6.: The two cases of clipping the objective function. On the left, the advantage
is positive, therefore the action was good. If r is high, a large policy update
would be done. This is avoided by clipping the objective function. On
the right, the advantage is negative, i.e. the action was bad. Here, the
objective function is clipped to avoid updates that would drastically reduce
the possibility of the action occurring. (Illustration based on [Sch+17].)

10

2.7. Learning from Demonstration

how much the new policy differs from the old policy. When the new policy does not differ
from the old one, the value of r; is 1. When the new policy prefers the action a; in state
s¢ compared to the old policy, it is larger than 1; if its probability decreases, the value of
r¢ is less than one. The min function in the objective results in the policy not deviating
too far from the old policy when the policy became better (i.e., the advantage is positive
and the action became more likely or the advantage is negative and the action became
less likely) to avoid destructively large updates. When the update made the policy worse,
the first term of the min function is selected, no clipping happens, and the policy gets
appropriately updated because, in this case, large updates are desirable. Figure 2.6
shows a graphical representation of the clipped objective function. For estimation of the
advantage function Ay, the General Advantage Estimator [Sch+16] can be used.

To include the performance of the value function, an additional squared-error loss for the
value function, denoted with LY¥ is subtracted from the objective. An entropy bonus
S can also be added to encourage exploration. The final objective function for PPO, as
suggested by the authors, is

L(0) = By [LYMP(0) — et LYVF + caS(r,(5)] -
c1 and ¢y are weights for the value loss and entropy loss, respectively.

In the paper presenting PPO, the authors achieve better results with this algorithm
than with other reinforcement learning algorithms, for example vanilla policy gradient
methods or trust-region policy optimization, for a high variety of problems. At the same
time, PPO is much easier to implement and less complex than other methods achieving
a similar level of performance.

2.7. Learning from Demonstration

In reinforcement learning, a common problem is that the task that should be learned
is or cannot be defined very well. Especially if the reward depends on actions over
a longer period of time, linking actions to rewards becomes more difficult [Sch97]. To
circumvent this problem, learning from demonstration, also called imitation learning, can
be used. Similar to how humans can learn faster by imitating the behavior of others, in
this approach, a demonstration is added to the training process as a model of the desired
behavior. Thus, the learning policy does not have to learn from its own experiences alone
but can use the demonstration as an example and learn by imitating it.

One approach to imitation learning is to learn the actions of the demonstration in a
supervised way before starting the reinforcement learning process, where the previously
learned demonstration is then applied and further optimized with a reward for the task
that it should solve. This approach is taken in imitation learning algorithms like Behav-
ioral Cloning [BS95], and numerous improvements have been proposed [RB10; TWS18|.

11

2. Fundamentals

o

==
Environment
[
9
State <
Interpreter
R (0O]
arg L
Demonstration 9
Agent

Figure 2.7.: Learning from Demonstration, with demonstration included in the reward
function. (Illustration based on [4].)

Another approach is to directly reward a policy for motions that resemble a reference
trajectory. For this approach, the reward function consists of two weighted parts, one of
which rewards similarity to the reference motion while the other one rewards successful
execution of the given task. Figure 2.7 shows an illustration of this progress. The general
approach described in Section 2.5 is adapted to include the demonstration in the reward
function and no further adaptions to the training have to be made.

While this approach is relatively simple, it has shown excellent results in learning motions
for physically simulated characters and complex motions like throwing, running, and
kicking in simulation [Pen+18]. Walking motions learned in this way have also been
transferred to the real world [Pen+20; Li+21].

2.8. Multiobjective Tree-structured Parzen Estimator

The Multiobjective Tree-structured Parzen Estimator (MOTPE) [Oza+20] is a multiob-
jective optimization algorithm. It can be used to optimize input parameters for a system
under multiple, possibly conflicting, objectives. MOTPE extends the Tree-structured
Parzen Estimator (TPE) that can be used for the optimization of single objectives.

In TPE [Ber+11], a set of initial observations (i. e. inputs and their corresponding results)
is first split at a given threshold according to their results in a set of good (D;) and a
set of bad (Dy) results. Then, for each set, the respective probability density functions

12

2.8. Multiobjective Tree-structured Parzen Estimator

are modeled with a tree-structured parzen estimator. They are denoted with [(x) and
g(z), respectively. The estimator produces the probability density functions by modeling
the area around each given observation with a Gaussian distribution and combining the
results. Therefore, sampling from I(z) will produce better values and sampling from g(x)
will produce bad values. To determine the next candidate to be evaluated, the expected
improvement function is calculated. It describes how much a set of input parameters
is expected to improve the objective function. Intuitively, it means that the values
have a high probability in I(z) and a low probability in g(x). Multiple candidates are
sampled from [(z) and the candidate with the best expected improvement is returned.
The algorithm is then repeated with the observations including the evaluation of the latest
candidate until a terminating condition is met; then, the value with the best objective
function result is returned.

In MOTPE, this approach has been extended to make it possible to optimize for multiple
objective functions. Because no single threshold for the objective function can be used to
split the observations, D, is instead chosen to include observations that are dominated
by other observations (i.e., they perform worse for every objective function). The ex-
pected improvement from TPE is replaced by the expected hypervolume improvement
that performs a similar estimation of the improvement but accounts for multiple objec-
tive functions. This function is again used to determine the candidate with the biggest
expected hypervolume improvement, which can then be evaluated and added to the ob-
servations for the next step. The algorithm terminates after a given number of iterations
and returns all candidates that are not dominated.

In general, both TPE and MOTPE are used for hyperparameter optimization problems,
for example for deep learning problems. The algorithms are sample-efficient, which is
especially helpful for problems where calculating the value of the objective function is
computationally expensive.

13

3. Related Work

This chapter outlines work related to this thesis. Section 3.1 describes general success
on learning motions with reinforcement learning. Then, learning from demonstration
approaches are described in Section 3.2. The work in this thesis is heavily influenced
by DeepMimic, which is described in Subsection 3.2.1. Its successive publication is then
presented in Subsection 3.2.2. Section 3.3 describes different other approaches to kicking
motions that are used in the RoboCup Humanoid and Standard Platform Leagues.

3.1. Reinforcement Learning for Motions

Reinforcement Learning of motions in robotics is a topic that became more and more
relevant over recent years. It is especially useful to solve complex problems that are hard
to approach in a conventional way [KBP13].

For example, in [Hee+17|, complex walking in different environments was learned on
three different robots. For the training, a distributed variant of PPO was used, and
the reward function was chosen to simply reward forward motions. During the training,
the environment was varied, and the robots learned impressive motions that overcome
hurdles, gaps, and other hindrances on their way.

A study comparing the performance of different reinforcement learning algorithms showed
that complex problems like walking with humanoid or animal-like robots could be solved
successfully by many of these algorithms [Dua+16]|. Especially Truncated Natural Policy
Gradient (TNPG) [Kak01| and Trust Region Policy Optimization (TRPO) [Sch+15], the
predecessors of PPO, performed very well.

In RoboCup, deep reinforcement learning was used as well. In 2019, Abreu, Reis, and
Lau used PPO to learn a running motion on a simulated NAO robot [ARL19|. The same
authors also used PPO to learn a dribbling motion on the same robot [Abr+19].

However, these approaches are limited to a simulated environment. The learned motions
often show peculiar movements, for example wild arm movements, or behaviors that
clearly would not work in the real world, for example when inaccuracies in the simulation
are exploited by the policy.

15

3. Related Work

Figure 3.1.: Snapshots of a highly dynamic backflip motion trained in Deep-
Mimic [Pen+18].

3.2. Learning from Demonstration

To overcome the issues of normal reinforcement learning that were mentioned in the pre-
vious section, learning from demonstration can be used. Particular successful approaches
to learning various motions are described in the following subsections.

3.2.1. DeepMimic

In DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Charac-
ter Skills [Pen+18|, Peng et al. used imitation learning for complex motions like throwing,
running, and kicking on humanoid and non-humanoid robots. They used motion capture
data and manually defined keyframe animations as demonstration trajectories. Proximal
Policy Optimization was used as the reinforcement learning algorithm.

The robot’s state, used as input to the neural network, consisted of the position and
orientation of all links relative to the base link that was located at the pelvis, as well
as their respective linear and angular velocities and a phase denoting the progress in
the reference trajectory. The policy output consisted of positional targets for all motors.
Target positions are used instead of torque values, which are often used in other rein-
forcement learning approaches, because they found that learning target angles improves
policy performance and learning speed for several motion control tasks [PP17]. Concern-
ing the network architectures, separate networks for the policy and the value function
were used, each consisting of two hidden layers with 1024 and 512 units respectively.

