UH
_i_ij_
L 2% Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

BACHELOR THESIS

Locating the source of a WLAN signal using multiple
robots and Dec-POMDP planning

vorgelegt von

Tobias Kriiger

MIN-Fakultat

Fachbereich Informatik

Studiengang: Software System Entwicklung
Matrikelnummer: 6919298

Abgabedatum: 17.08.2020

Erstgutachter: Dr. Mikko Lauri

Zweitgutachter: Michael Gorner

Abstract

Gathering information with multiple robots in a decentralized manner is an interesting alter-
native to the use of human resources. However, to solve information gathering tasks without
communication and under uncertainty, we require a reasonable approach.

Decentralized partially observable Markov decision processes (dec-POMDPs) can be used to
model decentralized decision-making problems like an information gathering task even under
uncertainty.

This bachelor thesis applies dec-POMDP to a signal source localization task to demonstrate
the possibility of solving a continuous-state information gathering problem with a non-linear
policy graph improvement (NPGI) algorithm. For the task we propose, multiple robots have
to gather potentially noisy signal strength measurements in different locations, so that we
can estimate the location of a WLAN signal source.

To solve this task, we introduce a software system that can be deployed on two Turtle-
Bot2 robots and a central server. The central server utilizes an NPGI algorithm to plan and
distribute policies to the two robots. Afterward, both robots gather signal strength measure-
ments according to their policy. Finally, the central server aggregates all taken measurements
to estimate a Wi-Fi router’s location that serves as the WLAN signal source.

With this system, we conduct physical experiments to demonstrate that it can be applied to
a real-world scenario. Additionally, we also simulate a higher number of experiments with
the same system to compare its efficiency to a random movement baseline. Both approaches
yield similarly good estimations of the WLAN signal source location for the experimental
environment we use.

Zusammenfassung

Das Sammeln von Informationen mit mehreren dezentralisiert arbeitenden Robotern stellt
eine interessante Alternative zur menschlichen Arbeitskraft dar. Um jedoch eine solche Auf-
gabe der Informationserfassung ohne Kommunikation und mit potenziellen Ungenauigkeiten
zu I8sen, bendtigen wir einen angemessenen Ansatz.

Dezentralisierte teilweise beobachtbare Markov Entscheidungsprozesse (dec-POMDPs) kon-
nen genutzt werden, um dezentralisierte Entscheidungsfindungsprobleme wie zum Beispiel
Aufgaben zur Informationserfassung zu modellieren. Dies ist sogar dann mdglich, wenn bei
der Erfassung von Informationen Unsicherheiten vorliegen.

Im Rahmen dieser Bachelorarbeit wenden wir dec-POMDP zur Lokalisierung von Signalquellen
an, um zu demonstrieren, dass es moglich ist eine Aufgabe zur Informationserfassung mit
einem kontinuierlichen Zustandsraum durch einen NPGI-Algorithmus (non-linear Policy Graph
Improvement) zu I3sen. Die vorgeschlagene Aufgabe sieht vor, dass mehrere Roboter an unter-

Abstract

schiedlichen Stellen Messungen von Signalstarken aufnehmen, die eventuell Ungenauigkeiten
aufweisen konnen. Mit den aufgenommen Messungen ermitteln wir dann die ungefdhre Posi-
tion einer WLAN-Signalquelle.

Um diese Aufgabe zu lésen, stellen wir ein Software-System vor, welches auf zwei TurtleBot2
Robotern und einem zentralen Server eingesetzt werden kann. Der zentrale Server benutzt
den NPGI-Algorithmus, um Befehlssitze fiir die beiden Roboter zu planen. AnschlieBend
sammeln die beiden Roboter Messungen der Signalstdrke entsprechend ihres jeweiligen Be-
fehlssatzes. Die aufgenommenen Messungen werden abschlieBend zur Auswertung an den
zentralen Server gesendet, um die ungefdhre Position des Wi-Fi Routers, welcher als Quelle
des WLAN Signals dient, zu bestimmen.

Mithilfe dieses Systems fiihren wir mehrere Experimente durch um zu demonstrieren, dass
es auf ein Szenario in der echten Welt angewendet werden kann. Dariiber hinaus fiihren
wir auch eine grolere Menge an Experimenten in Simulation durch, sodass ein Vergleich
zwischen unserem und einem auf zufélligen Bewegungen basierenden Ansatzes moglich ist.
Wir stellen fest, dass beide Ansdtze dhnlich gute Anndherungen an die echte Position der
WLAN-Signalquelle fiir die gewdhlte Experiment-Umgebung erzeugen.

Contents

(I__Introduction|
[1.1 Background and Motivation|o L
[L.2 The Scope of this Thesis|

|2 Background Knowledge and Related Work|
.1 Particle Filterl
[2.2° Robot Navigation|
2.3 dec-POMDP: Basic Principals|.
[2.3.1 The Planning Algorithm for Information Gathering dec-POMDPs| . . .
[2.3.2 Other Applications of dec-POMDP|
[2.4 Signal Source Localization|.

3 Methodology|
[3.1 Wi-Fi Signal Strength modeling|
[3.2 Source localization using dec-POMDP|
B.3_ Software Architecturel
[3.3.1 Dec-POMDP Package|.
[3.3.2 Client Package|.
[3.3.3 Server Packagel

|4 Experimental Setup|

.....................................

E Resul Di =il
[5.1 Real-world Experiments|
5.2 Challenges

b.2.1 Collision Avoidancel
[5.2.2 Time Consumption of Physical Experiments|
[5.3 Simulated experiments|.

35)
44
44
45)
46

1 Introduction

1.1 Background and Motivation

With billions being invested into space exploration [OECD: Organisation for Economic Co-
operation and Development 2014] and more than 80 percent of the world's oceans unmapped,
unobserved and unexplored [National Oceanic and Atmospheric Administration |2018], there
are a lot of open research topics for which the gathering of information through human ex-
ploration is merely unreasonable. It requires a lot of effort and investment to keep humans
safe in such hostile environments like outer space or the deep sea. Therefore, it is often easier
and more sensible to use robots developed for information gathering tasks in those areas, to
minimize human exposure to danger.

Robots can be specifically constructed to withstand specific environments and are thus ideally
suited to complete information gathering tasks in outer space, underwater and in areas with
extreme temperatures or biological hazards.

Furthermore, there are a few more basic examples where information gathering through
robots could be useful, even though not strictly necessary. For instance, multiple robots
could patrol a perimeter and gather information about their surroundings to detect suspicious
activities, as suggested in 'Robot Plans Execution for Information Gathering Tasks with Re-
sources Constraints’ [Wang, Dearden, and Hawes 2015]. Another interesting example could
be the application of drones and robots to gather information on public Wi-Fi networks and
their access points. This information could then be used to find the nearest access point
of a particular network or advise users which public network has the strongest reception in
their location. Previous work in this area has applied crowdsourcing techniques to localize
the source of a Wi-Fi signal [Wu and Luo 2015]. However, this strategy does require an in-
centive to motivate people to help and collect the necessary information [Wu and Luo 2014].
Information gathering through robots could potentially be used in this area to fill in missing
data or replace the crowdsourcing approach entirely.

But since robots other than humans cannot rely on intuition and instead require an ex-
plicit instruction set to complete a task, the question arises what the best instruction set for
a specific task might be.

There are many ways to give a robot a set of instructions. First of all, one could pro-
gram the robot with a strictly defined behavior that would generate instructions based on its
observations. It is also possible that this behavior is not directly defined by a programmer,
but instead through a machine learning algorithm or artificial intelligence. Thirdly, and for

1 Introduction

the given proposal more importantly, a planning algorithm could generate a set of instructions
and send it to the robot. It would specifically design the plan to solve the task ahead so that
the robot is not required to make complex decisions while executing it. Instead, the robot
repeats what the planning algorithm determined to be the best course of action step by step.
This approach would also make it possible to coordinate multiple robots ahead of their de-
ployment, without relying on them to communicate during the execution of their information
gathering task.

One way to achieve this preplanning for multiple robots is by using the dec-POMDP frame-
work. Dec-POMDP stands for decentralized Partially Observable Markov Decision Process
and is a mathematical framework. It is generally used to model cooperative tasks with multi-
ple agents working together to achieve a common goal, while also accounting for a partially
unknown environment and missing communication between those agents [Oliehoek and Am-
ato 2016]. A planning algorithm for dec-POMDPs can create a joint policy considering all
the possible actions and states and derive local policies for all the used robots from it. These
local policies are instruction sets executed by the robots to accomplish a certain part of the
goal. Because of the planning stage, each robot’s local policy is designed to complement the
others, without requiring direct cooperation.

This approach can be used to solve continuous-state information gathering tasks in simu-
lation [Lauri, Pajarinen, and Peters |2020] and could potentially be applied to a few of the
examples and research topics mentioned above. This thesis demonstrates that dec-POMDP
can also successfully be applied to model a continuous-state information gathering task in a
real-world environment. As an example, we implement a signal source localization task.

1.2 The Scope of this Thesis

This thesis aims to demonstrate that we can use dec-POMDP to model a signal source lo-
calization task with a continuous state space and that a planning algorithm can be applied to
find an efficient solution to the modeled problem. For this purpose, we implement, test and
evaluate a small example with two robots as agents.

The task itself is to locate the source of a Wi-Fi signal, and the agents we use are two
TurtleBot2s El which can take signal strength measurements. To get an estimate of the
Wi-Fi router’s location, we use a particle filter to evaluate the taken measurements. The
evaluation process as well as the dec-POMDP algorithm are running on a central computer
that can communicate with the robots before and after a complete run.

In contrast to other related work outlining the dec-POMDP framework’s application to co-
operation tasks with a clearly defined goal like the grid meeting problem described in [Eker
et al. 2011], this task does not have a clear goal state. Instead, it only defines the maximum

'TurtleBot2 is a Robot with an open hardware design by the Open Source Robotics Foundation. More
information available at: https://www.turtlebot.com/turtlebot2/, Accessed: 16.08.2020

https://www.turtlebot.com/turtlebot2/

1.2 The Scope of this Thesis

number of execution steps. Each of the execution steps consists of a movement action and
taking a signal strength measurement. After all robots have reached this execution step limit,
a run is considered to be complete, and the evaluation is triggered.

The robots used for this bachelor thesis have been supplied with additional hardware by
the TAMSE] research group. However, the original robot TurtleBot2 is equipped with every-
thing necessary to recreate the experiment. The additional hardware equipment added to the
robot contains a laser-scanner and a laptop with more computational power than the original
netbook. This upgrade helps the robot with its basic movement capabilities and path-finding
skills. Therefore, using otherwise equipped TurtleBot2s may result in different execution times.

The proposed information gathering task environment is the robotic lab at the TAMS re-
search group. Each of the robots is equipped with a predefined map of the area to enable
path-finding. A smartphone is placed in the environment ahead of time to function as the
Wi-Fi router that is supposed to be located.

The implementation of a planning algorithm for dec-POMDPs is not a part of this the-
sis. Instead the algorithm provided by Mikko Lauri et al. in "Multi-agent active information
gathering in discrete and continuous-state decentralized POMDPs by policy graph improve-
ment" [Lauri, Pajarinen, and Peters 2020] is used and adjusted to fit this particular example.
First of all, that means defining a discrete action and observation space. Secondly, it means
implementing a way for the robots to execute the policies generated by the algorithm.

This thesis's main contribution is implementing a system to run multiple experiments for
the above-described example task in a real-world environment and evaluating the findings. In
particular, it aims to compare the benefits and drawbacks of using a dec-POMDP algorithm
to complete an information gathering task. To achieve this, we set a baseline by implementing
a random movement strategy. Instead of following a policy, each robot chooses its next loca-
tion at random when this strategy is used. Experiments with the random movement approach
are using the same environmental variables as the planning algorithm so that we can directly
compare the results of both approaches to one and other. To gain a sufficiently large set
of data for the comparison between the dec-POMDP approach and the random movement
baseline, we also conduct several experiments in a simulated environment.

2Technical Aspects of Multimodal Systems (TAMS) is a research group at the University of Hamburg

2 Background Knowledge and Related
Work

The following chapter gives an insight into the technologies used in this thesis by describing
how they work and why they are important to this thesis. It also discusses other works
related to dec-POMDP and signal source localization to better place the proposed information
gathering task.

2.1 Particle Filter

A particle filter is a way to represent a probability distribution through a set X; of M so-
called particles at the time ¢ [Thrun, Burgard, and Fox 2005]. These particles each represent

a sample from the distribution. Therefore they always consist out of a value xlEm] describing

their position and a weight value wt[m} that describes the probability at the particles position.
The weight of a particle defines its importance and increases with higher probability. A lower
probability results in lower weight and, therefore, lower importance. The set of all particles

and in particular their weights represent the belief of the particle filter.

For this thesis, a particle filter is used to estimate a Wi-Fi router’s location in the real
world. That means each particle represents a possible location of the router and the proba-
bility of it being in exactly that location. The belief of the particle filter could, for example,
be represented using a map containing color-coded pixels to make the result more easily un-
derstandable for humans.

