
M A S T E R T H E S I S

Feature-Based Monte Carlo Localization in the RoboCup
Humanoid Soccer League

vorgelegt von

Judith Hart�ll

MIN-Fakultät

Fachbereich Informatik

Arbeitsbereich Technische Aspekte Multimodaler Systeme

Studiengang: M.Sc. Informatik

Matrikelnummer: 6417284

Abgabedatum: 30.09.2019

Erstgutachter: Prof. Dr. Jianwei Zhang

Zweitgutachter: M. Sc. Marc Bestmann

Betreuer: M. Sc. Michael Görner

Abstract

Knowledge about the own pose in the world is essential for an autonomously acting robot.
In this work a version of Monte Carlo Localization is developed, that is applicable in the
RoboCup Humanoid Soccer League. It integrates several kinds of localization information
which are retrieved from a 2D RGB image. The proposed approach was evaluated in terms
of precision with four di�erent information sources for localization and their combinations
on simulated data. The results show that using the �eld markings as input usually resulted
in the most accurate pose estimation. Using several kinds of localization information could
further improve the results. Which information source to add seems to depend on the task:
�nding the pose (localization) or keeping track of the pose. In the localization experiment
including �eld boundary detections reduced the error, while in the pose tracking experiment
�eld marking features as corners and t-crossings resulted in less erroneous pose estimates.

Zusammenfassung

Das Wissen um die eigene Position und Orientierung im Raum ist für einen autonom agie-
renden Roboter unerlässlich. In dieser Arbeit wird eine Version der Monte Carlo-Lokalisierung
entwickelt, die in der RoboCup Humanoid Soccer League einsetzbar ist. Verschiedene Arten
von Lokalisierungsinformationen werden dafür integriert, die aus einem 2D-RGB-Bild stam-
men. Der vorgeschlagene Ansatz wurde auf seine Genauigkeit mit vier verschiedenen Informati-
onsquellen für die Lokalisierung und deren Kombinationen auf simulierten Daten evaluiert. Die
Ergebnisse zeigen, dass die Verwendung der Feldmarkierungen in der Regel zu der genauesten
Posenschätzung führte. Die Verwendung verschiedener Arten von Lokalisierungsinformationen
könnte die Ergebnisse weiter verbessern. Welche Informationsquelle hinzugefügt werden soll,
scheint von der Aufgabe abhängig zu sein: die Pose zu �nden (Lokalisierung) oder die Pose
zu tracken. Im Lokalisierungsexperiment mit Feldbegrenzungsdetektionen reduzierte sich der
Fehler, während im Pose Tracking-Experiment die Markierungsmerkmale der Felder als Ecken
und T-Kreuzungen zu genaueren Lokalisierungsschätzungen führten.

ii

Contents

List of Figures v

List of Listings vii

1. Introduction 1

1.1. Thesis Goals . 2

2. Fundamentals 3

2.1. RoboCup . 3

2.1.1. Humanoid Soccer Leagues . 3

2.1.2. Hamburg Bit-Bots . 6

2.2. ROS . 8

2.3. Forward Kinematics . 8

2.4. Odometry . 9

2.5. Bayes Filter, Particle Filter and Monte Carlo Localization 9

2.6. Robot Motion Model . 11

2.7. Measurement Model . 11

3. Related Work 15

3.1. Monte Carlo Localization . 15

3.2. MCL in RoboCup Soccer . 15

3.3. MCL with ROS . 16

3.3.1. amcl . 16

3.3.2. humanoid localization . 17

4. Approach 19

4.1. Localization Node . 19

4.1.1. Robot Pose State . 20

4.1.2. Robot Motion Model . 20

4.1.3. State Distributions for Initialization with Prior Knowledge 23

4.1.4. Measurement Model and Map Model 25

4.1.5. Initialization Service . 31

4.1.6. Calculation of Estimated Pose . 31

4.2. Localization Handler Node . 31

4.3. Visualization . 32

iii

Contents

5. Evaluation 35

5.1. Localization . 36
5.1.1. Setup . 36
5.1.2. Results . 36

5.2. Pose Tracking . 43
5.2.1. Setup . 43
5.2.2. Results . 43

6. Discussion 51

6.1. Conclusion . 53
6.2. Future Work . 53

Bibliography 55

Appendices 61

A. Likelihood Field Lookup Tables . 63
B. Message De�nitions . 63
C. Localization Parameters . 67

iv

List of Figures

2.1. Field of play in the RoboCup Humanoid Soccer Leagues [Rob19]. 5
2.2. Transformation from image space to Cartesian space 7
2.3. MCL procedure [TBF05]. 13