The reward function was defined as a weighted sum of the demonstration reward and the
goal reward:

re = wIT{ + wGrtG

The goal reward & describes the success at performing the given task, e.g. throwing
a ball or moving forward. The demonstration reward r{ describes the similarity to the

16

3.2. Learning from Demonstration

reference motion. It consists of four weighted parts: The joint position error, the joint
velocity error, the end effector offset, and the center of mass offset. Each of these rewards
has the following form:

ri’ =exp | —an g dy,
kEVn

ri describes the partial reward, a, is a factor for the exponential function, V;, contains
the variables of this reward (e. g., the joints), and dj denotes the difference between the
agent and the reference motion for the variable k.

During the training, in order to achieve better results, reference state initialization and
early termination were used. With reference state initialization, the initial state for an
episode is not the starting state of the motion, as it is often the case in reinforcement
learning. Instead, a random state is sampled from the reference motion. This helps
mitigate the problem that states that occur later in the motion are difficult to reach
with random exploration. In the case of early termination, the episode is terminated and
a reward of zero is given for all future states when the agent has reached a particular
condition, e.g. when its head link is touching the ground. This has the advantage that
the policy does not have to learn states that it will never recover from, and actions leading
to such a state are strongly discouraged.

The results of the approach showed that an agent trained with the imitation objective
and the goal objective performs significantly better than when only one of the objectives
is used. Without the imitation objective, unnatural behavior is developed and without
the goal objective, the task is not successfully performed. The combination of both
objectives resulted in motions that fulfilled the task while keeping a natural-looking
behavior, deviating from the reference motion where necessary to perform better in the
task.

3.2.2. Learning Agile Robotic Locomotion Skills by Imitating Animals

In Learning Agile Robotic Locomotion Skills by Imitating Animals [Pen+20], the same au-
thors presented another paper on imitation learning, based on the results of DeepMimic.
The state representation of the robot was changed to include the three previous poses of
the robot, each consisting of the IMU readings of the robot and the joint positions, as well
as the three previous actions. Additionally, the target poses from the reference network
at four different future timesteps were added to the state. The actions consisted of the
target rotations for each joint. A low-pass filter was applied to the actions to smoothen
the resulting motions. The reward function is again similar to the one in DeepMimic,

17

3. Related Work

but the center of mass reward was replaced by rewards for the pose and velocity of the
root link.

To facilitate sim-to-real-transfer, domain adaptation was used. Similar to domain ran-
domization, the simulation dynamics were changed to achieve a greater robustness against
the environment and prevent overfitting on the simulation. To make it possible for the
policy to cope with the different dynamics, a representation of the system dynamics was
included into the policy input.

In 2021, the same research group published another paper, Reinforcement Learning for
Robust Parameterized Locomotion Control of Bipedal Robots [Li+21]. Again, good results
could be achieved for walking on a two legged robot with a policy trained in a similar
way to DeepMimic when domain randomization was used.

3.3. Other Kick Approaches

A common approach for kicking in the humanoid and SPL leagues is to record a static
keyframe animations [Riz+19; Bes+18]. These animations consist of a sequence of motor
positions and timings that are manually tuned. The movement is generated by interpolat-
ing between the keyframe positions, for example using quintic spline interpolation. The
advantage of keyframe animations is that little knowledge about the robot is required and
programming the keyframe animation framework is generally not very complex. Also, the
same animation framework can be used for multiple different tasks, like standup motions
and kicks. However, recording the keyframes is a cumbersome task because they have to
be tweaked to exactly match the robot and its environment since the animation is static,
i.e. the robot cannot react to its surroundings, like uneven ground. To circumvent this
problem, stabilizing techniques can be added to the static kick, for example using foot
pressure sensors to calculate the center of pressure [All-+16].

Some teams integrate their kick directly into the walking engine [Tak+19; PV19|. This
approach has the advantage that switching between walking and kicking is very fast
because the moving foot of the current step is used to kick the ball during the walking
motion. However, this approach tends to violate the Separation of Concerns [HL95| code
paradigm and leads to more code complexity as the kick becomes more sophisticated.
Also, more refined kicks that are able to adapt to different target directions cannot be
integrated into the walking as easily.

Another approach is the dynamic kick engine. This engine dynamically calculates a
movement, for example using splines, and adapts to changes in the environment, for
example by detecting when the robot becomes unstable or the ball moves.

In the Standard Platform League, Miiller et al. [MLR11]| created a kick engine that uses
trajectories based on Bezier curves that can be adapted during the execution of the

18

3.3. Other Kick Approaches

motion to account for changing ball positions. To keep the robot stable, the robot’s
center of mass was balanced over the foot’s support polygon and a PID-controller on the
angular velocities was implemented.

Also for the NAO robot, Wege [Wegl7]| proposed Dynamic Movement Primitives to
generate the kick trajectories. Stability was achieved by balancing the center of mass
over the support polygon and using P-controllers for the ankle motors based on the
feedback of the robot’s gyroscope.

Kick engines are not very common in the humanoid league. The Hamburg Bit-Bots are
using a dynamic kick engine [BES19] that is used as the demonstration in this thesis
and will be detailed in Section 4.1. The team ZJUDancer is not using a dynamic kick
yet, but plan on developing an approach that dynamically analyzes and optimizes the
trajectory of the kicking foot and uses the IMU and servo data as feedback to keep the
robot stable [JC20].

While these kinds of controllers and engines can yield stable and well-performing trajec-
tories, designing them requires considerable knowledge of the kinematic structure and
the dynamic of the robot as well as the motion that is implemented [Pen-20)].

19

4. Approach

In this chapter, the approach and implementation of this thesis are described. As demon-
stration and reference motion in the learning process, an existing kick is used. This kick
is generated by the kick engine currently used by the Hamburg Bit-Bots which is de-
scribed in Section 4.1. The training of the agent takes place in the PyBullet simulator.
The environment of the simulation and the robot model are described in Section 4.2.
Section 4.3 then describes the fundamental parts of the training process, the chosen ob-
servation and action spaces as well as the reward function. Finally, the implementation
of the framework is detailed in Section 4.4.

4.1. Demonstration

The existing kick engine of the Hamburg Bit-Bots is presented in [BES19|. It consists
of four modules: the node, the engine, the stabilizer and the IK. The node provides the
ROS interface by subscribing to all relevant messages and providing the action server.
The action goal consists of the current position of the ball and the desired kick direction.
When an action is requested at the node, it passes the relevant information to the engine.
The engine then decides which foot should be used to kick and which side of the foot
should be used. Based on that decision, it calculates the splines for the kick. In the
engine, the support foot is assumed to be static and all trajectories are calculated relative
to it. Therefore, two sets of splines are calculated by the engine, one for the trunk and
one for the kicking foot. After the splines are calculated, the main control loop begins.
In each step of the loop, the current set of positions is extracted from the splines. These
positions are then passed through the stabilizer that performs optional stabilization on
the trunk goal, based on the measurements of the IMU or the foot pressure sensors. Once
the stabilization has happened, the positions are passed into the IK which performs the
inverse kinematics, i.e. calculates the joint positions that should be applied to reach
the given cartesian positions. These joint goals are then published by the node and get
processed and applied to the motors in a separate node. Figure 4.1 shows the kick in the
real world, as used in RoboCup 2019. In Figure 4.2, a side kick generated by the engine
is displayed. The simulation environment is the Webots simulator that was used for the
virtual RoboCup 2021.

The behavior of the kick can be influenced by various parameters, e. g. the timings of the
kick’s phases, how far the foot should be raised and retracted, etc. Since the kick will be

21

4. Approach

(a) Before the kick (b) Raise a foot (c) Kick the ball (d) Retract the foot

Figure 4.1.: A forward kick generated by the kick engine used for the demonstration, on
a Wolfgang robot. (Images used with permission of the owner.)

Figure 4.2.: The kick engine performing a side kick in Webots.

used as demonstration for the reinforcement learning, it is important that its parameters
are optimized before the learning process. The optimization of the parameters is done
using Optuna [Aki+19], a popular framework for hyperparameter optimization. Because
Optuna is a Python library and the kick is a C++ project, a Python wrapper module
was created to make it possible to call C++ functions from Python.