To get a belief that represents a good estimation of the true probability distribution, the
particle set has to be recursively constructed by a particle filter algorithm. Throughout this
thesis, we use the sequential importance resampling (SIR) algorithm with the adaptive re-
sampling method [Sarkkad [2013} p. 124-126]. To use this algorithm, first the starting set of
M particles has to be initialized by sampling at random from the state space. The starting
weight for each particle is 1/M.
During each iteration we sample M particles from the importance distribution p(x¢|u, x¢—1),
which is based on the previous state of the particle x;_1 and the control value u; at the cur-
rent time step ¢. The control value in our case for example is a signal strength measurement
[Thrun, Burgard, and Fox 2005].

[m]

Using the new particle and the control value taken at the current time step, the weight w;

2 Background Knowledge and Related Work

for the given particle can be calculated using Equation [Sarkka 2013].

ml m] plugal™)p(al™ ’331[57:1]1)
Wy~ 0 Wi (], Tm]
p(xy |ue, vp_4)

(2.1)

The next step of the algorithm is resampling. However since we use adaptive resampling
the algorithm first checks the effective number of particles which we calculate as shown in
equation [2.2] [Sarkka [2013).

1

Nepf R ————————— 2.2

S W) 22
Only when this number drops below a custom-defined threshold, the algorithm needs to per-
form the resampling procedure. It draws M particles from the previous particle sets in a way
where particles with high weight are potentially drawn multiple times, while particles with
a low weight are potentially not drawn at all. The probability of drawing a specific particle
from the previous set is equivalent to the particle’s weight. Afterward, the algorithm sets the
weight of each particle in the new set to 1/M. This resampling procedure ensures that we
do not have only a few particles with a high weight, while most particles have a weight close
to zero. Instead, we get a distribution that is more focused on a relevant part of the state
space.

The resulting set of particles then represents the belief of the particle filter. With multi-
ple repetitions, this result increases its accuracy.

2.2 Robot Navigation

During the policy execution, each of the agents needs to move to given positions. To do so,
the robots need to locate themselves and plan collision-free paths to said position. For this
thesis, we are using the Adaptive Monte Carlo Localization (AMCL) supplied by the amcIE]
package, which is based on the algorithm introduced in 'KLD-Sampling: Adaptive Particle
Filters’ [Fox 2001]. This package allows a robot to locate itself in an environment based on
laser scans. Furthermore, we are using the move base packageEl, which allows for high-level
interaction with the navigation stack of a robot. It provides an interface where a goal loca-
tion can be supplied and tries to plan and execute a path for the robot to move to a given
destination. In combination with a given map of the environment, the move base package
and the amcl package enable a robot to determine its location on the map and, based on
that, move towards its destination.

AMCL is a localization approach for a two dimensional known map that uses an adaptive
particle filter to approximate the current location of a robot [Fox 2001]. This concept is

!A package by the Open Source Robotics Foundation, Inc Available at: http://wiki.ros.org/amcl,
Accessed 06.08.2020

2A package by the Open Source Robotics Foundation, Inc Available at: http://wiki.ros.org/move_base,
Accessed 06.08.2020

http://wiki.ros.org/amcl
http://wiki.ros.org/move_base

2.3 dec-POMDRP: Basic Principals

described in much more detail by Thrun et al. [Thrun, Burgard, and Fox [2005] and Fox
[Fox [2001]. But since it is a tool the robots used in this thesis need for self-localization, this
section summarises of how AMCL works.

Similar to how we are using particle filters in this thesis to approximate a signal source’s
location, a basic Monte Carlo Localization or MCL for short uses the belief of a particle filter
to portray the potential locations of a robot. Each particle represents a location where the
robot could be, and the weight of the particle represents the likelihood of the robot being in
precisely that location [Thrun, Burgard, and Fox 2005]. The adaptive version of the Monte
Carlo Localization adjusts the sample size for each resampling step while constructing the
particle filter. If the uncertainty of the robot’s location is high, a larger number of samples is
used. If the uncertainty is lower, a lower number of particles is used. This process increases
the particle filter algorithm’s efficiency compared to an algorithm with a fixed sample size
[Fox 2001].

2.3 dec-POMDP: Basic Principals

An essential part of this thesis is the concept of decentralized Partially Observable Markov De-
cision Processes (dec-POMDP). According to Lauri, Pajarinen and Peters "the Dec-POMDP
is a general model for sequential co-operative decision-making under uncertainty" [Lauri,
Pajarinen, and Peters 2020, pp. 2].

That means it is a framework that allows us to model a task using multiple robots as a
set of agents working together towards a common goal, while not requiring any communica-
tion between them. Dec-POMDP can even deal with possible uncertainties during the task
execution, like noise in observations or inaccuracy in actions and the system’s current state.
This section discusses different versions of Markov Decision Processes and explains the basic
principles of the dec-POMDP. It also introduces the heuristic algorithm for information gath-
ering dec-POMDPs that is used throughout this thesis and discusses alternative application
areas for dec-POMDPs.

To better understand what exactly dec-POMDP is, it is helpful to look at Partially Observ-
able Markov Decision Processes (POMDP), decentralized Markov Decision Processes (dec-
MDP), and Markov Decision Processes (MDP). All these different frameworks are compared
to one another in detail in 'The Complexity of Decentralized Control of Markov Decision
Processes’ [Bernstein et al. 2002] and are related to Dec-POMDP, as shown in Figure
Further information on the different versions of Markov Decision Processes can also be found
in [Thrun, Burgard, and Fox [2005] or [Oliechoek and Amato 2016].

According to [Thrun, Burgard, and Fox 2005] a Markov Decision Process assumes a fully
observable environment at all times, but allows for a possible non-deterministic action model.
A planning algorithm, which is supposed to implement MDP, generates a plan enabling an
agent to execute actions based on observations instead of sequentially going through a list of

2 Background Knowledge and Related Work

Figure 2.1 The relationship among different versions of Markov Decision Process models

Ve N\
Dec - POMDP "-|
— ——— —

/ £ N\

. POMDP MDP | Dec-MDP |
\\ \ ’II /

__ \\5 /// /

— ~ .'
N) /"

actions. A plan like this is called a policy. Using the basic MDP model we could implement
a simple task using a single agent in a fully observable environment.

An example of a task that could be modeled as a Markov Decision Process, is a robot that
has to move to a specified destination while avoiding an obstacle as described in [Thrun,
Burgard, and Fox 2005]. This task’s policy would consist of actions that make the robot
move a certain direction and distance towards this destination. These movements do not
have to be accurate, but after each movement, the observation taken by the robot has to
result in an accurate estimation of the current state of the system. In this case, the current
state of the system is the actual location of the robot.

The problem of finding a policy to solve an MDP task that is at least as efficient as a
certain threshold is P-complete [Bernstein et al. 2002|. To determine a policy’s efficiency, we
can calculate its value depending on a reward function that determines the reward for taking
a specific action in a specific state. An implementation example for MDPs can be found in
[Bernstein et al. 2002].

If the state is not fully observable, we need to use a Partially Observable Markov Decision
Process (POMDP). Unlike the basic MDP model, this allows for noise in the observations
that the robot takes while executing a policy [Thrun, Burgard, and Fox 2005]. That means
that the state of the system may be unclear even after the observation. To compensate for
this, a policy generation algorithm has to use a belief state in order to determine the value
of a policy. According to [Bernstein et al. |2002] finding a policy for a POMDP, which is at
least as efficient as a certain threshold, is PSPACE-complete.

When the state is fully observable, but we want to use multiple agents, we can apply the
concept of a decentralized Markov Decision Process (dec-MDP). A task modeled through
dec-MDP makes use of multiple agents that work together to achieve a common goal with-
out requiring any communication with each other. That means a single agent does not know
the overall state of the system. Instead, the state is jointly observable [Bernstein et al. 2002]
and can only be determined by combining the observations of all agents. Likewise, the state

2.3 dec-POMDRP: Basic Principals

transition does not depend on a single action, but instead on the combination of actions
taken by all of the involved agents. To ensure that the goal state will be reached, a planning
algorithm for dec-MDP has to construct local policies for each agent. All of the local policies
together make up a joint policy. The task of finding a joint policy for two or more agents
that solves a given problem optimally is NEXP-hard for two or more robots [Bernstein et al.
2002].

An example of the application of dec-MDP can be found in "Applications of DEC-MDPs in
Multi-Robot Systems" [Beynier and Mouaddib [2011]. They have applied this concept to a
scenario where two robots have to explore eight places of interest, similar to a Mars rover
mission.

Finally, a decentralized Partially Observable Markov Decision Process (dec-POMDP) com-
bines both previously introduced concepts. It makes use of multiple agents like the dec-MPD,
and it allows for inaccuracy in the observations like the POMDP. A formal definition for a
dec-POMDP is the tuple (7,1, S, A;, Z;, P*, P?,b°,p;) [Lauri, Pajarinen, and Peters 2020)
pp. 5-6] where the individual variables are defined as follows:

e T € N is the maximum number of time steps.

I ={1,...,n} is a set of n agents.

S is a finite set of hidden states where s’ denotes the state at time step ¢t € T. The
set of states depends on the initial joint belief 1°.

e A; is the collection of all action sets. Each agent i € I has one finite set of local
actions. Furthermore, we define A as the joint action space where each joint action at
a certain time step consists out of all the local actions taken at that time step.

e 7, is the collection of all observation sets. Each agent i € I has one finite set of local
observations. Furthermore, we define Z as the joint observation space where each joint
observation at a certain time step consists out of all the local observations taken at
that time step.

e P% is the state transition probability. It can be used to determine the probability of a
certain state at the next time step s‘*! based on the current state s* and the combined
action a! € A.

e PZ? is the observation probability. It can be used to determine the probability of a
certain joint observation z'*! based on the state s'™! and the joint action a’ € A.

e b0 € A(S) where A(S) is the space of probability mass functions over S, defines the
joint belief at the initial time step.

e p; is the set of all reward functions which determine the reward at different time steps
t € T. We also define pr to be the function for the final reward at time step T

2 Background Knowledge and Related Work

This definition includes the set of agents I, the set of joint actions A, and the set of joint
observations Z a dec-MDP definition contains [Beynier and Mouaddib [2011]. It also includes
a state transition probability P° and an observation probability P* similar to the ones a
POMDP definition contains [Bernstein et al. [2002]. In contrast to a regular POMDP, the
definition for a dec-POMDP uses the probability of a combined action or observation instead
of the probability of a single action or observation.

Using this definition, we can model an information gathering task like the source localization
proposed in this thesis. The problem of optimally solving a dec-POMDP is NEXP-hard for a
number of robots n where n > 2 [Bernstein et al. 2002].

2.3.1 The Planning Algorithm for Information Gathering dec-POMDPs

This section’s content is based on the work by Lauri, Pajarinen, and Peters [Lauri, Pajari-
nen, and Peters 2020]. It gives an overview of the non-linear Policy Graph Improvement
algorithm (NPGI)E] algorithm they introduce to solve dec-POMDPs that model information
gathering tasks by generating policy graphs for each of the employed agents. These policies
are custom-tailored to the possible actions and observations that the particular agent can
execute or perceive. The individual policies for each agent are called local policies, while the
combined collection of all local policies is called a joint policy.

Local policies are defined as m; = (Qi, i, Vi, \i) for each agent i. Each policy 7; is a
representation of a decision tree with (Q; as a set of nodes, ¢; as the starting node, ~; as
a collection of actions, and \; as a node transition function. An example of how a policy
can be visualized is given in Figure A node always corresponds to an action in ;. It is
also possible that multiple nodes correspond to the same action. In the given example, the
actions are movement instructions that require the robot to move to a certain location. The
node transition function ~; defines outgoing edges for each node. The decision on which edge
gets activated next, is always dependent on the observation made in the current node. In
the example shown in Figure three discrete measurement values are uses as the possible
observations

To generate efficient policies for a dec-POMDP problem, it is necessary to define reward
functions p; for the dec-POMDP that determine how useful it is to execute an action in a
certain state. In the given case, these reward functions are convex functions depending on
the agents’ joint belief. To optimize the joint policy during the planning stage, the expected
sum of rewards obtained when each local policy is executed accordingly should be maximized.
To achieve this, we use the NPGI algorithm.

3The exact implementation we are using can be found under https://github.com/laurimi/npgi Accessed:
14.08.2020

10

https://github.com/laurimi/npgi

2.3 dec-POMDRP: Basic Principals

Figure 2.2 An example of how a policy graph might look like. The actions, in this case, are
movement instructions and the observation that determine along which edges the execution
progresses are discrete measurement values.

go to loc [1]

i go to loc [3]

go to loc [5]

Algorithm 1 NPGI Algorithm according to [Lauri, Pajarinen, and Peters 2020, p. 16]

Input: Policy 7 = (Q, qo,7, \), initial belief &°
Output: Improved policy 7
1: while not converged and time limit not exceeded do

2. B+ FORWARDPASS(r,t°)

3. 1+« BACKWARDPASS(r, B)

4 i VI (0, q0) > VI (10, qo) then w7t
5. endif

6: end while

7: returnm

The algorithm takes in a randomly generated joint policy m and improves it over a set
amount of time or until the expected sum of rewards has converged. This requires two
steps during each iteration. First the forward pass and secondly the backward pass. Both
of these are described in more detail in Lauri, Pajarinen and Peters work [Lauri, Pajarinen,
and Peters 2020, pp. 16-19]. This section only offers a short introduction to convey a better
understanding of the NPGI Algorithm.