4.1. Information �ow diagram . 19
4.2. Visualization for the odometry motion model. [TBF05] 21
4.3. Samples from odometry motion model [TBF05] 22
4.4. State distribution for a known pose. 24
4.5. State distribution for multiple speci�ed regions. 25
4.6. State Distribution for �eld half . 26
4.7. Lookup table for line data. 28
4.8. Visualization of �eld marking features. 30
4.9. Vizualization setup in rviz. 33

5.1. Exemplary image from the robot's camera in Gazebo. 36
5.2. The three poses in the localization experiment. 37
5.3. Localization Experiment, Summary . 38
5.4. Localization experiment: Entering the �eld 39
5.5. Localization experiment: Striker . 41
5.6. Localization experiment: Goal Keeper . 42
5.7. Pose Tracking Experiment, Visualization of Scenarios 43
5.8. Pose Tracking Experiment: Summary . 44
5.9. Pose Tracking Experiment: Walking 1 . 45
5.10. Pose Tracking Experiment: Walking 2 . 46
5.11. Pose Tracking Experiment, Exemplary Results on Walking Scenarios. 47
5.12. Pose Tracking Experiment: Turning . 48
5.13. Pose Tracking Experiment: Walking and Turning 49
5.14. Pose Tracking Experiment, Exemplary Results on the Walking-and-Turning

Scenario. 49

A.1. Likelihood Field Lookup Tables . 63

v

List of Listings

2.1. Bayes �ltering algorithm. [TBF05] . 9
2.2. Particle �lter algorithm [TBF05] . 10
2.3. Monte Carlo Localization algorithm [TBF05] 11

4.1. Algorithm to sample from the motion model based on odometry [TBF05]. The
function sample(s) samples from a Gaussian distribution with zero mean and
standard deviation s. 22

4.2. Likelihood �eld range �nder model [TBF05] 25
4.3. Likelihood �eld model for a humanoid robot 27
4.4. De�nition of the reset_�lter service. A certain initialization mode can be

requested and, if necessary, a position can be speci�ed. 31

B.1. De�nition of the FieldBoundaryInImage Message. 63
B.2. De�nition of the FieldBoundaryRelative Message. 63
B.3. De�nition of the GameState Message. 64
B.4. De�nition of the GoalRelative Message. 65
B.5. De�nition of the LineInformationRelative Message. 65
B.6. De�nition of the LineSegmentRelative Message. 65
B.7. De�nition of the RobotControlState Message. 66
B.8. De�nition of the PixelRelative Message. 67
B.9. De�nition of the PixelsRelative Message. 67
B.10.De�nition of the Evaluation message. 67
C.1. Parameters of the Localization Node. 67

vii

1. Introduction

Knowing the own pose is crucial for a soccer player to act successfully and so it is for an
autonomous robot, that plays soccer. Without knowledge on the own position and orientation
(pose) on the playing �eld, it is hard to distinguish the own goal from the opponents one,
and scoring an own goal could cause losing the game. However, for soccer-playing robots
knowing the own pose is also important for strategic team play: The can communicate their
current poses and decide on the best strategy as a team, just like real soccer players.

On a soccer �eld di�erent things can provide orientation on the current pose: the goals,
the �eld markings or the dimension of the �eld itself. While the lines are often in the �eld
of view, the goals are not, but when they are, better conclusions on the observer's pose
can be drawn. Moreover, di�erences in the reliability of detection need to be considered for
localization: While far away �eld markings can be hard to detect, goals post are well visible
over the whole �eld. The features of the playing �eld can also be considered on di�erent
levels of abstraction: The center circle can be seen as white color on the �eld, just like or
other lines, or it can be seen as the one circle whereas the other �eld markings are all straight
lines. Just like the di�erence between lines and goals discussed above, this provides di�erent
information for localization.