The best optimization results were obtained using the Multiobjective Tree-structured
Parzen Estimator (MOTPE) [Oza+20], a sampler that can optimize different objectives
at the same time. The advantage of optimizing multiple objectives is that no manual
weighting has to be done and that multiple parameter sets are obtained that perform
best for different goals. The used objectives are whether the robot fell after the kick,
the kick duration, the maximum velocity of the ball and the directional error of the kick.
Using the MOTPE sampler, a parameter set can be obtained that focuses on improving
the ball’s velocity but might lead to the robot falling and a different parameter set where
the kick is stable but the ball is kicked more slowly. The resulting parameters are listed
in Appendix A.

22

4.2. Simulation Environment

\"%-;

Figure 4.3.: An example image of the robot during training in PyBullet. The opaque
robot displays the agent during the training. The transparent robot follows
the reference motion.

4.2. Simulation Environment

For the simulation, the PyBullet Physics Engine is used. In the simulation, the robot is
placed on an even ground in the walkready position, its default position when the kick
starts. A ball is placed in front of its left foot. Its size and weight correspond to the
ball used in the RoboCup Humanoid Kid Size League. The diameter of the ball is 14cm
and its weight is 250g. The friction between the ground and the ball is set to the default
values of the plane and sphere objects in PyBullet. While these values don’t perfectly
model the actual frictions of the ball and the ground, the exerted forces during the kick
are high enough to move the ball at different velocities depending on the strength of the
kick.

During the training, the simulator was started in a headless mode without a graphical
interface to avoid the overhead of displaying the robot and facilitate running multiple
instances of the simulator in parallel on a remote server. However, a graphical interface
was available for debugging and displaying results. In this interface, the robot and the
reference trajectory were displayed to make it possible to compare the learned motion to
the reference motion during the training or evaluation. Figure 4.3 shows the simulation
environment with the reinforcement learning agent, the reference motion, and the ball
during an early training step.

23

4. Approach

4.3. Training

In this section, the general procedure of the training is described. Then, the network
architectures for the policy and value networks are explained. The observation and action
spaces are defined and the used reward function is detailed.

4.3.1. Training Process

The training is divided into episodes, each executing one kick. The duration of the
demonstration kick is 1.64s. The episode length is 3s, measured from the beginning of
the demonstration. Since reference state initialization is used, the actual length of an
episode varies from 3s to 1.36s. The episode length was chosen to be longer than the
demonstration so that the robot has to learn to balance itself after the kick. Shorter
episode lengths resulted in the robot falling in such a way that the terminating condition
would not be reached before the end of the episode.

At the beginning of the episode, the kick engine used as demonstration is initialized with
a fixed ball position in front of the left foot and the command to perform a forward
kick. Since the objective of this thesis is to produce a single kick and analyze the results
for different training setups, the same kick is used for all training episodes; the kick
direction and ball position are never changed. This constraint also drastically reduces
the complexity of the training. The time of the kick engine is then set to the random time
given by the reference state initialization. Then, the position and orientation of the robot
and all joint positions are set according to the state given by the reference motion for this
time. The velocities of the robot and of each joint are set to zero because no information
about the velocity is provided by the kick engine. Since the kick is always performed with
the left foot, the ball is positioned in front of it. If the episode is initialized at a point in
time where the kick has already happened, the ball is placed at a position further away
from the robot, as if it had been kicked correctly.

Then, the simulation is started and the observations are fed into the policy which outputs
actions that are applied to the robot. The policy is queried with a frequency of 30Hz, the
simulation runs at a frequency of 240Hz. Simultaneously, the demonstration is advanced,
also at a frequency of 30Hz.

When the robot’s pitch or roll angle, measured at the pelvis, exceed 90 degrees, or when
the robot’s head falls below the starting height of its pelvis, the robot is assumed to be
fallen over and the episode is terminated. A reward of zero is given for this timestep.

The used hyperparameters for the training were obtained with a Tree-Structured Parzen
Estimator-based hyperparameter search for the training of a walking policy with the
same robot in the same simulator environment using the same reinforcement learning

24

4.3. Training

algorithm. Therefore, the hyperparameters are expected to be adequate for the training
even though they are not optimized for this particular problem. The full list of the
hyperparameters can be found in Table 4.1.

Parameter Value

Policy Network 512x512, fully connected
Activation Function: ReLU
Fixed Variance: 0.1

Value Function Network 512x512, fully connected
Activation Function: ReLU

Total Number of Timesteps 10000000

Number of Timesteps per Batch | 2048

Minibatch Size 32

Number of Epochs)

GAE-) 0.8

Discount Factor v 0.98

PPO Clip Range 0.2

Learning Rate 0.000107739192714429

Value Function Loss Coefficient | 0.210933418438296

Entropy Coefficient 0.0

Table 4.1.: Full list of hyperparameters used during the training

4.3.2. Network Architecture

In the thesis, two separate neural networks are used for the policy and the value function.
Each of the networks consists of two fully connected hidden layers that use the ReLLU
activation function. The output layer is linear. Only a single output neuron exists for the
value function, whereas for the policy function, the number of output neurons depends
on the action.

For the policy network, in the output layer, the mean value of a Gaussian distribution
is returned. This Gaussian distribution has a fixed variance that is a hyperparameter to
the learning process during the training. The fixed variance ensures sufficient random
exploration during the training and helps to make the policy more resistant against small
random perturbations. During the evaluation, the mean of the Gaussian distribution is
always used directly. Figure 4.4 shows a visualization of the network architecture for the
policy network.

25

4. Approach

Rectified Linear Linear

Figure 4.4.: The policy network consists of two fully connected hidden layers with 512
neurons each. The ReLU activation function is used. The output layer is
linear and determines the mean of a Gaussian distribution for the actions.

4.3.3. Observation

The observation is the input of the policy network and the basis of all of its decisions.
Therefore, the observation can include the current progress in the kick, the state of the
robot including different sensor measurements, and any further information about the
environment.

Since the sensors available in a humanoid robot are limited and no further exterior
information can be accessed, only the sensor input from the inertial measurement unit,
the foot pressure sensors, and the motor position sensors is available. In this thesis, the
following direct or indirect measurements of the sensors were used:

Phase is a number that monotonously increases with time and is reset to the current
phase of the demonstration at the beginning of an episode.

Orientation of the robot, as roll and pitch, derived from the IMU.
Angular Velocities of the robot around its three axes, directly taken from the IMU.

Foot Poses are the position and orientation of both of the robot’s feet, calculated with
forward kinematics from the joint positions. Each foot pose is represented by x, v,
and z for the position and roll, pitch, and yaw for the orientation, both relative to
the robot’s root.

Foot Velocities are the linear and angular velocities of both feet, calculated by taking
the difference between consecutive foot poses and dividing the result by the time
difference. The linear velocities are the velocities along the x, y, and z axis of the
robot’s root, the angular velocities are the velocities around these axes.

26

4.3. Training

Phase | Orient. | Ang. Vel. | Foot Pos. | Foot Vel. | Pressures

PhaseState

OrientationState

NN
!
!
!

GyroState

FootState

FootVelocityState

OrientationFootState

PressureState

PressureFootState

S AYAASAYASASANAS
|
|
NENENE
\
|

NS

ComprehensiveState

Table 4.2.: The different partial observations of which each state consists

Pressures are the measurements of the eight pressure sensors located at the robot’s feet.
A Butterworth filter [But+30] is applied to them to filter high-frequency noise.

All observations are standardized with a running mean and standard deviation by Stable
Baselines 3.

To evaluate the importance of different parts of the observation space, the measurements
are combined to a total of nine different states, ranging from the PhaseState that only
contains the phase information, to the ComprehensiveState that contains all of the infor-
mation mentioned above. Table 4.2 shows the contained information for all states that
were used. Notably, the phase information is contained in all states to be able to keep
track of the current phase of the kick. On these different states, an ablation study that
is described in Section 5.1 is conducted.

4.3.4. Action

The action is the output of the policy. It is applied to the robot to change its state. In
this thesis, a joint-space action and a cartesian-space action have been implemented.

The joint-space action consists of a single value for each of the twelve leg joints. To avoid
problems due to joint limits, the values get scaled so that -1 and 1 represent the lower
and upper bound of the joint, respectively. In addition, the initial bias of the policy’s
output layer is set to the joint values in its walkready position. Thus, at the beginning
of the training, the Gaussian distributions in the output layer of the policy network are
centered around these initial biases, resulting in exploration around a stable position,
and a lower number of falls during the early phases of the training.