The forward pass iterates over all possible paths in the joint policy graph 7 = (Q, g0, 7, A)
and determines the expected belief b, for every joint policy graph node ¢ € Q. It then returns
the set B = {by|q € Q} of all expected beliefs. We can calculate those beliefs for continuous
state problems using a particle filter algorithm.

11

2 Background Knowledge and Related Work

The backward pass in contrast iterates over all nodes ¢! € Q! at time step ¢ in each
agents local policy m; = (Qi, ¢i,0,7i, Ai) and tries to improve them by adjusting the action
for the specific node or the node transition function)\;. For each node, the backward pass
maximizes the nodes values lower bound by finding the optimal action. To always find the
optimal action the algorithm starts at time step t = 7' — 1 and goes backwards from there.
This way the algorithm can directly choose the optimal actions at each iteration, without
planning ahead for future time steps to determine the values of nodes.

After these two steps have been completed, the NPGI algorithm checks whether the new
policy has a higher value then the old one. If it does, the old joint policy gets replaced. If
not, the old one gets used again for the next improvement iteration. To ensure the joint
policy does not get stuck in a local maximum this way, we use some randomization during
the backward pass.

2.3.2 Other Applications of dec-POMDP

In this thesis, we use dec-POMDP to model a signal source localization task, but it is also
interesting to consider other examples of tasks that can be modeled as dec-POMDPs. This
section introduces other applications of the dec-POMDP framework which were implemented
in related works and compares them to the task proposed for this thesis.

One example of how dec-POMDP can be applied, can be found in 'A finite horizon DEC-
POMDP approach to multi-robot task learning’ [Eker et al. 2011]. Eker et al. describe
multiple cooperative tasks for two robots. The two robots each get supplied with a local
policy by a dec-POMDP planning algorithm, which gets trained in a simulated environment
to reach optimal policies for the given problem. This strategy was tested in three examples.
The first task is for the two robots to find each other in a 3x3 grid regardless of their starting
position. The second example added another factor to the first task, by adding a two cells
wide obstacle in the middle of the grid. This results in a U shaped grid, which is more com-
plicated to handle for the robots. The last example mentioned is using two robots to push
a box towards a predefined destination. For this task, the robots had to work together to
achieve a common goal without communicating. [Eker et al. 2011]

The above-described example uses a very different approach to what this thesis is proposing.
Instead of trying to achieve a certain goal state, the example we are proposing is an informa-
tion gathering task. An information gathering task in itself has no goal state. Instead, it is
limited to a predefined time period, after which the gathered information is evaluated to gain
knowledge. Furthermore, Eker et al. suggest using evolution strategies to generate effective
policies in contrast to the NPGI algorithm that we are using [Eker et al. 2011].

Akin et al. [Asik and Akin 2013] propose another more complex example usage of dec-

POMDP. They apply the dec-POMDP framework on a robot soccer game in a simulated
environment to develop team strategies. To find the best policy for a soccer team to win,

12

2.4 Signal Source Localization

they use a genetic algorithm. The most interesting thing about this approach is that they
applied it to an example with five agents, which increases the complexity of the problem
compared to the two robots that we use. However, the task they propose has a clear goal
state, unlike the information gathering task, this thesis introduces.

2.4 Signal Source Localization

Another very interesting area of related work to this thesis are different methods for signal
source localization. This chapter introduces different techniques that can be used to locate
a signal source or a signal receiver. It also discusses different approaches to signal source
localization and indoor localization from related works.

'A Survey of Indoor Localization Systems and Technologies’ by F. Zafari, A. Gkelias, and
K. Leung [Zafari, Gkelias, and Leung [2017] aims to introduce different indoor localization
techniques and compare localization systems that are using these techniques. Unlike this
bachelor thesis, they only consider using these techniques to enable a mobile device to local-
ize itself in an indoor environment. Therefore, their work is not directly comparable to the
work accomplished throughout this thesis. However, the techniques introduced and discussed
in [Zafari, Gkelias, and Leung 2017] are relevant for the signal source localization task pro-
posed in this thesis.

All of the introduced techniques could also be applied to a signal source localization problem,
where instead of multiple known router locations, the mobile device’s location is known at
each point in time. Therefore, it makes sense to consider all of them when deciding how to
implement the signal source localization. This section gives a short overview of all techniques
introduced in [Zafari, Gkelias, and Leung [2017]. It also introduces a different approach to
signal source localization taken by Nikolay Atanasov et al. in their paper 'Distributed Algo-
rithms for Stochastic Source Seeking With Mobile Robot Networks' [Atanasov, Le Ny, and
Pappas 2014].

Angle of Arrival (AoA) is a localization technique that typically uses an array of antennae
to estimate the angle of an incoming signal by calculating the arrival time difference between
the different antennae [Zafari, Gkelias, and Leung [2017]. If we calculate this angle in two
positions, we could estimate our position relative to the signal source or the signal source
location if we know our location. However, this requires an antennae array, which the robots
we are using do not have. Therefore, this technique can not be used.

Time of Flight (ToF) or Return Time of Flight (RToF) are both techniques that
depend on measuring the time it takes a packet to travel between the transmitter and the
receiver. If the value is multiplied by the speed of light, we get the distance between receiver
and transmitter. If these measurements are taken for multiple transmitters, they could be
used for self-localization, as suggested in [Zafari, Gkelias, and Leung 2017]. But if instead
multiple measurements are taken in different locations for one transmitter, they could be used

13

2 Background Knowledge and Related Work

to localize the transmitter. However, this technique requires either strict time synchronization
between receiver and transmitter for ToF, or at least well defined communication between
the transmitter and the receiver. For this thesis however, we do not aim to implement
any additional communication abilities to the transmitter because the information gathering
experiment should show results regardless of the Wi-Fi router used. The implementation this
thesis is proposing does not require the receiver to be connected to the Wi-Fi network.

Received Signal Strength (RSS) is one of the most straightforward approaches for indoor
localization and widely used according to [Zafari, Gkelias, and Leung 2017|. It is the actual
strength measured in decibel-milliwatts (dBm) at the receiver and can be used to estimate
the distance between transmitter and receiver [Zafari, Gkelias, and Leung 2017]. With one
measurement and multiple transmitters, a mobile device's location can be estimated relative
to the transmitters using this approach and basic geometry. But more importantly, this ap-
proach can also be used by utilizing multiple measurements in different locations to localize
one transmitter.

The operating system, combined with the Wi-Fi chip the robots are already equipped with
for our proposed experiment, enables us to measure the received signal strength of nearby
Wi-Fi networks. Unlike the Angle of Arrival approach, this technique does not require any
additional hardware or additional implementations on the transmitter side, like in the ToF or
RToF approach. Therefore, this is the approach we are using throughout this thesis.

According to [Zafari, Gkelias, and Leung 2017| there is a tool called RADAR, which uses
relative measurements of the received signal strength called RSS indicator values to estimate
the location of a user. This tool achieves a median accuracy of 2.94 meters or even 2.5
meters if a Kalman filter is used to improve the result.

The journal paper 'Distributed Algorithms for Stochastic Source Seeking With Mobile Robot
Networks’ [Atanasov, Le Ny, and Pappas [2014] introduces multiple approaches to source
seeking using received signal strength measurements. The most interesting one to this thesis
is a distributed model-based algorithm, which can be compared to the approach that we are
taking.

A network of ten distributed robots is used as sensors to localize a wireless radio signal source.
They introduce a model for the received signal strength for this specific case and use it to
determine the distance between each of the sensors and the signal source. Using this distance,
a particle filter is constructed to estimate the location of the signal source. N. Atanasov et al.
managed to estimate the transmitter’s position within 2.96 meters in a simulated obstacle-
free environment. In contrast to the goal of this thesis however, their proposed solution does
not use a planning algorithm. Instead, the robots try to maximize the mutual information
gradient between their expected measurements and the signal source location during each
step of the experiment.

Another approach to signal source localization is presented by Twigg et al. [Twigg et al.
2012]. They only use a single robot to locate a radio signal source through gradient as-

14

2.4 Signal Source Localization

sisted exploration. Unlike the solution we are suggesting, this approach does not require prior
knowledge of the environment except for information about the fading [Twigg et al. [2012].
Also, their approach does not require any planning ahead of time. However, the presented
algorithm is only designed for a single robot [Twigg et al. 2012], while our approach can
utilize multiple robots.

Instead of using robots, it is also possible to rely on humans to collect the necessary informa-
tion to approximate a Wi-Fi signal source’s location. Through crowdsourcing techniques, it is
possible to utilize users’ mobile devices to collect signal strength measurements [Wu and Luo
2015] [Wu and Luo 2014]. Similar to the technique we are using to approximate the signal
source location, this approach also relies on multiple measurements in different locations to
calculate the probability of the signal source location being in a specific location. But while
we record each measurement with the same hardware, their approach has to deal with mea-
surements taken by various mobile devices. Also, employing robots instead of humans to solve
a signal source localization task eliminates the necessity of incentivizing human participation,
which Wu et al. describe as a big challenge of crowdsensing techniques [Wu and Luo 2014].

15

3 Methodology

This chapter describes the methods used for the practical part of this thesis. In particular, it
explains how we gather Wi-Fi signal strength measurements and how we apply a dec-POMDP
planning algorithm to the signal source localization problem. Furthermore, it introduces the
system we develop for the proposed signal source localization task. This system incorporates
the NPGI algorithm to generate policies, executes the generated policies on two robots, and
evaluates the gathered signal strength measurements to estimate the signal source location.

3.1 Wi-Fi Signal Strength modeling

An essential part of this thesis is providing the robots and the server with methods to handle
measured Wi-Fi signal strengths. To execute a given policy, a Wi-Fi signal strength measure-
ment needs to be taken and converted to a discrete value after each executed action. This
conversion process requires a well-defined method to interpret some signal strength value.
Also, after finishing a policy, the gathered measurements have to be evaluated to approxi-
mate the location of the router.

This section describes how exactly signal strength measurements are taken and evaluated.
We introduce an equation to model the received signal strength, enabling us to construct a
particle filter from signal strength measurements. The model also allows us to empirically
choose intervals for discrete signal strength values, based on the size of the room in which
the experiment is conducted. Furthermore, this section discusses the impact of chance and
orientation on a single measurement and proposes a combination of multiple measurements
and constant rotation during the measuring process to mitigate that impact.

Using the command-line tool iwIistE] with the scanning parameter, the Wi-Fi Adapter in-
stalled on the robots laptop can be instructed to scan all available Wi-Fi networks. The result
of this scan also contains the received Wi-Fi signal strength of each access point in dBm. To
interpret the measured value, it is necessary to convert the dBm value to one of the discrete
signal strength values predefined for the dec-POMDP algorithm.

This can easily be achieved by comparing the measured value with the predefined interval
for each discrete value and converting it to the matching one. To make sure the mentioned
discrete values and their intervals can be used as expected, it is necessary to fit the intervals
to the experimental setup.

Liwlist is a ubuntu command-line tool. Additional information can be found under http://manpages.
ubuntu.com/manpages/xenial/en/man8/iwlist.8.html, Accessed 10.08.2020

17

http://manpages.ubuntu.com/manpages/xenial/en/man8/iwlist.8.html
http://manpages.ubuntu.com/manpages/xenial/en/man8/iwlist.8.html

3 Methodology

Figure 3.1 The RSS model as originally introduced in [Atanasov, Le Ny, and Pappas [2014]

Gy -Lrx

Py + Gy -Lix

~ La(%,Y) = Ln(X.) ()

“Rxy) Location y
Location x
Gy receiver gain L,.: receiver loss
Gzt transmitter gain L, transmitter loss
P,,: transmitter output power R(z,y): noise
Lys(z,y): free space loss Ly, (x,y): multi path loss
Location x: receiver Location y: transmitter

Furthermore, the particle filter evaluation of the acquired results depends on a method to
interpret the signal strength as well. In this case, we do not have to convert the measure-
ments into discrete values. Instead, we compare each measured signal strength value to the
expected value for the distance between a particle and the location where this measurement
has been taken. The comparison between the real and the expected value can be used to
adjust a particle’s weight. Through this method, we can apply the sequential importance
resampling described in section 2.1] to construct a particle filter.

To achieve both, fitting the intervals for the discrete values used in the policies and gen-
erating the expected signal strength for a given distance, it is essential to create a model
first. This model should represent the expected received signal strength value for a certain
distance. It also enables us to empirically choose intervals for the discrete values mentioned
earlier based on the distances we expect to see during an experiment.

To model the received signal strength, a variation of the model suggested in [Atanasov,
Le Ny, and Pappas 2014] is used for this thesis. The original model proposed by Nikolay
Atanasov et al. is shown in equation (3.1]). Figure[3.1]also shows a more detailed explanation
of the original model.