The cartesian-space action consists of six values for each foot, describing its position
and orientation relative to the base link. To avoid poses that cannot be reached by the

27

4. Approach

robot, the action space is reduced to a cuboid around the robot’s feet for the position and
approximately -60 to 60 degrees for the orientation values. This choice of action space
results in a similar default position as in the joint-space action when the initial bias is
set.

4.3.5. Rewards

In deep reinforcement learning, the reward function is a very important part, as it de-
scribes which parts of the agent’s behavior are encouraged and which behaviors the agent
should not follow. In the approach to learning from demonstration that was taken in this
thesis, the reward consists of two parts: the imitation reward and the task reward.

T =wrry +wrry

The imitation reward r; encourages an action that is close to the demonstration, the task
reward rp rewards a good execution of the task. Both parts of the reward are weighted
with wy = 0.7 and wr = 0.3, respectively. These weights and the imitation reward
described below were chosen to be the same as in DeepMimic because they achieved
excellent results using these rewards in simulation and in the real world.

The imitation reward is composed of four partial rewards:
T[] = WRTR + WETE +Wprp +wyry.

rg is the root position reward, rg is the end effector position reward, rp is the joint
position reward, and ry is the joint velocity reward. The rewards are weighted with
wr = 0.1, wg = 0.15, wp = 0.65, and wy = 0.1, respectively. Thus, the joint position
reward is the most important of these rewards, by a large margin.

It is calculated in the following way:

rp=exp | =2 |lp; — 53
jeJ

where J is the set of joints and p; is their respective position. p; denotes the joint’s
position in the reference motion. The joint velocity reward is calculated similarly, but
the factor before the sum is —0.1 instead of —2.

The root position rg rewards the proximity of the robot’s root link to the root link of
the reference trajectory. It is calculated in the following way:

rr = exp (~10- |R — R|3)

28

4.3. Training

where R is the agent’s root position and R is the root position in the reference motion.
This reward slightly deviates from the reward in [Pen+18], where the position of the
agent’s center of mass is used instead. In the Wolfgang robot, the center of mass is
normally located very close to the root link; therefore, the position of the root link is
a good approximation for the position of the center of mass. Additionally, the reward
function in [Pen+20| also uses use the root link instead of the center of mass.

In a similar way to the root link reward, the end effector reward rg is calculated:

rE = exp (-40 > lpe —pey@) :

ecE

Here, the squared positional error of the end effectors, i. e. the left and right foot, is used.

Each of the partial rewards of the imitation rewards is scaled exponentially. A perfect
resemblance to the demonstration results in a reward of 1. The more the state deviates
from the demonstration, the closer the rewards get to 0.

For the task reward, a function that rewards strong kicks has to be chosen. A simple
approach to rewarding a kick would be to reward the distance the ball traveled since
the beginning of the episode after each timestep. However, this approach would not be
well-suited because actions after the kick time would be rewarded according to the kick
that happened before, even though they have no way of influencing the kick’s strength.
If the reward were only given once at the very end of the episode, it would have been
extremely difficult to link this reward back to the action responsible for actually moving
the ball. Therefore, the reward has to be given directly for the actions that achieve
the ball movement. To discourage movements of the ball when they are not desired, for
example while lifting the foot, the reward should only be given for a specific time window
where the demonstration performs the kick and the ball is moving. To summarize, the
task reward has to be a function that rewards a strong movement of the ball at the
correct time.

To fulfill these conditions, the following function has been chosen:

{ 1—exp(—2-vp) iftpy <t <tx+0.5
rr = 0
else

vp is the ball velocity at the current time ¢. £y is the time of the kick in the demonstration.
The condition ensures that ball movement before the actual kick, for example while lifting
the foot, is not rewarded. The reward is scaled exponentially such that no ball movement
results in a reward of 0, and the higher the ball velocity gets, the closer the reward gets
to 1.

29

4. Approach

4.4. Implementation

For reinforcement learning, the Stable Baselines 3 framework [Raf+19] is used. To de-
scribe the reinforcement learning problem, an environment implementing the OpenAl
Gym environment interface [Bro+16| was created. This interface is used by the frame-
work for interacting with the environment and provides a common wrapper interface for
different reinforcement learning problems. The advantage of using this interface is that
it is agnostic of the framework and its implementation details. Therefore, the frame-
work or the used learning algorithm could easily be exchanged without changing the
implementation of the environment.

The interface mainly consists of two functions: reset and step. reset is called at
the beginning of each episode. Its purpose is to reset the environment to an initial
state. In the context of this thesis, the robot is initialized at a random position of the
demonstration (reference state initialization) and the ball is placed accordingly. The
method returns the observation at the beginning of the episode. The step method is
called for each step of the policy. It receives an action from the policy and applies it to
the agent, in this case by moving the feet of the robot accordingly. The simulation is
then advanced and a new observation and the reward are calculated. If the fixed time
horizon of three seconds is exceeded or the early termination condition is fulfilled, the
episode is terminated. The step method returns a new observation, a reward, whether
the episode is finished, and further custom information. For each step, the current state,
actions, and rewards are additionally published as ROS messages to facilitate debugging
and visualization of the information. At the end of an episode, the episode reward is also
logged.

To make the different states easily interchangeable, they have been implemented as classes
extending a common superclass. For the reward, a WeightedCombinedReward is used that
contains a list of rewards and their corresponding weights. The different partial rewards
described above can thus easily be combined and weighted in different ways. Figure 4.5
shows the class hierarchy that is used.

The kick that is used for demonstration could be controlled via ROS messages. How-
ever, this would include an asynchronous execution of the kick and the learning process.
Therefore, it would not be possible to perform only one step of the demonstration for
each timestep of the training. Instead, the Python kick wrapper implemented for the
parameter optimization (Section 4.1) is used. It provides methods to reset the kick and
to step forward for a given timestep, as well as methods that provide information about
the current state of the kick, for example its progress or the current trunk pose.

30

4.4. Implementation

op ::X(Ieréay(;el»Env Robot
A apply_action(action)
é reset()
: is_alive(): bool
Env
Robot Demonstration

Stable Baselines 3 .
Demonstration
reset(state)
State

step(state, time): command

Reward
step(action) State <]ﬁ
reset()
J get_state(): array
WeightedCombinedReward | PhaseState
-« rewards: [Reward]
. | OrientationState
weights: [double]
PyBullet Physics Engine .
compute_reward(Env): double | GyroState I_/

BallVelocityReward

compute_reward(Env): double

JointPositionReward

compute_reward(Env): double

Figure 4.5.: Simplified UML class diagram showing the classes used in the learning setup.
The main class is the Env class that implements the OpenAl Gym interface
and is directly used by Stable Baselines 3. It controls the simulator and uses
different other classes to apply an action to the robot, get information from
the demonstration, get the current state, or calculate the current reward.
The state class is implemented by the different classes used in this thesis,
and some examples are shown in the diagram. The reward class is composed
of different other rewards that are weighted and combined to form the final
reward.

31

5. Experiments

To evaluate the setup and implementation described above, and to get a better under-
standing of the underlying mechanics of the learning process, a series of experiments is
conducted. First, the training is run on different observation and action spaces. The
setup is described and the comparison and evaluation of these results is done in Sec-
tion 5.1. The results give an insight into which input and output data makes learning
the motion easier or harder and can presumably also be applied to other similar prob-
lems. To analyze the stability of the obtained motions, another experiment is conducted
on the three best-performing kicks from the previous experiments. In this experiment,
the robot is randomly pushed during the kick and the number of falls is counted. Further
description and evaluation of this experiment can be found in Section 5.2.

5.1. Observation and Action Spaces

5.1.1. Setup

The first set of experiments in this thesis is an ablation study on the observation space
for the policy. An ablation study is a process to determine “the contribution of in-
dividual components to the performance of complex systems by removing [...] these
components” [CH88|. In this case, the individual components are different parts of the
observation spaces, e. g. the pressure sensor readings or the angular velocities of the robot.
Nine different observation spaces are compared, ranging from the ComprehensiveState,
which contains all information available to the robot, to the PhaseState containing no
sensor information. The purpose of the ablation study is to find which additional input
is particularly relevant for the policy to achieve a stable and precise kick, which input
gives no further advantage, and which input might even have a harmful effect on the
policy.