Pm;(x:y) = Pta: + Gta: - Lta: + Gm: - me - Lfs(xyy) - Lm(xvy) - R(l’,y) (31)

P, (z,y) is the received signal strength value with x being the Wi-Fi receiver's location and
y the location of the Wi-Fi transmitter. The equation to calculate this value consists out of
four terms.

18

3.1 WIi-Fi Signal Strength modeling

First of all, there are five experiment specific constants. P, is the transmitter output power
and gets added to Gy, the transmitter gain and G, the receiver gain. The transmitter loss
Ly, and the receiver loss L, are constants as well and get subtracted from the other con-
stants.

The next step is to subtract the Free Space loss Lys(x,y) which is defined as shown in
equation [Atanasov, Le Ny, and Pappas 2014|. Where again z is the location of the
Wi-Fi receiver and y the location of the Wi-Fi transmitter. d is the distance between receiver
and transmitter and f is the transmitted frequency in hertz. For the proposed experiment
this frequency is f = 2.4Ghz = 2.4-10°H z .

Lys(z,y) = —27.55 4 201og 10(f) + 201log 10(d) (3.2)

Subtracting the multi-path loss L,,(x,y) is the third step. However, the proposed experiment
only takes place in a single room. Since the multi-path loss is only relevant if there are solid
obstacles like walls between receiver and transmitter, it can be ignored for this calculation.

The fourth and last step is subtracting R(z,y), which represents the noise. According to
[Atanasov, Le Ny, and Pappas 2014], the noise can be modeled either using a Rician dis-
tribution or a Rayleigh distribution. The choice on which one to use depends on whether
the measurement has been taken in line of sight or not. But again, the proposed experi-
ment only takes place in a single room. Therefore only the Rician distribution defined as
R(z,y) = Rician(b,o,loc) is used. b, o and loc are all constants which we determine by
fitting the curve to values measured in a test scenario.

For the experiment proposed in this thesis, we use a mobile phone as the transmitter and the
Wi-Fi chip of a laptop as the receiver. Both are lacking specifications for gain and loss, and
the transmitter output power is unknown as well. Therefore the first portion of the equation
Py + Gy — Lz + Gy — Lyy consists out of only unknown variables. To compensate
for this circumstance, we set them to 0 and model their impact on the equation through
the Rician function as well. Another potentially viable way to cope with the missing val-
ues would have been to determine them using model fitting. But since the five values get
added and subtracted from each other, the results would differ significantly depending on the
used algorithm and chance. Furthermore, there would be no guarantee that the generated
values would represent the real values at all since a high loss, for instance, could compen-
sate for a high gain. That means it would be an additional effort without any information gain.

With the variables Py, Gy, Liz, Gryy Lyy and Ly, (x,y) all being set to zero, the remain-
ing function can be reduced to the term shown in Equation (3.3)). To use this function as a
model, it has to be fitted to realistic data. In order to achieve this some real world data has
to be recorded and evaluated.

19

3 Methodology

P,o(x,y) = —Lyss(x,y) — Rician(b, o, loc) (3.3)

To gather the real-world data for the model fitting process, we conduct a small experiment.
A robot is placed at distances of one to six meters, and 120 signal strength measurements
are taken at each distance. To determine the impact of the robots orientation on the taken
measurement, these 120 measurements are split up into four different directions with 40 mea-
surements for each orientation.

The hereby gathered data can then be used combined with the fit function supplied by the
module scipy.stats [Virtanen et al. 2020] for Rician distributions, to fit the model for this
thesis. This fitting process determines values for the still missing free variables. Therefore
the rest of this thesis uses the parameters b = 0.009, 0 = 12.551 and loc = —7.001 to
model the signal strength. Figure displays the complete model in combination with all
experimental measurements. The measurements are displayed as box plots for each distance,
and the blue line represents the mean signal strength value for a given distance determined
by the model. The light blue background represents the range of the models’ distribution,
excluding the lowest and highest one percent to improve the display.

Figure 3.2 Test measurements and the resulting model

—— RSS Mean b=0.009, loc=-7.001 and scale=12.551
possible distribution values excluding highest and lowest 1%

| |
w MJ
[=] o
L L

|
ES
o
1

|
(=]
[=]
L

11

signal strength in dbm

| | |
[Ye) [¢+] -
[=] [=] [=]
L L L

1 2 3 4 5 6
distance in m

As one can see from the broad distribution of measurements displayed in Figure the
received signal strength can vary significantly from measurement to measurement. In fact, a
low measurement at a one-meter distance could be worse than a high measurement at a six-
meter distance. Therefore a single signal strength value is not enough to make a reasonable
estimation of the distance between receiver and transmitter. To mitigate the error resulting

20

3.1 WIi-Fi Signal Strength modeling

from the chance involved in taking a single measurement, the robots always take multiple
measurements for each action.

Furthermore, as suggested before, it is also important to consider the impact of the robots’
rotation on the taken measurement. If the Wi-Fi receiver was placed precisely in the middle
of the robot with equally obstructing parts of the robot around it, the orientation should have
no impact. But since the Wi-Fi chip’s exact location is unknown, the received signal strength
might be weakened by obstructing robot parts in some directions.

The left graphic in Figure [3.3] shows what the mean received signal strength for each ori-
entation and distance is in the data set used to fit the model. The four considered directions
are the robot facing away from the router (black), the robot facing right (yellow), or left
(cyan) when view from the router or facing towards the router (magenta). The right chart
displays the mean of all measurements taken for each orientation, disregarding the distance.

Figure 3.3 Mean values from test measurements by orientation

0

~104
-10

—20 4
=204

—40 4
T —304
—40

—60 -

—704

|
1]
=

i

|
wn
=

i

Mean RS5 in dBm
Mean RSS over all distances in dBm

mmm facing away from the router
facing right from the router

—80 | mmm facing towards the router

B facing left from the router —60

T T T T T T T T T T
1 2 3 4 5 B facing away facing right facing towards facing left
Distance in m Crientation

Both bar charts show that the orientation does make a difference for the taken measurement.
If we consider only the right bar chart, it is possible to reason that facing away from the Wi-Fi
router tends to yield the lowest signal strength values. However, if the left chart is taken into
account as well, we can see that facing away from the router does not lead to the lowest
average signal strength for all distances. The difference between orientations in the recorded
data set might be pure chance since no clear trend is visible in the left bar chart in Figure
However, further investigation would lead beyond the scope of this thesis. Therefore it is
important to take measurements independent of the orientation. To achieve this, the robot
not only takes multiple measurements with each action but also rotates slowly while doing
so. This constant rotation ensures that each measurement is taken with a slightly different
orientation, therefore mitigating the orientation’s impact on the overall result.

21

3 Methodology

Figure 3.4 Average time to take a measurement based on 100 measurements

12

11

10

H

time between measurements in secs

To find out how fast a robot has to rotate, we look at the average time it takes to get
a measurement. Figure displays the duration between measurements of an experiment
where one robot took 100 measurements. From this experiment, we can conclude that a
robot needs between four and five seconds to take a measurement on average.

The few outliers where it took longer than nine seconds to take a measurement are not
taken into consideration when determining the rotation. Since, in these cases, it takes double
or triple the duration to get a measurement, these outliers are likely caused by an internal
retry mechanism of the network interface. Therefore, the actual result probably took only
the regular four to five seconds to measure, while the left over time was spent on attempts
without any result. However, this is only a theory where further investigation is not necessary
within this thesis since the impact of seven outliers on the turning speed decision in a sample
size of 100 is negligible.

For the rotation speed, we choose the arbitrary value 0.8 rad, which means that the robot
turns by 0.8 rad ~ 45.84° per second. This way, a full rotation takes the robot approximately
eight seconds, and each measurement is taken during a little more than a half rotation. Fur-
thermore, each of them starts and ends at orientations different from the previous measure-
ment, so that multiple measurements are balancing each other out, therefore mitigating the
impact of the orientation. The main reason behind not going for a full rotation during the
measurement process is that we do not know how exactly the wireless network interface scan
works on different devices. Since only one network out of all the scanned ones is interesting
for us, some of the scanning time might not be relevant for our result. Therefore a full rota-
tion during each measuring process might result in a "blind spot" on the rotation spectrum.

22

3.2 Source localization using dec-POMDP

Moreover, the higher the speed, the higher the risk of the robot tipping over during a rotation.
The rotation speed we chose does not put the robot at risk of tipping over.

3.2 Source localization using dec-POMDP

After explaining the basic principles of dec-POMDP and the NPGI algorithm introduced by
Lauri, Pajarinen, and Peters [Lauri, Pajarinen, and Peters |2020] in the background knowledge
and related work section this section gives an overview of how the planning algorithm is
used for this thesis. Furthermore, it outlines how we apply the dec-POMDP framework to
model a signal source localization task.

The algorithm itself is already explicitly designed to solve information gathering tasks and
has been shown to work on a continuous-state source seeking problem in simulation by Lauri
et al. [Lauri, Pajarinen, and Peters 2020, pp. 26 - 29]. Therefore, we do not make any
changes or additions to the algorithm itself. However, we do need to specify multiple input
parameters in order to fit the algorithm to our real-world example.

First and most important, the planing algorithm depends on a signal strength model that fits
the real world. For this, we use the received signal strength model introduced in section
since it is already fitted to the equipment used in our real-world experiment.

Using this model, we can also empirically choose discrete abstractions for the possible signal
strength values. This is necessary since dec-POMDP requires a finite observation space. The
number of discrete values chosen is crucial to the problem’s complexity and will increase the
planning time. To keep the planning time low, we use three different discrete values:

e High — signal strength > —55dBm
e Medium — —55dBm > signal strength > —65dBm
e Low — —65dBm > signal strength

These thresholds result in the likelihoods of observing a specific discrete value shown in Figure
3.5l

Furthermore, we need to define a collection of actions for the dec-POMDP model ahead of
time. This collection of actions is based on a predefined movement graph, where each node
represents a real-world location. For each connection between locations on this graph, we
define two actions. One that makes a robot move from, for example, location one to location
two and one that makes a robot move from location two to location one. These actions can
then be used by the NPGI algorithm while generating policies to decide which node ¢ € Q
can correspond to which action depending on its predecessor. This way we end up with a
policy that moves a robot along the predefined movement graph. We define this movement
graph separately for each experiment.

After defining the parameters we need to model our signal source localization task using

23

3 Methodology

Figure 3.5 Probability of a discrete value occurring based on the model introduced in Section

4.1

recived signal strength model

0 —— RSS Mean
RSS 5% - 95%
—20 High
E Medium
=l
£ —40 Low
v
[}
o«
—~60
780 4
T T T T T T T T T
o 1 2 3 4 5 6 7 8

distance in m

probability of discrete observations depending on the distance

Iy
o
L

o
™
|

e HIGH
MED
— LOW

o
o
L

o
'S
L

probability

=4
¥}
|

o
o
L

T T T T T T T T T
o 1 2 3 4 5 6 7 8
distance in m

dec-POMDP, we also need to define the parameters that are important for the NPGI algo-
rithm. They have various impacts on the performance of the algorithm and the generated
policies. They are defined separately for each experiment as well and can be explained as
follows [Lauri, Pajarinen, and Peters [2020]:

24

e event horizon

The specified event horizon determines how many time steps each policy takes. Since
an information gathering task has no clear goal state, we need to specify a maximum
number of actions an agent may take. The defined event horizon plus one directly
corresponds to the maximum height of a policy graph. For example, if we run the
planning algorithm with an event horizon of three, it generates a directed graph with a
height of four where all nodes for the first three layers define an action, and all nodes
in the fourth layer are simply marked with an end tag.

policy width

The policy width specifies the maximum width for all policy graphs. For example, a
width of two would result in policies with a maximum of two reachable nodes at each
time step.

improvement steps

The specified number of improvement steps determines through how many iterations
the policies should be improved. If the joint policy value converges before this limit
is reached, the planning process completes sooner. A higher number leads to more
optimal policies, but also linearly increases the planning time.

3.3 Software Architecture

e number of particles
A high number of particles used during the forward pass of the planning algorithm
increases the accuracy of the policy value calculation process. However, it also increases
the planning time.

e number of rollouts
The number of rollouts determines how often the reward of a local policy has to be
calculated during each backward pass to determine the expected sum of rewards for
each agent i that starts at node ¢! where ¢ is the current time step.

e number of particles per rollout
The number of particles that are used during each rollout for the backward pass. A
higher number increases the accuracy of the reward function but also increases planning
time.

e number of agents
Currently, the number of agents is limited to precisely two agents due to the implemen-
tation of the NPGI algorithm we use.

For the simulated source localization experiment Lauri, Pajarinen and Peters used T =
3,4,..,7 as planning horizon, width 2 or 3, 10000 particles, 100 rollouts, 50 improvement
steps and two agents [Lauri, Pajarinen, and Peters 2020)].