In addition, each of the nine different observation spaces introduced in Subsection 4.3.3
is combined with both of the two action spaces. This line of experiments will be used
to determine whether a cartesian-space output improves the sample efficiency of the
training. This might be the case because the cartesian-space representation might be
more intuitive to understand than the joint-space representation, where more complex
connections between the joint positions and the resulting foot movement exist.

33

5. Experiments

For each of these experiments, the policy is trained for ten million timesteps. This cor-
responds to approximately 150 000 episodes, i.e. 150000 attempts to kick. The reward
function for all experiments is the same, as described in Subsection 4.3.5, the hyperpa-
rameters can be found in Table 4.1.

5.1.2. Evaluation
Evaluation Criteria

The learned kicks presented in this thesis are compared using five different evaluation
criteria: the time to stability, the kicked distance, how often the robot fell, the number
of timesteps required during the learning process, and the visual appearance of the kick.

The time to stability describes the time until the robot reaches a stable position after
the kick, i.e. is not moving around a lot. This is the last time where any of the angular
velocities of the robot are larger than 0.1 rad/s. This criterion is used because a jittery
or unbalanced behavior would result in this time being higher. The ball distance is the
distance the ball was kicked, measured from the starting position of the ball to its final
position, in meters. The number of falls of the robot simply measures in how many
of the robot’s attempts to kick, out of 10 total, the robot fell down. The number of
timesteps required during the learning process describes the timestep where the policy
first reached a reward of 35. From the data available from the experiments, this reward
seems to correspond to a solid kick. While the kick can still be improved after this point,
the time where this reward is reached gives a good indication of how fast the policy
learns to perform a usable kick. Finally, each kick is evaluated visually. This criterion
was added to address problems typically faced in reinforcement learning, like motions
that appear unhuman or do not resemble a kick movement at all.

Evaluation Results

The results of the experiments on observation and action spaces are shown in Table 5.1.
The table shows that overall, stable kicks where the robot does not fall could only be
obtained by some of the state-action combinations, as can be seen from fall rates of 0%
and kick distances similar to the demonstration. The evaluation graphs used to determine
the number of timesteps for each of the experiments are shown in Appendix B.

The first two rows of the table show the PhaseStale, where no sensor input is used
(open loop). For these kicks, no actual reaction to the environment is learned. Instead,
one singular motion is learned by heart. Still, the PhaseState achieves relatively good
results, especially with the JointAction, where the ball distance is even higher than for
the reference motion, and the robot never falls. The OrientationState, where the roll and

34

5.1. Observation and Action Spaces

% & % p

o

% g

Figure 5.1.: Sequence of the robot during the kick with PhaseState and JointAction

pitch from the IMU are included in the state, also reaches very good results. The robot
never falls and the ball distance is high, especially with the CartesianAction. The number
of timesteps required until a reward of 35 is reached is also lower than for the PhaseState.
For this state, the cartesian action works better than the joint action, as can be seen from
the ball distance and visual examination. The GyroState, where the angular velocities are
also included, also leads to kicks where the robot does not fall down. Again, the visual
examination and the ball distance show that the CartesianAction results in a better
kick. The reward threshold of 35 is reached for the CartesianAction after two million
timesteps which is significantly later than for the OrientationState. The JointAction for
the GyroState never reaches the threshold.

The following two states contain information about the foot position or velocity instead
of the IMU data. The results for these states are not very good; both states result in a
high number of falls and no or barely a visual resemblance to the kick. That means that
the robot either does not lift a foot at all or lifts a foot but fails to move it forward in a
kicking way.

The OrientationFootState, again including roll and pitch derived from the IMU, results
in a kick that managed to remain standing. However, the visual analysis showed that
the executed motion does not resemble a kick.

The PressureState, including the pressure sensor information in addition to the kick’s
phase, results in motions that are neither stable nor visually resemble a kick. When
the foot information is also included, the motions, while becoming more stable, do not
improve significantly.

Finally, the ComprehensiveState containing all of the above-mentioned information re-
sults in a stable kick, and the kick learned with the cartesian action even resembles a
kick visually. Still, the performance is much worse than for some of the smaller states
described above.

It can also be seen that the time to stability for almost all of the kicks is near or at the
time limit of the episode. This means that most kicks never reach a point where they
keep standing perfectly still at the end of the episode. Instead, they keep slightly moving
their joints around after the kick is finished.

35

5. Experiments

State Action g;l;;(.fhi; Distance | Fallen rl“(;mfsit))e;:))s Visual
PhaseState Cartesian 2.6 0.246 40% 2210000 v
PhaseState Joint 1.4 0.358 0% | 1050000 v
OrientationState Cartesian | 2.127 0.331 0% 790000 v
OrientationState Joint 3.0 0.199 0% 930000 o
GyroState Cartesian 3.0 0.303 0% | 2000000 v
GyroState Joint 3.0 0.199 0% - o
FootState Cartesian 3.0 0.245 70% - o
FootState Joint - 0.213 100% - X
FootVelocityState Cartesian - 0.006 100% 2810000 X
FootVelocityState Joint 3.0 0.03 10% - X
OrientationFootState | Cartesian 2.997 0.161 0% 870000 o
OrientationFootState Joint 3.0 0.225 0% - X
PressureState Cartesian - 0.289 100% - X
PressureState Joint - 0.002 100% - X
PressureFootState Cartesian 3.0 0.181 40% - X
PressureFootState Joint 3.0 0.067 80% - X
Comprehensive Cartesian 2.99 0.231 0% 1830000 v
Comprehensive Joint 3.0 0.062 0% - X
’ Demonstration 1.433 0.327 ‘ 0% ‘ ‘

Table 5.1.: Results of the experiments on observation and action spaces. Time to stability
is measured in seconds, distance is measured in meters. The percentages of
falls are obtained from ten trials. For the visual examination, v corresponds
to a well-executed kick, o represents a motion that resembles a kick in some
way, for example because a leg is raised, but does not perform a well-defined
kick motion. X corresponds to movements that do not resemble a kick at all.
For the first three evaluation criteria, the best three results are marked in

bold.

36

5.2. Stability

To summarize the findings, the best results are obtained with the PhaseState, Orienta-
tionState, and GyroState. Notably, none of the states where the robot falls down contain
any information about the orientation of the robot, and all states containing this informa-
tion result in stable kicks. In particular, the FootState, FootVelocityState, PressureState,
and PressureFootState do not result in stable kicks and also do not pass the visual ex-
amination. The PhaseState with JointAction results in the overall best kick, with the
best time to stability by a large margin and the best ball distance.

The visual appearance of the kick seem to be better for cartesian actions than for joint
actions. However, the data is not sufficient to conclude that cartesian actions result in
better kicks. With a larger sample size, though, this difference might become significant.

5.2. Stability

5.2.1. Setup

In the next set of experiments, the stability of different setups from Section 5.1 is eval-
uated. This is necessary because in real-world applications, different external forces are
exerted to the robot. These can be due to environmental conditions, for example uneven
ground or pushes from other robots, or internal reasons like wear or backlash of motors.
These conditions are not well modeled in the simulation. Therefore, a policy that per-
forms well in the setup described in Section 5.1 might perform significantly worse under
more imperfect conditions, for example because no sensor input is used.

To simulate external forces that the policy should be robust against, at a random time
during the kick, a force is exerted to the robot from a random direction for a third of
a second. While this model does not perfectly represent systematic deviations on the
robot, e.g. due to motor wear, it models robustness against sudden shoves and should
also reward overall robustness in other cases. During the evaluation, the exerted force is
gradually increased from ON to 250N in steps of 10N. For each force strength, the kick is
run 50 times.

5.2.2. Evaluation

The results of the stability analysis are shown in Figure 5.2. The resistance test has
been run for the three best kicks from the previous evaluation, that is the PhaseState
with JointAction, the OrientiationState with CartesianAction, and the GyroState with
CartesianAction. On the y-axis, the percentage of stable kicks, i. e. kicks where the robot
did not fall down, is displayed. On the x-axis, the force exerted to the robot is shown, as
described in Section 5.2. The analysis clearly shows that while all kicks were very stable

37

5. Experiments

for forces up to 50N, the stability starts to differ for larger forces. For forces between 50N
and 150N, the states containing IMU information (i.e. GyroState and OrientationState)
are clearly more stable than the state without this information (PhaseState). For forces
of more than 150N, all approaches show similar rates of stable kicks.