3.3 Software Architecture

This section explains the general software architecture used in the practical part of this thesis.
It describes the fundamentals of the Robot Operating System (ROS) we use to implement
our system and introduces the different components we develop to solve the signal source lo-
calization task. Furthermore, this section explains how the various components communicate
and how a user can interact with the proposed system.

We implement the software required for this thesis using the Robot Operating System (ROS).
ROS is a framework specifically designed for the development of robotics software. It can be
used to create applications for a single robot and peer to peer networks of hosts [Quigley et al.
2009]. To discuss an application developed using ROS, it is essential to first introduce the
terminology of the framework as defined in 'ROS: an open-source Robot Operating System’
[Quigley et al. 2009)].

Nodes are processes within a ROS application. They are supposed to logically encase a
part of the system that could theoretically be run independently of all other nodes. In our
case, one node, for example, could be responsible for the execution of policies.

Topics are a way for those nodes to communicate with each other. A node may subscribe
to a topic to receive all the information other nodes publish to it. Publishers and subscribers,

25

3 Methodology

however, are unaware of each other. A node that publishes information to a topic does not
know if any other node receives this information, and a node that subscribes to a topic does
not know whether any other node is publishing information there.

Messages are the data structures that nodes can use to send information over topics. They
can be custom-defined to contain standard primitive types, arrays, or other message types.

Services , in contrast to topics, can be used for synchronous transactions between nodes.
A node that offers a service can be called by another node with a request and returns an
appropriate response. This behavior allows for direct communication between two nodes.

To solve the proposed signal source localization task using dec-POMDP, we design and im-
plement a system including three main components. First of all, a client-side module that
enables the robots to execute a local policy. Second, a module that includes the NPGI al-
gorithm, as introduced by Lauri et al. [Lauri, Pajarinen, and Peters 2020|. Third, a central
module that evaluates taken measurements and establishes the communication between the
client-side nodes and server-side nodes. Furthermore, we introduce an alternative way to start
the client-side module, which, instead of executing a local policy, randomly moves the robot
along a given movement graph.

We implement each of the three main components as a ROS package, which is just a direc-
tory containing a file with a description of the package and its dependencies. For each of
the packages, we also define one or more launch files. A launch file defines instructions to
instantiate one or multiple nodes with a predefined configuration. We can use the roslaunch
tool [Quigley et al. 2009] to execute a launch file.

The final software architecture we end up with for the proposed system is shown in Fig-
ure [3.6] It displays all of the packages and shows how they communicate with each other.

26

3.3 Software Architecture

Figure 3.6 Software architecture of the introduced system

Server-Side
Server Package
Evaluation Node
Particle Filter
Implementation
Subscribers:
- measurements
Dec-POMDP
Package 4
Aggregated
Measurements
NPGI node Communication Node
non-linear Policy Graph - Forward messages
Improvement algorithm Start Policy generation between robots and Server
Services: Services:
Policies
- GeneratePolicies > - StartExperiment
Subscribers: <
- /robotName/heartbeat
- /[robotName/measurements
A
Policy Signal Strength Hearbeat
Measurements
Client-Side
Client Package
Policy Execution NodeY
- Executes Policy
- Gathers Measurements
Heartbeat Node
Publishes:
Services: - Current Positon
’ Get current Status - Name
- GetExecutionStatus < - Status
Subscribers: >
. Status
- "robot_name"/policy

27

3 Methodology

3.3.1 Dec-POMDP Package

The dec-POMDP package generates Policies for the robots. It utilizes an impIementatiorE]
of the NPGI algorithm introduced by Lauri et al. [Lauri, Pajarinen, and Peters 2020]. To use
this algorithm in our ROS environment, we encapsulate it in a ROS node. The introduced
node offers a service that can be called by other nodes to trigger the policy generation. A
request to this service contains all the planning algorithm parameters, as defined in section
The response of this service then contains the two generated policies.

To enable the algorithm to work, we also need to define the actions each robot can take. Since
an action always consists of moving from the current location to a neighboring location and
taking a measurement, we need to define a movement graph. We specify a set of locations
and a set of allowed moves, where the set of allowed moves defines all neighboring locations
for each location. The configuration file defining both of these sets can be adjusted for each
experiment individually.

3.3.2 Client Package

The system’s client-side package is the part we deploy on each TurtleBot2 that we want to use
for an experiment. It consists of three main parts. The first part of the client package is its
dependencies. To provide navigation and localization capabilities, we utilize the move base
and amcl packages introduced in section Additionally, we use the tams_turtlebot]|
package developed by the TAMS-Group to start the nodes that are necessary to interact with
the TurtleBot2 hardware.

Second, each client has a node that enables it to execute a given policy. We design this
node specifically for the source localization task. The execution process begins with the
policy graph’s starting node, performs the defined actions, and progresses according to the
perceived observations. For each action, the execution node performs, the robot has to move
to the specified location. As soon as the robot has reached the action’s goal location, the
policy execution node takes a specified number of signal strength measurements. Afterward,
it calculates the mean value of the taken measurements and converts it to a discrete value, as
described in section [3.2] The policy execution node then progresses to the next node on the
policy graph based on this discrete value. We define the specific amount of measurements
taken in each location through a configuration file similar to the NPGI algorithm parameters.
Once this ROS node executed the policy, it sends all taken measurements to the server for
evaluation.

Finally, each robot has a separate 'heartbeat’ node that publishes messages to a topic at

2The implementation we use was developed by M.Lauri and is available under https://github.com/
laurimi/npgi| Accessed: 13.08.2020

3A ROS package specifically designed to start the TurtleBot2 with the hardware configuration employed by
the TAMS-Group. Additional information can be found under https://github.com/TAMS-Group/tams_
turtlebot|Accessed: 13.08.2020

28

https://github.com/laurimi/npgi
https://github.com/laurimi/npgi
https://github.com/TAMS-Group/tams_turtlebot
https://github.com/TAMS-Group/tams_turtlebot

3.3 Software Architecture

a regular interval. Each of these messages contains the robot’s name, position, and status.
The central server subscribes to these topics published by all robots that are part of the ex-
periment to keep track of them. It uses the name to identify a specific robot and the position
as a starting location for the planning process. The status part of the message specifies the
current status of the robot’s policy execution. The four possible status are listed below:

e MOVING
The robot is currently moving in response to an action issued during policy execution.

e MEASURING
The robot is currently taking signal strength measurements.

e IDLE
The robot is currently waiting for a new policy to execute.

e ERROR
The robot has encountered an ERROR during policy execution. This status could
appear if the policy execution node is, for some reason, unreachable or if either the
measuring or the moving process has failed.

The 'heartbeat’ node has to communicate directly with the policy execution node over a
service to get this status. Therefore, one might suggest combining these two functionalities
into a single node, but we want the "heartbeat’ node to keep sending messages to the server
even when the policy execution node is for some reason unavailable or in a faulty state.

The heartbeat messages technically do not have to be sent regularly for the experiment. The
client-side system can complete an entire policy without any communication to the server
during the execution. The central server only uses these messages to determine which Robots
are available and where they are to start the planning process. Nevertheless, the information
where each robot is at each point in time and what their current status is, is very useful to
us as an introspection method.

The Random Movement Alternative to the regular policy execution utilizes the same
essential dependencies and the 'heartbeat’ node. The only difference is that this alternative
does not offer a node that can execute a policy. Instead, it has a node that randomly chooses
goal positions from a given movement graph and collects measurements at each location the
robot visits. This alternative client setup can be launched through a different launch file and
offers the ability to start an experiment with the random movement enabled.

3.3.3 Server Package

The server package consists of two major parts, an evaluation node, and a communication
node. The evaluation node is responsible for evaluating the signal strengths that were mea-
sured by the deployed robots. The communication node handles all communication between
the robots and all nodes running on the server, like the dec-POMDP planning node and the
evaluation node. This section introduces both of these nodes in more detail.

29

3 Methodology

Evaluation Node

The evaluation part of the system is a ROS node running on the central server, just like
the communication node and the dec-POMDP planning node. lts purpose is to evaluate the
aggregated measurements from all robots and give an estimate of the searched Wi-Fi access
points’ true location. To achieve this, the node makes use of the particle filter, as introduced
in section The final belief of this particle filter is the overall result of the information
gathering task and to construct it this node iteratively evaluates all taken measurements at
the end of the experiment. To get the probability of the signal source location beeing in the
exact location of a particle based on a signal strength measurement this node utilizes the RSS

model introduced in 3.1l
The number of particles the particle filter uses is set through an external configuration file.

Furthermore, the module also visualizes the result using the RVIZ [*| tool. We represent
the particle filters belief using color-coded squares, where a red-colored square represents a
particle with the lowest weight of all particles. For all other particles, the green value of the
color increases, and the red value decreases according to the particles’ weight, so that the
particle with the highest weight is completely green. This way, we get a human interpretable
visualization of the belief state.

Communication Node

To better organize communication between the client-side nodes and all server-side nodes,
we introduce a communication node. Its main purpose is to keep track of all available robots
and forward communication between server and client nodes.

Since the dec-POMDP planning algorithm always needs to know how many robots are avail-
able for the planning process, a single cannot ask for a new policy by itself. Therefore, the
architecture implemented for this thesis is designed with this communication node as a cen-
tral part. It subscribes to each robot’s heartbeat topic to receive their status information and
keep track of all usable agents. When we want to conduct an experiment, we can instruct
this central node to start the process over a service it provides. Calling this service triggers
the node to start the policy generation using all agents that are currently available. As soon
as the dec-POMDP module returns the policies, they get distributed to the robots accordingly.

When all of the robots have finished their policy execution, they send all taken measurements
to the communication node, which aggregates the gathered measurements into a single or-
dered data set and sends this set to the evaluation node. The measurements in the data set
are in the same order in which they were taken by the robots.

*RVIZ is a visualization tool for ROS. More information can be found under http://wiki.ros.org/rviz
Accessed: 13.08.2020

30

http://wiki.ros.org/rviz

4 Experimental Setup

This chapter introduces the environment and the hardware we use for all experiments pre-
sented in this thesis. It presents a map of the room in which we conduct all our experiments
and specifies the exact hardware both robots are equipped with. Furthermore we also intro-
duce the WiFi router that we want to localize.

4.1 The Map

As explained in the section Robot Navigation, each robot needs a predefined map of
its environment to enable navigation. Since all experiments are conducted at the laboratory
of the Technical Aspects of Multimodal Systems (TAMS) work group, we are using a map
of their laboratory. While the original map E] displays the entire floor of the building, our
experiments are only conducted in the robotics laboratory shown in Figure 4.1l The room in
which we conduct all our experiments is about 10m long and 7m wide meters. The obstacles
that are marked within the room are tables, chairs and shelves near the walls and a couch in
the middle.

Figure 4.1 The TAMS work group robotic laboratory (source: https://github.com/
TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/
tams_navigation.pgm)

e . 4
-1

Rt

L ¥ ~% ¥

5 BN ... S

YFull Map supplied by the TAMS Group and available under https://github.com/TAMS-Group/tams_
turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm

31

https://github.com/TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm
https://github.com/TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm
https://github.com/TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm
https://github.com/TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm
https://github.com/TAMS-Group/tams_turtlebot/blob/master/tams_turtlebot_navigation/maps/tams_navigation.pgm

4 Experimental Setup

4.2 The Robots

Figure 4.2 The backside of one the TurtleBot2s that are used to conduct experiments for
this thesis

The robots that are used for all of the experiments conducted throughout this thesis are
two TurtleBot2s. One of the two robots used can be seen in Figure [£.2] Each of the robots
is equipped with a Kobuki BaseE| that enables the robot to move around. Mounted on the
mobile base is a front-facing KinectEl camera and a back-facing laser range finder. The Kinect
camera has a built in depth sensor that can be used to estimate the distance to obstacles in
a field of view with a horizontal angle of 57°, and a vertical angle of 43° [Andersen et al.
2012). The laser range finder mounted on the robot displayed in Figure is a Hokuyo
UTM-30LX 2D laser range finderﬂ This laser rangefinder has a detection range of 270°
and can detect obstacles at distances between 0.1m and 30m or with lower accuracy 60m
[HOKUYO AUTOMATIC CO. 2012]. The other robot we use is equipped with a different
model, the Hokuyo URG-04LX laser range ﬁnderﬁ This device has a smaller detection range
of only 240° and only detects obstacles reliably at distances of up to four meters [HOKUYO
AUTOMATIC CO. [2009]. However, the difference between the two laser range finders does
not have any significant impact on the experiments we conduct since even the one with the
low detection range can detect at least one wall at all times on the map we are using for the
proposed experiments. The robot uses both the Kinect camera and the laser range finder for
self-localization and obstacle avoidance. Furthermore, a laptop is mounted on the robot and

2Kobuki is a Product of YUJIN ROBOT Co, Ltd more information can be found under http://kobuki.
yujinrobot.com/| Accessed: 06.08.

3A Camera originally developed for the Xbox 360 game console by Microsoft https://www.microsoft.com/
Accessed: 06.08.2020

*The Hokuyo UTM-30LX is a scanning laser range finder developed for robots by HOKUYO AUTOMATIC
CO., LTD https://www.hokuyo-aut. jp/search/single.php?serial=169 Accessed: 06.08.2020

5The Hokuyo URG-04LX is a scanning laser range finder developed for robots by HOKUYO AUTOMATIC
CO., LTD https://www.hokuyo-aut. jp/search/single.php?serial=165 Accessed: 14.08.2020

32

http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
https://www.microsoft.com/
https://www.hokuyo-aut.jp/search/single.php?serial=169
https://www.hokuyo-aut.jp/search/single.php?serial=165

4.3 The WLAN Signal Source

connected to the mobile base, the laser range finder, and the Kinect camera. It functions as
the control unit of the robot and is equipped with a Wi-Fi chip.

4.3 The WLAN Signal Source

Throughout this thesis we use a Wi-Fi Router as the WLAN signal source. The exact hardware
we are employing as a Wi-Fi router is a "Huawei P20 Lite’ smartphone. It is configured as a
mobile Wi-Fi hotspot on a 2.4 Ghz frequency. There are two main reasons behind choosing
a smartphone as the signal source. One of the reasons is that a smartphone can be placed
in and moved to arbitrary locations without any additional effort since it does not require an
external power source like a regular Wi-Fi router might. Another reason why we are using a
smartphone for our experiment is that it is possible to see significant differences in received
signal strength inside our experimental environment, as we have shown in section [3.1] The
difference in received signal strength between one and six meters is advantageous to us since
we need an accurate approximation of the distance between the signal source location and
the location where a measurement was taken. If the differences between measurements at
distances of one to six meters were unrecognizable, it would be impossible to approximate the
signal source location within the robotic lab where we conduct all experiments for this thesis.

33

5 Results and Discussion

For this thesis, we conduct several experiments to show that dec-POMDP can successfully be
applied to a signal source localization task. This chapter gives an overview of the conducted
experiments and compares them to each other. We also introduce a baseline for the proposed
source localization task, by conducting experiments with the robots moving randomly between
possible locations. Additionally to the physical runs, we conduct a more significant number
of simulated experiments using both the random movement and the dec-POMDP approach.
This enables us to compare the average results of both approaches, and we can show that
the dec-POMDP approach yields similar or slightly better results than the random movement
strategy. To put this thesis into better perspective, this chapter also discusses challenges that
we encountered during the experimental runs.

5.1 Real-world Experiments

Before discussing our implementation’s efficiency, we demonstrate that our approach is work-
ing as intended and can be used to solve the proposed signal source localization task. To
achieve this, we present one full experimental run and discuss its results in this section. Fur-
thermore, we present the results of other physical executions to demonstrate the capabilities
of the introduced system further.

The physical experiment we use to demonstrate our approach’s exact functionality is con-
ducted as follows:

First of all, the two robots and the mobile phone, which acts as the Wi-Fi router, are placed
at arbitrary locations in the room. The two robots both have to be localized manually to
enable their navigation. For evaluation purposes, the Wi-Fi router location is documented
as well. Furthermore, the movement graph for the dec-POMDP planning algorithm has to
be defined ahead of time as well. For this specific experiment, eight predefined locations are
used to form the movement graph shown in Figure 5.1]

Each of the blue dots in Figure represents a location a robot could visit and the
blue lines indicate which locations the robot could move to from its current position. The
real world location of the Wi-Fi router is represented using a purple square and the real world
locations of the two robots are depicted as short arrows, where the orientation of the arrow
indicates the orientation of the corresponding robot. Figure shows both robots in their
starting locations right after self localization but before executing any actions to solve the
source localization task. For the planning algorithm the movement graph location nearest to

35

5 Results and Discussion

Figure 5.1 The movement graph, the starting locations of both robots and the location of
the Wi-Fi router for the experiment described in Section

A T T T g

a robot is considered its starting location. However, that does not necessarily mean the first
action is to visit that location. Instead, the best action according to the planning algorithm
might be moving to an adjacent location.

After completing this preparation work the NPGI algorithm is run to construct optimized
local policies for the two robots. For the planning process itself we use the actual parameters
shown in Table[5.1] We introduced the parameters for the planning algorithm in section
and the client and evaluation parameters in section [3.3]

Table 5.1 Experiment parameters for the experiment described in Section

Planning algorithm parameters

Event Horizon 3 Policy Width 2

Improvement Steps 4 Rollouts 100

Particles for Planning 1000 || Particles for each Rollout | 100
Client and Evaluation parameters

Measurements per action ‘ 5 H Particles for Evaluation 1500

The planning algorithm generates local policies for the two used robots based on these param-
eters. Figure displays the two policies that were generated for this specific experiment.
Each node in the displayed graph represents one state the robot could be in and the outgoing
edges of a node define how a robot should proceed after executing the action defined by the
current node.

36

5.1 Real-world Experiments

Figure 5.2 The two local policies that were used for the experiment presented in section
(a) Policy for Agent 0 / donny (Turtlebot) (b) Policy for Agent 1 / Leo (Turtlebot)

go to loc [7] go to loc [1]

mid)low

mid)low

(a) (b)

An action consists of moving to a given location and taking a measurement. It is always noted
as 'go to loc’ and the goal locations number. The action 'go to loc [7]" for example means
move to location 7 and take a measurement there. The location numbers all correspond to
a specific location on the movement graph shown in Figure 5.1l The policy execution always
starts at the starting node specified by the planning algorithm. In this case the starting nodes
are the only top level nodes of both graphs respectively. The next node is picked based on
the observation that was made during the previous action.

The observations for this experiment are generated from the mean of 5 signal strength mea-
surements. Which discrete observation this mean value is translated to is defined through
the intervals introduced in section Every signal strength value higher than —55dBm
translates to high and every value below —65dBm gets interpreted as a low value. Every-
thing in between is viewed as mid. The discrete values that were observed throughout this
experiment are displayed in Figure[5.3] The colored dots on top of the blue dots, which mark
the locations, depict the discrete values that were used to decide on the next location to
travel to. A green circle marks a 'high’, a dark orange circle marks a ‘'mid’ and a red circle
marks a 'low’ observation.

Figure also depicts the robots as short filled arrows in their starting locations and
the movements they conducted throughout the experiment as empty arrows in the same
color. Each of the empty arrows represents the action the robot took at the specified time
step.

37

5 Results and Discussion

Figure 5.3 Discrete signal strength values observed and actions taken by both robots at the
given time steps

As an additional explanation to Figure[5.3| we also summarize the process of this experiment
as follows:

e Actions of Agent 0 at the given time step, represented by black arrows in Figure
1. Action: Move to Location 7; Observation 'mid’
2. Action: Move to Location 6; Observation "high’
3. Action: Move to Location 3; Observation "high’

e Actions of Agent 1 at the given time step, represented by yellow arrows in Figure 5.3
1. Action: Move to Location 1; Observation 'mid’
2. Action: Move to Location 2; Observation "high’
3. Action: Move to Location 1; Observation 'mid’
This successful execution of the given policies demonstrates that the client-side module intro-

duced in section does work as intended. It can read a given policy, execute the defined
actions, and proceed through the policy graph according to the perceived observations.

During the policy execution process all 5 measurements collected in one location are also
directly transmitted to the central evaluation module. Typically, we would wait for both of

38

5.1 Real-world Experiments

the robots to complete the policy execution and then evaluate the gathered measurements to
estimate the Wi-Fi routers location. But to show how exactly the system is working, we send
the gathered measurements to the central evaluation unit after each action. This way it is
easier to understand what impact each action has and we can directly verify that the policy
is executed correctly.

Figure shows the initial belief of the evaluation module. Each of the small squares
represents one particle of the particle filter we use for evaluation. A brighter green value in
the particles color represents a higher weight, while a brighter red value represents a lower
weight. Since the particle filter displayed in this graphic was just initialized, the weight of
every particle is the same. In order to demonstrate that the system introduced throughout
this thesis can work, the belief of this particle filter should represent a good estimation of the
Wi-Fi routers real world location after the experiment was conducted.

The six Figures - present the beliefs of the particle filter after each of the three
actions per robot. The five measurements we take with every action are fed to the particle
filter algorithm one by one, but for simplicity, we only show the belief after all five have been
evaluated.

Finally, after all measurements were collected and fed to the particle filter we end up

with a belief that represents an estimation of the signal source location. The final belief of
the particle filter can be seen in Figure [5.4g]
The shown particle filter does represent a close estimation of the real signal source location
here displayed as a purple square. To generate a metric that enables us to compare this result
with other experiments we are using a weighted root mean squared error function (RMSE)
displayed in equation The function takes the real world location and compares it to all
particles to calculate the error in meters, while also taking into account the weight of each
particle.

X2 wid(locreqr, loc;)?

Weighted RMSE = \/ (5.1)

n .
2w

We can apply this function to our resulting particle filter to get a quantitative score for its
accuracy. The final weighted RMSE for this specific experiment is 1.41m. To put this value
into perspective we can also look at the weighted RMSE of the particle filter after each eval-
uated measurement. The resulting values are depicted in Figure [5.5]

39

5 Results and Discussion

Figure 5.4 The particle filter progression for the experiment described in section

g

; ks
,.§ f,:& Lk S
- - -l

(d) Belief after action 2 by robot 0

L el B0
(g) Belief after action 3 by robot 1 / Final Belief

40

5.1 Real-world Experiments

Figure 5.5 The weighted root mean squared error in m after each evaluation step during the
described experiment

Root mean squared error in m
™] w w P
o w o w o

e
wn
T

=
o
o

5 10 15 20 25 30
number of measurements evaluated

In addition to the above described experiment we can also consider other physical exper-
iments. Figure presents another movement graph that is slightly different to the first
experiment we described. The Wi-Fi router is also placed at a different location.

Figure 5.6 The movement graph used for all experiments recorded to compare the dec-
POMDP to the random movement approach
‘i.w . w‘w =TT w
"y i - j

k.,

41

5 Results and Discussion

Based on this new configuration we conduct three different physical experiments with the
parameters as shown in Table The three experiments differ only in the number of
measurements taken per action. The first experiment is conducted with 5 measurements per
action, the second one with 10 and the last one with 15.

Table 5.2 Experiment parameters for the experiment described in Section

Planning algorithm parameters

Event Horizon 4 Policy Width 3
Improvement Steps 8 Rollouts 100
Particles for Planning 1000 Particles for each Rollout | 100

Client and Evaluation parameters
Measurements per action ‘ 5/10/ 15 H Particles for Evaluation ‘ 1500

The comparison between these three experiments allows us to highlight the impact of a
location change in contrast to multiple measurements taken in a single location. It also helps
us to further demonstrate the capabilities of the introduced system.

Figure[5.7] presents the resulting particle filter beliefs for the three conducted experiments. All
three of the depicted beliefs indicate the general area of where the Wi-Fi router was placed,
which demonstrates that the system is working as intended. For this group of experiments,
however, it is more interesting to consider the direct comparison based on the weighted root
mean squared error metric introduced earlier.

If we plot the weighted RMSE over all evaluated measurements for each of the experi-
ments, we get the graph displayed in Figure 5.8l From this quantitative comparison we can
see that the resulting beliefs are indeed all similarly accurate despite the difference in eval-
uated measurements. The weighted RMSE after the final evaluation step is ~ 1.627m for
the experiment with 15 measurements per action, ~ 1.640 for the experiment with 10 and
~ 1.644 for the experiment with 5.

Another interesting aspect of the presented results is that the error value converges slower
depending on the amount of measurements taken every action. For example the evaluation
error for the experiment with only 5 measurements per action is already down to ~ 1.657
after only evaluating 26 measurements. Meanwhile, the error of the experiment with 15 mea-
surements per action first reaches a value under 2m after evaluating 60 measurements. This
difference is to be expected since taking a lot of measurements in only one or two locations
does not necessarily allow us to determine the direction from where the signal originates.

42

5.1 Real-world Experiments

Figure 5.7 The resulting particle filter beliefs for three physical experiments.

(b) 10 measurements per action

(c) 15 measurements per action

43

5 Results and Discussion

Figure 5.8 The weighted RMSE for a group of three experiments that were conducted with
the same conditions and parameters except for the number of measurements taken per action

5 Measurements per step
— 10 measurements per step
— 15 Measurements per step

Root mean squared error in m

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
number of measurements evaluated

5.2 Challenges

While conducting experiments, we encounter a few challenges that are rather important to
this thesis even though not being critical to its results. This section discusses these challenges
to review the results of this thesis from a different perspective. It reviews the impact of each
challenge and considers the limitations they impose on solving an information gathering task
using the dec-POMDP planning algorithm introduced by Lauri et al. [Lauri, Pajarinen, and
Peters 2020].

5.2.1 Collision Avoidance

The first challenge that arises from conducting an experiment is avoiding any collisions be-
tween the robots.

Since the robots can not rely on communication between each other during policy execution,
they cannot avoid collisions by transmitting their current positions to other robots. Further-
more, each action an agent executes to complete a policy may take an undefined amount of
time. Therefore, not every agent will be at the same time step at the same real-time, which
makes avoiding collisions by modifying the policy generation rather difficult. If that were not
the case, it would have been easy to introduce a new rule to the planning algorithm that
requires the generated policies to never include the same action for different agents at the
same time step.