Resistance against pushes

100 A
x
m
© 80 A
P
v
L
S 60
L
Q
Q
8
[%]
5 40 A
()
(®)]
8
C
]
5 201 —— PhaseState, JointAction
& OrientationState, CartesianAction
—— GyroState, CartesianAction
0 50 100 150 200 250

Force exerted to the robot for 1/3 second [N]
Figure 5.2.: Resistance against pushes. On the x-axis, the exerted force is shown, the

y-axis shows how often the robot stayed stable (higher is better). For each
kick and force combination, the experiment was run 50 times.

38

6. Discussion

In general, the work in this thesis shows good results for the learned kick, as described in
the previous chapter. This chapter focuses on discussing the results of the experiments
and the general setup used in the thesis. In Section 6.1, the findings from the experiments
are discussed. Section 6.2 outlines possible flaws of the setup and threats to the validity
of the findings.

6.1. Experiments

The evaluation of observation spaces revealed that the PhaseState, i. e. the state contain-
ing no sensor information, performed best. At first glance, that is strange because this
policy received the least input. The results can however be explained with the environ-
ment of the agent, which is mainly deterministic. Therefore, a policy that simply learns
one singular action without reacting to its environment can perform surprisingly well
under these circumstances. On the real robot, this simple policy will likely not work as
well because the robot’s environment is much less deterministic, and external influences
like instabilities on the ground or backlash of the motors are added to the system. The
stability analysis supports this hypothesis since the PhaseState was much less stable than
the states containing IMU information.

The high time to stability that was observed for almost all of the kicks, where the
experiments showed that they never reached perfect stability after the kick, is most likely
due to noise in the network input that the policy could not filter out completely. That
would explain the high time to stability for all of the kicks containing sensor data. For
the kicks using CartesianAction, an additional source of noise is the inverse kinematics,
which is not always perfectly deterministic. Both of these problems could probably be
solved by using a low-pass filter on the joint positions, so that the high-frequency noise
is filtered.

The evaluation also showed that some states showed significantly worse behavior than the
simple PhaseState, even though the phase was also included in these states. In theory,
the neural network should have been able to learn to ignore the useless input data and
use only the phase for the motion, as was the case for the PhaseState. However, this
did not happen. The reason for this is probably that, in this case, the phase is only a
very small part of the input. In the PressureState, for example, the pressure information

39

6. Discussion

roll left_lin_x

—— Demonstration 44
PhaseState, JointAction
—— PressureFootState, CartesianAction

2
14
™~ | —— Demonstration

-2 PhaseState, JointAction
—— PressureFootState, CartesianAction
0 20 40 60 80 0 20 40 60 80
(a) Roll of the robot (b) Velocity of the left foot along the x-axis
RLF LLF

44 —— Demonstration
PhaseState, JointAction
—— PressureFootState, CartesianAction

[\ﬂ/

—— Demonstration
PhaseState, JointAction
—— PressureFootState, CartesianAction

0 20 40 60 80 0 20 40 60 80

(c) Front left pressure sensor of the right foot (d) Front left pressure sensor of the left foot

Figure 6.1.: Values of different sensor values during different kicks. The values have been
standardized to have a mean of zero and a standard deviation of 1, like it is
done by Stable Baselines 3 for the observation input. The x-axis measures
the elapsed time since the beginning of the episode in seconds.

uses eight input neurons while the phase is only a single one. When the data from the
pressure sensors is not usable, this makes it difficult to ignore this significant part of
the input. In addition, the pressure sensor and foot velocity information are very noisy
and can show large value jumps. This makes it more difficult to ignore these values
as either the weights or the biases for some neurons have to be reduced drastically. If
this happens for many neurons, the usable network size effectively becomes smaller, thus
making it more difficult to learn the actual motion. The high noise and jumps are clearly
visible in Figure 6.1. In the figure, different sensor values are compared for three different
kicks: the demonstration, the PhaseState with JointAction, which performed well, and
the PressureFootState with CartesianAction, which performed poorly. For the roll, which
worked well when used as input, the curve is rather smooth for all of the displayed kicks.
In contrast, for the velocity of the left foot along the x-axis, it is clearly visible that the

40

6.2. Critical Discussion

values are very noisy for the kick that performed poorly, while the curve is rather smooth
with high jumps for the well-performing kicks. For the values of a pressure sensor on the
right foot, a similar effect can be observed. In Figure 6.1d, for a pressure sensor of the
left foot, the values are much less noisy, but high jumps in the values can be seen. Since
the graphs show the sensor values during the evaluation and not during the training, they
do not perfectly represent the actual input of the neural network during the training.
However, since a fixed variance is used on the output layer of the network during the
training, the values are likely to become even more noisy during the training. This effect
especially affects the sensors that are located close to the feet as the foot positions are
controlled by the network’s output. Inputs derived from the IMU, which is located higher
in the robot, are less affected by noisy network output, further explaining why their data
improved the kick while the other sensor data did not.

Another observation from the experiments is that the ball kick distance of less than 40cm
is very small. The reason for these low values is that the friction values in PyBullet are
not configured correctly. Therefore, the ball is more difficult to push over the ground and
quickly loses its momentum. Unfortunately, a correct model of the frictions could not
be created since no PyBullet configuration that resulted in the desired behavior could
be found. Modeling the rolling frictions so that the ball rolls on the ground was not
successful, and changing the frictions to make the ball slide further also resulted in less
friction between the robot’s feet and the ground, changing the dynamics of the kick.
Therefore, all frictions were kept as their default values. In reality, the demonstration
kick reaches a distance of slightly more than a meter. It can therefore be assumed that
the best of the learned kicks reach similar ball distances.

6.2. Critical Discussion

In the thesis, the training for each of the state-action combinations has only been run a
single time. Running them multiple times will increase the validity of the acquired data
because, due to the randomness included in the reinforcement learning process, some
results might be better or worse than for a single run. However, the results of this thesis
will most likely not be affected because, for different states, a high correlation between
similar input information can be found. For example, most states containing pressure
sensor information performed poorly. Thus, the deduction that this information is not
learned well is natural, even though no further training runs have been done for the exact
same state-action combinations.

Additionally, the hyperparameters were not optimized for the separate state-action com-
binations. Running hyperparameter optimization is computationally expensive because
a lot of different parameter sets have to be tried and evaluated and is therefore not
feasible for a high number of different setups. In related work, the same hyperparam-
eters are often used for different but similar problems (c.f. [Pen+20]), and in general,

41

6. Discussion

PPO is relatively robust to hyperparameter changes. Therefore, while a hyperparameter
optimization would certainly improve the outcome, especially with regards to sample
efficiency, the results of this thesis are not fundamentally flawed, and the usage of the
same hyperparameters reflects common practices.

Also, the architecture of the neural network could be adapted for better results. The
fact that larger states were not as successful as smaller states might show that the neural
network size is too small for the problem. However, a network size of 512x512 layers is
frequently used in reinforcement learning.

Another problem of the setup in this thesis might be the task reward function. Currently,
it only rewards a small part of the motion, the part from the kick time until half a second
later. This produces a sparse reward situation, where the reward is oftentimes difficult or
impossible to reach. A possible improvement of the reward function might be to include
the distance between the kicking foot and the ball, so that the agent is guided towards
moving the foot to the ball. However, this form of reward could result in a motion that
does not kick the ball and instead just moves the foot near the ball and slowly pushes
it forward. Hence, careful reward shaping would have to be done, or other approaches,
like learning the reward function [Chr+17] could be investigated. Additionally, the kick
direction of the ball could be included into the reward function to avoid obtaining kicks
that kick well but at an undesired angle. Regarding the imitation reward, the currently
used partial rewards could not be optimal, as neither these rewards nor their weights
have been evaluated.

A general problem of learning from demonstration is also that the type of motion that
can be learned is limited by the demonstration. Thus, a fundamentally different motion
that solves the task better would never be found in the training. However, this drawback
is also an advantage because no motions that exploit the simulation or would not be
applicable to the real world can be found, either.

42

7. Conclusion

In this thesis, an approach for learning motions from demonstration with deep reinforce-
ment learning was implemented. It was used to learn to kick, which is valuable in the
RoboCup soccer domain. Different observation and action spaces were compared and
evaluated. Additionally, the stability of the best-performing kicks was compared.