For a solution to this challenge we need to consider the two possible causes of collisions
between multiple robots.

The first possible cause is two robots crossing paths. When two robots are moving at the
same time it is possible that they collide with each other, because the path planned by the

44

5.2 Challenges

navigation module does not account for moving obstacles. To completely solve this problem
it would be possible to implement a concept called 'Reciprocal Velocity Obstacles’ [van den
Berg, Ming Lin, and Manocha|2008|. This concept works by monitoring the velocity of moving
obstacles to avoid them while assuming that other robots employ the same behavior [van den
Berg, Ming Lin, and Manocha 2008]. However, implementing this concept would go beyond
the scope of this thesis. Instead, we can prevent such collisions by stopping the movement
of one of the two robots manually. If one of the robots is stationary, the navigation module
of the other robot can generate a path around. Once the possibility of a collision is averted
the other robot can continue moving to its goal as well. This might increase the duration it
takes to conduct an experiment and it means that an experiment requires constant human
supervision. But since signal strength measurements are only taken whenever a robot has
reached its destination, manual intervention while both robots are moving does not obstruct
the measurement process. Therefore the result stays the same with or without intervention.
For all of the physical experiments presented in this thesis, intervention never was necessary.

A far more interesting possible cause of collision is if one robot tries to reach a location
already occupied by another one. In this case, the move base package we are using for nav-
igation already provides the necessary collision avoidance, since the other robot is stationary
while taking measurements. However, if the robot occupies the location for a more extended
amount of time to collect the specified number of signal strength values, the waiting robot
would eventually consider its goal unreachable. To prevent this, we can resend the current
goal to the move base package whenever it is aborted.

This approach does lead to longer execution times. But it does not change the overall
result of an experiment, as long as we still evaluate the taken measurements in the order in
which they were meant to be taken by the planning algorithm.

5.2.2 Time Consumption of Physical Experiments

Another interesting challenge to this thesis is the time it takes to conduct a physical experi-
ment properly.

To come to a meaningful conclusion on the efficiency of using dec-POMDP on an informa-
tion gathering task, it is necessary to conduct a reasonable number of experiments. The high
variance in the received signal strength obviously does have an impact on the final experiment
result. In one experiment we could have a lot of measurements that fit the RSS-model we use
to construct the particle filter perfectly. The next experiment could have a lot of deviating
measurements. These two experiments would result in very different estimations of the signal
source location even if none of the other parameters changed. Therefore, we need to conduct
a large number of experiments, to compare the introduced system to a random movement
baseline.

The necessity for a large amount of recorded experiments, however, leads us to a time prob-

lem. First, each of the used robots needs to localize itself. This does require some time, but
is only necessary for the first experiment after each charging break. Second, the planning

45

5 Results and Discussion

algorithm requires some time that is very dependent on the number of improvement steps
and the other configuration parameters. This might also change slightly depending on the
server the planning algorithm is running on.

The next time consuming factor of each experiment is the time a robot needs to execute
a policy. This obviously depends on the event horizon, which defines the number of actions
each robot has to take. The time it takes to execute a single action depends on the travel
time to its next location and the number of measurements that the robot has to take. The
time consumed by taking measurements can be approximated as 4-5 secs multiplied by the
number of measurements that have to be taken, as we have shown in section For ex-
ample it would take approximately 1 min to 1 min and 15 secs to take 15 measurements.
The time it takes to travel to the next location on the other hand, can not be quantified as
easily. Collision avoidance between each robot and their environment and between the robots
themselves adds an unknown factor to the time it would take for a robot to travel the line
of sight distance. If, for example, two robots were to try and visit the same location at the
same time, one of the robots would have to wait for the other to record its measurements
and move away to the next location before taking its place.

Because of these various time consuming factors, it is only possible to conduct eight to
ten physical experiments within a full day of work. To collect larger amounts of data we can
run experiments in simulation.

An experiment run in simulation does not require constant human supervision and also re-
quires less time. In simulation the robots do not have to be manually localized and also do
not require any time to move to a given location. Furthermore, we can directly sample from
the RSS model introduced in Section and ,therefore, save the time it would normally take
to gather measurements.

5.3 Simulated experiments

In order to show that it is possible to use a dec-POMDP planning algorithm to solve a signal
source localization task, this section compares the results of multiple simulated experiments
to a baseline. The baseline for the introduced problem is drawn using a random movement
approach. Instead of following a preplanned policy, robots choose the next location to move
to at random in experiments using the random movement approach.

To ensure that this comparison does represent the general case, it is essential to record
and evaluate multiple experiments using both the dec-POMDP and the random movement
approach. Consequently, we need to make use of simulation because physical experiments
consume too much time.

Recording multiple simulated experiments in a row without user input, however, requires
slight modifications to the overall system. These modifications do not have any influence

46

5.3 Simulated experiments

on the result of one single experiment. They only define the behavior of the robots between
experiments where they would usually be controlled by the user and a way to simulate the
process of taking signal strength measurements

The main addition to the System is a redistribution of the robots after each experiment.
While previously, each experiment was prepared independently by the user, now multiple are
executed consecutively. Therefore, the preparation part where the user decides on an arbitrary
starting position for the two robots is dropped. But since the starting locations do impact
the planning algorithm and the random movement approach, it is necessary to clearly define
how the starting locations for each of the experiments are chosen if not by a user. The three
available options are:

1. The robots start the next experiment in the exact locations where they ended up in the
previous experiment. This approach would not require any additional implementations,
but the manually chosen starting positions of the first experiment do have an impact on
all ensuing experiments. However, that would be unwanted behavior and is the reason
we are not using this approach.

2. A specific starting position could be defined for each robot. After each experiment,
the robots would return to their individual starting locations before starting the next
experiment. With this approach, the chosen starting locations have a significant impact
on all the results. Therefore, this behavior is not a reasonable approach either.

3. Each of the robots moves to a randomly chosen starting location before an experiment is
conducted. That means the starting locations for each experiment are independent and
identically distributed random variables. This ensures that the impact of the starting
location on a single experiment does not influence our overall average results when
evaluating a bigger set of recorded experiments. As a result, this is the option we are
implementing.

Furthermore, we make a slight change to the evaluation process of the taken measurements.
Previously, for the physical experiments introduced earlier, the taken measurements were sent
to the central evaluation module after each action. Now the measurements are all gathered
on the robot first and are only sent to the central evaluation module after the policy ex-
ecution has finished. This change is made since the whole reason for modeling this signal
source localization task as a dec-POMDP problem is that communication between the central
planning and evaluation unit and the agents is impossible during policy execution.

At which point in time the measurements are evaluated does not have an impact on the
resulting particle filter, as long as they are evaluated in the same order. Therefore, we can
make this change and still get the same results by evaluating the measurements in the same
order in which they were recorded. Meaning, we first supply all measurements taken in time
step one by both robots to the particle filter algorithm before moving on to the measurements
taken at time step two and so on.

47

5 Results and Discussion

The last modification we make to the system itself is the introduction of a new module.
Its purpose is to offer an interface which enables the user to trigger a series of experiments
using either the dec-POMDP planning approach or the random movement approach. When
called it triggers an experiment, waits for it to finish and triggers the next one until the
specified number of experiments is reached.

By applying these new modifications to our system, we can record for example 100 experi-
ments in a row. However, as shown in the previous section, it is rather impractical to record
enough experiments in the real world to give an accurate assessment of the performance both
approaches yield. Therefore, we use simulation to record more experiment data.

As it stands, the system already offers the ability to run multiple client nodes on a single
host system as long as a specific name is defined for each client node. The measurement
taking process can also be simulated by sampling directly from the received signal strength
model we introduced in section Since this RSS model was fitted to a data set of example
measurements recorded explicitly with equipment used throughout this thesis, the simulated
measurements are very similar to the measurements a robot would perceive in a physical
experiment.

Figure 5.9 The movement graph used for all experiments recorded to compare the dec-
POMDP to the random movement approach
".W" - w‘w‘l“ Tt w

1

To show the efficiency of using a dec-POMDP planning algorithm on our signal source lo-
calization we record 200 experiments using the dec-POMDP approach and the same amount
using the random movement approach. All of these experiments are conducted using the
same movement graph which is displayed in Figure[5.9] The blue dots represent the locations
a robot could move to while the blue lines indicate where a robot is allowed to move to next.

48

5.3 Simulated experiments

The black arrow marks the location and orientation of both robots before the first experiment.
The Wi-Fi router location is marked by a purple square on the right hand side.

For the planning algorithm and the experiments themselves we use the parameters shown
in Table Most of the parameters stay the same for all experiments conducted in this
section, but only half of the experiments are conducted with an event horizon of four and
five improvement steps. The other half is conducted with an event horizon of three and four
improvement steps. This allows us to investigate the impact of the event horizon and number
of improvement steps on the overall result of an experiment.

Table 5.3 Experiment parameters for the experiments described in Section

Planning algorithm parameters

Event Horizon 4 / 3 || Policy Width 3

Improvement Steps 5/ 4 || Rollouts 100

Particles for Planning 1000 || Particles for each Rollout | 100
Client and Evaluation parameters

Measurements per action ‘ 15 H Particles for Evaluation ‘ 1500

To compare multiple particle filter results to one another, we use the weighted root mean
squared error (RMSE) function introduced in section 5.1l By applying the weighted RMSE
function, we can determine a quantitative value for the accuracy of a particle filter belief.
Using this value we can compare the results of multiple experiments to determine what ap-
proach yields the best results.

The first set of experiments we consider is conducted with an event horizon of four and
five steps during the planning process. We look at 100 experiments using the dec-POMDP
approach and compare them to 100 experiments using the random movement strategy. For
each of these experiments we calculate the weighted RMSE for the resulting particle filter and
display it in Figure The displayed box plot indicates that both approaches yield very
similar results. Even when we compare the mean and median weighted RMSE of this data set
directly as shown in Table the difference between the two approaches is insignificantly
small.

Table 5.4 Results for 200 experiments in simulation with Event Horizon: 4 and Improvement
Steps: 5

100 experiments using the dec- | 100 experiments using the ran-
POMDP approach dom movement approach
Average weighted
RMSE 1.77 m 1.69 m
Median weighted
RMSE 163 m 1.70 m

Because the difference between the two approaches is negligible, this experimental setup

49

5 Results and Discussion

Figure 5.10 Comparison between 100 experiments using the random movement strategy and
100 experiments using dec-POMDP planning with an event horizon of 4

100 Random Movement and 100 dec POMDP experiments

+

+

Weighted Root Mean Squared Error in m

Random Movement dec-POMDP

cannot be used to demonstrate that dec-POMDP planning has an advantage over a random
movement strategy. However, this finding still is important to this thesis. It shows that for
the proposed source localization problem, both strategies can yield equally good results for
a specific parameterization. The main reason behind the similarity is the event horizon in
comparison to the number of locations. Since each of the robots can take four actions, and
there are only nine locations both robots could visit, it is not unlikely that a random move-
ment approach could collect measurements for a significant portion of the overall available
locations. While the planning algorithm tries to use the four actions per robot it has as
efficiently as possible, the random movement approach reaches similarly good results since,
with four actions per robot, it is likely to visit enough locations for a reasonable estimation
of the signal source even without proper planning. To underline this point, we demonstrate
the impact of lowering the event horizon with more simulated experiments.

The Figure shows the results of 100 experiments for each approach with an event
horizon of only 3. Also the dec-POMDP planning algorithm was applied to this problem with
only 4 improvement steps instead of the 5 that were used in the previous data set. This
change was made to reduce the planning time.

As one can see from the results presented in Figure and the exact mean and median of
the weighted RMSE for both approaches displayed in Table the dec-POMDP approach

50

5.3 Simulated experiments

Figure 5.11 Comparison between 100 experiments using the random movement strategy and
100 experiments using dec-POMDP planning with an event horizon of 3

100 Random Movement and 100 dec POMDP experiments

Weighted Root Mean Squared Error in m

+

A+ 4+

Random Movement

dec-POMDP

does have a small advantage over the random movement approach. But this advantage of
only 21em is still an insignificant difference between the two approaches.

Table 5.5 Results for 200 experiments in simulation with Event Horizon: 3 and Improvement

Steps: 4

100 experiments using the dec-
POMDP approach

100 experiments using the ran-
dom movement approach

Average weighted
RMSE

1.99 m

220 m

Median weighted
RMSE

1.82 m

2.04 m

What we can conclude from the presented results however, is that the dec-POMDP ap-
proach does show similarly good results as the random movement strategy does. Also, we
have demonstrated that our system is capable of simulating experiments to gather larger sets

of data in simulation.

51

6 Conclusion

To conclude this Bachelor thesis on the topic 'Locating the source of a WLAN signal using
multiple robots and Dec-POMDP planning’, this section sums up the findings and achieve-
ments of this thesis. It looks back on the original lead question, whether it is possible to apply
dec-POMDP to a signal source localization problem with a continuous state space, and con-
duct physical experiments successfully, by employing a policy graph improvement algorithm.