Overall, the work in this thesis showed that good results for learning a kick motion
with reinforcement learning could be achieved. The excellent performance of the open-
loop approach shows that a straightforward imitation learning setup without any sensor
input can already improve existing solutions and perform comparably well in simulation.
Adding sensor input, especially information about the robot’s orientation, drastically
improves its stability while still achieving a performance advantage compared to the
demonstration. Using noisy sensor data, for example foot pressure sensor readings or
foot velocities, resulted in particularly poor performances. The comparison of cartesian
and joint action spaces showed promising results for cartesian-space actions. These results
should be further investigated to show if they are actually significant.

In future work, the results of this thesis could be transferred to the real world. To achieve
a working kick in the real world, techniques such as a low-pass filter for the actions and
domain adaptation could be used. A hyperparameter optimization could be performed
for the best-performing state-action combinations to improve the performance of the
learning process. A performance comparison for cartesian and joint actions could also
be made. This analysis could be similar to [PP17]|, where different action spaces are
compared on different robots and for different problems, as well as their resistance to
random perturbations and irregular terrain.

In the thesis, only a single kick command (only one ball position and kick direction) has
been learned. In future work, this could be extended to different ball positions and kick
directions, as well as kicking with different feet. For a single neural network, learning
the different kicks with different feet is rather difficult because the motion greatly varies
between kicks, depending on the selected foot, the direction of the kick, and the kicking
side of the foot. To achieve a good generalization, hierarchical approaches could be
investigated instead, with one neural network deciding which foot is used for kicking, and
another neural network then performing the kick, or different networks even executing
different parts of the kick.

43

44

Appendix

45

A. Kick Engine Parameters

The parameter optimization was run with the following objectives:

1. whether the robot fell during the kick (0 if it fell, 1 else)

2. the required timesteps for one kick

3. the maximal ball velocity during the kick

4. the angle between the requested kick direction and the actual kick direction
Objectives 1, 2, and 4 were minimized, objective 3 was maximized.

The resulting kick engine parameters were:

Foot Rise 0.08
Foot Distance 0.17
Windup Distance 0.23
Trunk Height 0.36
Trunk Roll -0.208
Trunk Pitch 0.134
Trunk Yaw -0.007
Move Trunk Time 0.64
Raise Foot Time 0.24
Move to Ball Time 0.13
Kick Time 0.16
Move Back Time 0.15
Lower Foot Time 0.2
Move Trunk Time 0.12
Stabilizing Point X -0.02
Stabilizing Point Y 0.01

46

B. Evaluation Graphs

Evaluation reward Evaluation reward

Evaluation reward

60

50

30

20

10

60

50

40

30

20

10

60

50

40

30

20

10

PhaseState, CartesianAction

2 4
Timesteps (in

OrientationState, CartesianAction

2 4
Timesteps (in

GyroState, CartesianAction

4
Timesteps (in

6
Million)

6
Million)

6
Million)

10

10

10

47

Evaluation reward Evaluation reward

Evaluation reward

60

50

30

20

10

60

50

40

30

20

10

60

50

40

30

20

10

PhaseState, JointAction

0 2 4

Timesteps (in

OrientationState, JointAction

0 2 4

Timesteps (in

GyroState, JointAction

6
Million)

6
Million)

10

10

S LWV VT

4
Timesteps (in

6
Million)

10

Evaluation reward Evaluation reward

Evaluation reward

60

50

40

30

10

60

50

40

30

20

10

60

50

40

30

20

10

B. Evaluation Graphs

FootState, CartesianAction

2 4 6
Timesteps (in Million)

FootVelocityState, CartesianAction

2 4 6 8
Timesteps (in Million)

OrientationFootState, CartesianAction

2 4 6 8
Timesteps (in Million)

10

10

10

48

Evaluation reward Evaluation reward

Evaluation reward

60

50

40

30

20

10

60

50

40

30

20

10

60

50

40

30

20

10

FootState, JointAction

0 2 4 6

Timesteps (in Million)

FootVelocityState, JointAction

10

/“wmvwwwwmww

0 2 4 6 8

Timesteps (in Million)

OrientationFootState, JointAction

0 2 4 6 8

Timesteps (in Million)

10

10

Evaluation reward Evaluation reward

Evaluation reward

60

50

40

30

20

10

60

50

40

30

20

10

60

50

40

30

20

10

B. Evaluation Graphs

PressureState, CartesianAction

2 4 6
Timesteps (in Million)

PressureFootState, CartesianAction

2 4 6 8
Timesteps (in Million)

ComprehensiveState, CartesianAction

2 4 6 8
Timesteps (in Million)

10

10

10

49

Evaluation reward Evaluation reward

Evaluation reward

60

50

40

30

20

10

60

50

40

30

20

10

60

50

40

30

20

10

PressureState, JointAction

M A AN A AW, o0

0 2 4 6

Timesteps (in Million)

PressureFootState, JointAction

0 2 4 6 8

Timesteps (in Million)

ComprehensiveState, JointAction

0 2 4 6 8

Timesteps (in Million)

10

10

10

Bibliography

Literature

[Abr+419]

[Aki+19]

[All416]

[ARL19]

[Ber+11]

[Bes+18]

[Bes+21]

[BES19]

[BGZ19]

[Bro+16]
[BS95]

M. Abreu et al. “Learning low level skills from scratch for humanoid robot
soccer using deep reinforcement learning”. In: 2019 IEEE International Con-
ference on Autonomous Robot Systems and Competitions (ICARSC). 2019,
pp. 1-8. DOI: 10.1109/ICARSC.2019.8733632.

Takuya Akiba et al. “Optuna: A next-generation hyperparameter optimiza-
tion framework”. In: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery € data mining. 2019, pp. 2623-2631.

J. Allali et al. Rhoban Football Club — Team Description Paper. Tech. rep.
2016.

Miguel Abreu, Luis Paulo Reis, and Nuno Lau. “Learning to run faster in
a humanoid robot soccer environment through reinforcement learning”. In:
RoboCup 2019: Robot World Cup XXIII. Springer, 2019, pp. 3—15.

James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: 25th
annual conference on neural information processing systems (NIPS 2011).
Vol. 24. Neural Information Processing Systems Foundation. 2011.

Marc Bestmann et al. Hamburg Bit-Bots and WF Wolves Team Description
for RoboCup 2019 Humanoid TeenSize. Tech. rep. 2018.

Marc Bestmann et al. “Wolfgang-OP: A Robust Humanoid Robot Platform
for Research and Competitions”. Accepted for IEEE-RAS International Con-
ference on Humanoid Robots. 2021.

Frederico Bormann, Timon Engelke, and Finn-Thorben Sell. “Developing a
Reactive and Dynamic Kicking Engine for Humanoid Robots”. 2019.

Marc Bestmann, Jasper Giildenstein, and Jianwei Zhang. “High-frequency
multi bus servo and sensor communication using the Dynamixel protocol”.

In: RoboCup 2019: Robot World Cup XXIII. Springer, 2019, pp. 16-29.
Greg Brockman et al. OpenAl Gym. 2016. arXiv: 1606.01540 [cs.LG].

Michael Bain and Claude Sammut. “A Framework for Behavioural Cloning.”
In: Machine Intelligence 15. 1995, pp. 103—-129.

20

https://doi.org/10.1109/ICARSC.2019.8733632
https://arxiv.org/abs/1606.01540

[But-+30]

[CHSS]

[Chr+17]

[Com20]

[Com21]

[Dua+16]

[Hee+17]
[HL95]
[1C20]

[KA9S|

[Kak01]

[KBP13]

[Li+21]

[MLR11]

[Oza+20]

Literature

Stephen Butterworth et al. “On the theory of filter amplifiers”. In: Wireless
Engineer 7.6 (1930), pp. 536-541.

Paul R. Cohen and Adele E. Howe. “How Evaluation Guides AI Research:
The Message Still Counts More than the Medium”. In: AT Magazine 9.4 (Dec.
1988), p. 35. DOI: 10.1609/aimag.v9i4.952.

Paul Christiano et al. “Deep reinforcement learning from human preferences”.
In: (June 2017). arXiv: 1706.03741 [stat.ML].

RoboCup Humanoid Committee. RoboCup Soccer: Humanoid League -
Roadmap from 2020 to 2050. Jan. 2020. URL: https://humanoid.robocup.
org/wp-content/uploads/roadmap_draft2020v1.pdf.