The first and most important achievement of this thesis, is the implementation of a sys-
tem that can successfully call a policy graph improvement algorithm and apply the generated
policies to solve a signal source localization task. During the course of this thesis, we included
the non-linear policy graph improvement algorithm for dec-POMDPs with a continuous state
space, introduced by M. Lauri et al. [Lauri, Pajarinen, and Peters|2020], into a larger system.
We have developed a client-side package that can be deployed on a TurtleBot2, which allows
the robot to execute a given policy autonomously. Furthermore, we introduced a central
evaluation node that can successfully approximate a Wi-Fi router’s location by applying a
particle filter to the signal strength measurements collected during policy execution. Finally,
we also developed a central communication node that handles all communication between
the used robots and server-side nodes for planning and evaluation.

While the original paper, which introduced the planning algorithm, only tested the algo-
rithm on a simulated signal source localization task, the system introduced in this thesis can
be applied to a real world scenario. As we have shown in section the system is able to
plan two policies, distribute them to two robots and evaluate the measurements both robots
gathered during policy execution in a physical experiment.

To enable the measurement evaluation, we use a Wi-Fi router as our WLAN signal source and
fit the received signal strength model originally introduced in [Atanasov, Le Ny, and Pappas
2014] to our experimental setup in section . To achieve this, we recorded a set of example
measurements using the TurtleBot2 robot and a Huawei P20 Lite as the Wi-Fi router and
fitted the RSS model to it. This model allows us to approximate the distance between a
location and the signal source from a measurement taken in that location.

Furthermore, we introduced a random movement strategy to solve the signal source localiza-
tion task. This alternative approach to solve the proposed problem can be used as a baseline.
In section we compared this baseline to the results of the dec-POMDP approach. We
conducted 400 experiments and deduced from their results that for certain experimental se-
tups the dec-POMDP approach shows similar results to the random movement baseline.

All of these experiments had to be conducted in simulation to not require constant supervision

53

6 Conclusion

and an unreasonable amount of time, but since we only made a few minor changes, we can
expect experiments in the real world to show similar results.

From the evaluated data sets, we concluded that the dec-POMDP and random movement
approach have a similar accuracy for experimental setups where the combined event horizon
of both robots is near the total number of locations. We have also shown that experiments
with a lower event horizon on the same movement graph result in a small but still insignif-
icant advantage in accuracy for the dec-POMDP approach. Based on this information, we
presume that the similarity in accuracy for the two approaches depends on the defined exper-
imental setup. The difference in accuracy is likely to increase if the gap between locations
and event horizon widens. As we already discussed in section the random movement
approach’s accuracy depends on the chance to visit as many different locations as possible.
If both approaches can take measurements in every possible location, because the combined
number of actions the agents are allowed to take is close to the number of locations, there is
a high chance that both approaches generate equally accurate results. However, if there is a
significant difference between the combined number of actions and the number of locations,
the impact of which locations are chosen to take measurements increases. Therefore, the
chance that the dec-POMDP approach outperforms the random movement approach could
potentially increase for more complex movement graphs.

More importantly, for this thesis, we can conclude from these experiments that it is in-
deed possible to successfully apply the NPGI algorithm for dec-POMDPs to a signal source
localization problem. We have not only shown that the planned policies can successfully be
applied to a real-world experiment to get an approximation of a WLAN signal source, but
also demonstrated that our approach shows similarly good results as a random movement
strategy.

Based on this knowledge, we can also conclude that dec-POMDP as a framework can suc-
cessfully be applied to information gathering tasks with a continuous state space.

54

Bibliography

Andersen, M.R. et al. (Sept. 2012). “Kinect Depth Sensor Evaluation for Computer Vision
Applications”. In: Technical Report Electronics and Computer Engineering 1.6. Available
at: https://tidsskrift.dk/ece/article/view/21221| Accessed: 06.08.2020.

Asik, Okan and H. Levent Akin (2013). “Solving Multi-agent Decision Problems Modeled as
Dec-POMDP: A Robot Soccer Case Study”. In: RoboCup 2012: Robot Soccer World Cup
XVI. Lecture Notes in Computer Science, vol 7500. Ed. by Xiaoping Chen et al. Springer,
pp. 130-140. por: [10.1007/978-3-642-39250-4_13|

Atanasov, Nikolay A., Jerome Le Ny, and George J. Pappas (Oct. 2014). “Distributed Al-
gorithms for Stochastic Source Seeking With Mobile Robot Networks”. In: Journal of
Dynamic Systems, Measurement, and Control 137.3. 031004. Available at https://
asmedigitalcollection.asme.org/dynamicsystems/article-pdf/137/3/031004/
6118584 /ds_137_03_031004 . pdf Accessed: 14.08.2020. 1sSN: 0022-0434. DOTI: 10.
1115/1.4027892.

Bernstein, Daniel et al. (Dec. 2002). “The Complexity of Decentralized Control of Markov
Decision Processes”. In: Mathematics of Operations Research 27. DOI: [10.1287 /moor .
27.4.819.297.

Beynier, Aurélie and Abdel-lllah Mouaddib (Oct. 2011). “Applications of DEC-MDPs in Multi-
Robot Systems”. In: Decision Theory Models for Applications in Artificial Intelligence:
Concepts and Solutions. Ed. by Enrique Sucar, Eduardo Morales, and Jesse Hoey. IGI
Global. Chap. 16, pp. 361-384. DOI: [10.4018/978-1-60960-165-2.ch016.

Eker, Baris et al. (2011). “A finite horizon DEC-POMDP approach to multi-robot task learn-
ing”. In: 2011 5th International Conference on Application of Information and Communi-
cation Technologies (AICT). Available at: https://ieeexplore.ieee.org/abstract/
document /6111001, Accessed: 16.11.2019. pDoOI; 10.1109/icaict .2011.6111001.
URL: https://ieeexplore.ieee.org/abstract/document/6111001.

Fox, Dieter (2001). “KLD-Sampling: Adaptive Particle Filters”. In: Advances in Neural Infor-
mation Processing Systems 14, pp. 713-720.

HOKUYO AUTOMATIC CO., LTD (2009). Scanning Laser Range Finder URG-04LX-UG01
Specification. Avalable at: https://www.hokuyo-aut.jp/ Accessed: 14.08.2020.

— (2012). Scanning Laser Range Finder UTM-30LX/LN Specification. Avalable at: https:
//www .hokuyo-aut.jp/ Accessed: 06.08.2020.

Lauri, Mikko, Joni Pajarinen, and Jan Peters (2020). “Multi-agent active information gath-
ering in discrete and continuous-state decentralized POMDPs by policy graph improve-
ment”. In: Autonomous Agents and Multi-Agent Systems 34.42. DOI:110.1007/S10458-
020-09467-6.

55

https://tidsskrift.dk/ece/article/view/21221
https://doi.org/10.1007/978-3-642-39250-4_13
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/137/3/031004/6118584/ds_137_03_031004.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/137/3/031004/6118584/ds_137_03_031004.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/137/3/031004/6118584/ds_137_03_031004.pdf
https://doi.org/10.1115/1.4027892
https://doi.org/10.1115/1.4027892
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.4018/978-1-60960-165-2.ch016
https://ieeexplore.ieee.org/abstract/document/6111001
https://ieeexplore.ieee.org/abstract/document/6111001
https://doi.org/10.1109/icaict.2011.6111001
https://ieeexplore.ieee.org/abstract/document/6111001
https://www.hokuyo-aut.jp/
https://www.hokuyo-aut.jp/
https://www.hokuyo-aut.jp/
https://doi.org/10.1007/S10458-020-09467-6
https://doi.org/10.1007/S10458-020-09467-6

Bibliography

National Oceanic and Atmospheric Administration (2018). How much of the ocean have
we explored? NOAA: National Oceanic and Atmospheric Administration. Available at:
https://oceanservice.noaa.gov/facts/exploration.html, Accessed: 27.10.2019.

OECD: Organisation for Economic Co-operation and Development (2014). The Space Econ-
omy at a Glance 2014. Available at: https://www.oecd-ilibrary.org/economics/
the - space-economy-at-a-glance-2014/space-budgets-of - selected-oecd-
and-non-oecd- countries-in-current-usd-2013_9789264217294 - graph6-en,
Accessed: 27.10.2019. OECD Publishing.

Oliehoek, Frans A. and Christopher Amato (2016). A concise introduction to decentralized
POMDPs. Springer, Cham. DOI: 10.1007/978-3-319-28929-8.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan, p. 5.

Sarkka, Simo (2013). Bayesian filtering and smoothing. Cambridge University Press.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox (2005). Probabilistic Robotics. The MIT
Press.

TurtleBot2 (n.d.). Open Source Robotics Foundation. Available at: https://www.turtlebot|.
com/turtlebot?2/, Accessed: 30.10.20109.

Twigg, J. N. et al. (May 2012). “RSS gradient-assisted frontier exploration and radio source lo-
calization”. In: 2012 IEEE International Conference on Robotics and Automation, pp. 889—
895.

van den Berg, J., Ming Lin, and D. Manocha (2008). “Reciprocal Velocity Obstacles for real-
time multi-agent navigation”. In: 2008 IEEE International Conference on Robotics and
Automation, pp. 1928-1935.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17, pp. 261-272. DOI: https://doi.org/10.1038/
s41592-019-0686-2.

Wang, Minlue, Richard Dearden, and Nick Hawes (Sept. 2015). “Robot plans execution
for information gathering tasks with resources constraints”. In: 2015 European Confer-
ence on Mobile Robots (ECMR). Available at: https://www.researchgate .net/
publication/308732137_Robot_plans_execution_for_information_gathering_
tasks_with_resources_constraints, Accessed: 16.11.2019, pp. 1-6. DOI: 110.1109/
ECMR.2015.7324216.

Wu, Fang-Jing and Tie Luo (2014). “WiFiScout: A Crowdsensing WiFi Advisory System with
Gamification-Based Incentive”. In: 2014 IEEE 11th International Conference on Mobile
Ad Hoc and Sensor Systems, pp. 5633-534.

— (2015). “Infrastructureless signal source localization using crowdsourced data for smart-
city applications”. In: 2015 |IEEE International Conference on Communications (1CC),
pp- 586-591.

Zafari, Faheem, Athanasios Gkelias, and Kin Leung (Sept. 2017). “A Survey of Indoor Local-
ization Systems and Technologies”. In: [EEE Communications Surveys and Tutorials PP.
DOI:10.1109/COMST.2019.2911558.

56

https://oceanservice.noaa.gov/facts/exploration.html
https://www.oecd-ilibrary.org/economics/the-space-economy-at-a-glance-2014/space-budgets-of-selected-oecd-and-non-oecd-countries-in-current-usd-2013_9789264217294-graph6-en
https://www.oecd-ilibrary.org/economics/the-space-economy-at-a-glance-2014/space-budgets-of-selected-oecd-and-non-oecd-countries-in-current-usd-2013_9789264217294-graph6-en
https://www.oecd-ilibrary.org/economics/the-space-economy-at-a-glance-2014/space-budgets-of-selected-oecd-and-non-oecd-countries-in-current-usd-2013_9789264217294-graph6-en
https://doi.org/10.1007/978-3-319-28929-8
https://www.turtlebot.com/turtlebot2/
https://www.turtlebot.com/turtlebot2/
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://www.researchgate.net/publication/308732137_Robot_plans_execution_for_information_gathering_tasks_with_resources_constraints
https://www.researchgate.net/publication/308732137_Robot_plans_execution_for_information_gathering_tasks_with_resources_constraints
https://www.researchgate.net/publication/308732137_Robot_plans_execution_for_information_gathering_tasks_with_resources_constraints
https://doi.org/10.1109/ECMR.2015.7324216
https://doi.org/10.1109/ECMR.2015.7324216
https://doi.org/10.1109/COMST.2019.2911558

Eidesstattliche Erkldrung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudiengang
Software System Entwicklung selbststindig verfasst und keine anderen als die angegebenen
Hilfsmittel — insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen —
benutzt habe. Alle Stellen, die wortlich oder sinngemaR aus Veroffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher
nicht in einem anderen Priifungsverfahren eingereicht habe und die eingereichte schriftliche
Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 17.08.2020 Tobias Kriiger

Veréffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 17.08.2020 Tobias Kriiger

	Abstract
	Introduction
	Background and Motivation
	The Scope of this Thesis

	Background Knowledge and Related Work
	Particle Filter
	Robot Navigation
	dec-POMDP: Basic Principals
	The Planning Algorithm for Information Gathering dec-POMDPs
	Other Applications of dec-POMDP

	Signal Source Localization

	Methodology
	Wi-Fi Signal Strength modeling
	Source localization using dec-POMDP
	Software Architecture
	Dec-POMDP Package
	Client Package
	Server Package

	Experimental Setup
	The Map
	The Robots
	The WLAN Signal Source

	Results and Discussion
	Real-world Experiments
	Challenges
	Collision Avoidance
	Time Consumption of Physical Experiments

	Simulated experiments

	Conclusion
	References