RoboCup Humanoid Technical Committee. Virtual RoboCup Soccer Hu-
manoid League Laws of the Game 2020/2021. Apr. 2021. URL: https :
//cdn.robocup.org/hl/wp/2021/04/V-HL21_Rules_v2.pdf.

Yan Duan et al. “Benchmarking deep reinforcement learning for continu-
ous control”. In: International conference on machine learning. PMLR. 2016,
pp- 1329-1338.

Nicolas Heess et al. Emergence of Locomotion Behaviours in Rich Environ-
ments. July 2017. arXiv: 1707.02286 [cs.AI].

Walter L. Hiirsch and Cristina Videira Lopes. Separation of Concerns. Tech.
rep. 1995.

Xin Jing and Xinxin Chen. Ezxtended Abstract of Team ZJUDancer. Tech.
rep. 2020.

Hiroaki Kitano and Minoru Asada. “The RoboCup humanoid challenge as
the millennium challenge for advanced robotics”. In: Advanced Robotics 13.8
(1998), pp. 723-736.

Sham M Kakade. “A natural policy gradient”. In: Advances in neural infor-
mation processing systems 14 (2001).

Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in
robotics: A survey”. In: The International Journal of Robotics Research 32.11
(2013), pp. 1238-1274.

Zhongyu Li et al. Reinforcement Learning for Robust Parameterized Locomo-
tion Control of Bipedal Robots. 2021. arXiv: 2103.14295 [cs.RO].

Judith Miiller, Tim Laue, and Thomas Rofer. “Kicking a Ball — Modeling
Complex Dynamic Motions for Humanoid Robots”. In: RoboCup 2010: Robot
Soccer World Cup XIV. Springer, 2011, pp. 109-120.

Yoshihiko Ozaki et al. “Multiobjective Tree-Structured Parzen Estimator
for Computationally Expensive Optimization Problems”. In: Proceedings of
the 2020 Genetic and Evolutionary Computation Conference. Association for
Computing Machinery, 2020, pp. 533-541. DOI: 10.1145/3377930.3389817.

ol

https://doi.org/10.1609/aimag.v9i4.952
https://arxiv.org/abs/1706.03741
https://humanoid.robocup.org/wp-content/uploads/roadmap_draft2020v1.pdf
https://humanoid.robocup.org/wp-content/uploads/roadmap_draft2020v1.pdf
https://cdn.robocup.org/hl/wp/2021/04/V-HL21_Rules_v2.pdf
https://cdn.robocup.org/hl/wp/2021/04/V-HL21_Rules_v2.pdf
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/2103.14295
https://doi.org/10.1145/3377930.3389817

[Pen+18]

[Pen+20)]

[PP17]

[PV19]
[Qui +09]
[Raf+19]

[RB10]

[Riz+19]

[Rupl7]

[SB15]

[Sch+12]

[Sch-+15]

[Sch-+16|

[Sch-+17]

[Sch97]

Literature

Xue Bin Peng et al. “DeepMimic: Example-Guided Deep Reinforcement
Learning of Physics-Based Character Skills”. In: ACM Transactions on
Graphics (TOG) 37.4 (Apr. 8, 2018), pp. 1-14. arXiv: 1804 . 02717v3
[cs.GR].

Xue Bin Peng et al. Learning Agile Robotic Locomotion Skills by Imitating
Animals. Apr. 2, 2020. arXiv: 2004.00784v3 [cs.R0O].

Xue Bin Peng and Michiel van de Panne. “Learning locomotion skills using
DeepRL". In: Proceedings of the ACM SIGGRAPH / Eurographics Sympo-
sium on Computer Animation. ACM, July 2017. por: 10.1145/3099564 .
3099567.

Pedro Penia and Ubbo Visser. “Adaptive Walk-Kick on a Bipedal Robot”. In:
RoboCup 2019: Robot World Cup XXIII. Springer, 2019, pp. 213-226.

Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

Antonin Raffin et al. Stable Baselines3. https://github. com/DLR-RM/
stable-baselines3. 2019.

Stephane Ross and Drew Bagnell. “Efficient Reductions for Imitation Learn-
ing”. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Vol. 9. Proceedings of Machine Learning Research.
PMLR, May 2010, pp. 661-668.

Aulia Khilmi Rizgi et al. FROS - Team Description Paper for Humanoid
KidSize League, RoboCup 2019. Tech. rep. 2019.

Philipp Ruppel. “Performance optimization and implementation of evolution-
ary inverse kinematics in ROS”. Master’s Thesis. Universitdt Hamburg, June
2017.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Intro-
duction. MIT press, 2015.

Max Schwarz et al. “NimbRo-OP humanoid teensize open platform”. In: In
Proceedings of Tth Workshop on Humanoid Soccer Robots, IEEFE-RAS Inter-
national Conference on Humanoid Robots, Osaka. Citeseer. 2012,

John Schulman et al. “Trust region policy optimization”. In: International
conference on machine learning. PMLR. 2015, pp. 1889-1897.

John Schulman et al. “High-Dimensional Continuous Control Using Gener-
alized Advantage Estimation”. In: 4th International Conference on Learning
Representations. 2016. arXiv: 1506.02438v6 [cs.LG].

John Schulman et al. Prozimal Policy Optimization Algorithms. July 20, 2017.
arXiv: 1707.06347v2 [cs.LG].

Stefan Schaal. “Learning From Demonstration”. In: Advances in Neural In-
formation Processing Systems 9 (1997).

92

https://arxiv.org/abs/1804.02717v3
https://arxiv.org/abs/1804.02717v3
https://arxiv.org/abs/2004.00784v3
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.1145/3099564.3099567
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/abs/1506.02438v6
https://arxiv.org/abs/1707.06347v2

Online

[Tak+19] Kanta Takasu et al. Eztended Abstract from CIT Brains 2020. Tech. rep.

2019.

[TWS18] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral Cloning from

Observation. May 2018. arXiv: 1805.01954 [cs.AI].

[Wegl7] Felix Wege. “Development and Implementation of a Dynamic Kick for the

NAO Robotic System”. Bachelor’s Thesis. Hamburg University of Technol-
ogy, 2017.

Online

[1] A Brief History of RoboCup. URL: https://www.robocup.org/a_brief_history_
of _robocup (visited on 05/19/2021).

[2] Technical overview — NAO Developer Guide — SoftBank Robotics. URL: https:
/ / developer . softbankrobotics . com / nao6 / nao - documentation / nao -
developer-guide/technical-overview (visited on 05/20/2021).

[3] Jack Clark and Dario Amodei. Faulty Reward Functions in the Wild. Dec. 2016.
(Visited on 12/22/2020).

[4] Megajuice. Reinforcement Learning Diagram. URL: https : / / commons .

wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg (visited on
06/12/2021).

23

https://arxiv.org/abs/1805.01954
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/a_brief_history_of_robocup
https://developer.softbankrobotics.com/nao6/nao-documentation/nao-developer-guide/technical-overview
https://developer.softbankrobotics.com/nao6/nao-documentation/nao-developer-guide/technical-overview
https://developer.softbankrobotics.com/nao6/nao-documentation/nao-developer-guide/technical-overview
https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg
https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg

Eidesstattliche Erklirung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Informatik selbststindig verfasst und keine anderen als die angegebenen Hilfsmittel
— insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt
habe. Alle Stellen, die wortlich oder sinngemé&f aus Vertffentlichungen entnommen wur-
den, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Priifungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 18. Oktober 2021 Timon Engelke

Veroéffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 18. Oktober 2021 Timon Engelke

	Abstract
	Introduction
	Fundamentals
	RoboCup
	Robot Platform
	Inverse Kinematics
	ROS
	Reinforcement Learning
	Proximal Policy Optimization
	Learning from Demonstration
	Multiobjective Tree-structured Parzen Estimator

	Related Work
	Reinforcement Learning for Motions
	Learning from Demonstration
	DeepMimic
	Learning Agile Robotic Locomotion Skills by Imitating Animals

	Other Kick Approaches

	Approach
	Demonstration
	Simulation Environment
	Training
	Training Process
	Network Architecture
	Observation
	Action
	Rewards

	Implementation

	Experiments
	Observation and Action Spaces
	Setup
	Evaluation

	Stability
	Setup
	Evaluation

	Discussion
	Experiments
	Critical Discussion

	Conclusion
	Kick Engine Parameters
	Evaluation Graphs