So using several information sources at the same time can make localization more precise
and more stable than relying on one type only. �eld of play itself. One strategy to overcome
that problem is to include information from outside the �eld. One approach for this is the
visual compass [Lab04], which estimates the robots pose based on odometry and changes
in the detected image. Such an approach bears the risk to fail if the surrounding changes
dynamically. Another strategy is to include prior knowledge into the pose estimation. In a
RoboCup Soccer game, such information is provided, just like it is in a real soccer game.
Before the game, it is decided by coin toss which teams attacks which goal. So at the
beginning of the game, it is possible to determine the robot's pose on the �eld half. Once
the correct pose is found, it needs to be tracked.

Robots that participate in the RoboCup Humanoid Soccer League need to be as humanoid
as possible, especially in terms of kinematic structure and used sensor types. The �eld
surface is made of arti�cial turf, making stable biped walking hard. So simple pose estimation
techniques like dead reckoning are noisy and are prone to drift over time and thus are not
applicable in that context. A suitable localization method is the Monte Carlo Localization,
which is based on particle �ltering. It is a lightweight approach, that can handle noisy input
and works on nonlinear distributions.

1

1. Introduction

1.1. Thesis Goals

The goal of this thesis is to develop and evaluate a 3D Monte Carlo Localization in the
RoboCup Humanoid Soccer context. It should be easily portable to other codebases and
adaptable.It should work on di�erent kinds of localization information simultaneously. Fur-
thermore, the localization should include prior knowledge provided by the game. This thesis
aims at evaluating which combinations of features of the playing �eld are the most valuable
information sources for localization and pose tracking.
In Chapter 2, the context of this work is presented, and an overview of the main con-

cepts used for development is given. Chapter 3 presents work in the �eld of Monte Carlo
Localization, with focus on humanoid robots. The approach of this work, including the local-
ization algorithm itself, a module handling the initialization and the developed visualization,
are presented. In Chapter 5, the two experiments on the e�ciency of di�erent kinds of lo-
calization information and their combinations are described. Finally, in Chapter 6, the results
are discussed, a conclusion is given, and future work is proposed.

2

2. Fundamentals

The following sections give an overview of the context in which this work is done and the
main concepts used. In Section 2.1 the RoboCup is presented shortly, with particular focus on
the rules in the Humanoid Soccer Leagues in Section 2.1.1 and the team Hamburg Bit-Bots
in Section 2.1.2 with the relevant aspects of software and hardware for this work. Section
2.2 provides a short overview of the components of ROS, the Robot Operating System, that
are used in this work. A brief description on the concept of forward kinematics is given in
Section 2.3 and odometry is shortly presented in Chapter 2.4. In Section 2.5, the Bayes �lter
is presented, and the particle �lter and Monte Carlo Localization are derived from it. The
Robot Motion Model and the Measurement Model used in the Monte Carlo Localization are
presented shortly in Section 2.6 and 2.7.

2.1. RoboCup

The RoboCup Federation [1] [KAK+97] annually organizes robot competitions to promote
research in autonomous robotics. Moreover, it promotes research to a broad public while
providing the possibility to compare scienti�c approaches directly in a competition. In 2018 the
RoboCup took place in Montreal, Canada, with around 400 participants and 5000 robots [2].
The competition is divided into four big leagues: Rescue, @Home, Industrial and Soccer, with
several sub-leagues each, all with di�erent research priorities. The focus of this work is on
the Soccer Leagues, in particular on the humanoid ones, which are explained in more detail
in the following.

2.1.1. Humanoid Soccer Leagues

In the Humanoid Soccer Leagues, robots compete against each other autonomously in soccer
games. The rules are based on the FIFA rules and de�ne the �eld of play as well as the
restrictions of the robots. Each year rule changes are made to advance research on speci�c
problems. Until 2012 the goals were di�erent in color, which made localization easier.

The league is divided into three sub-leagues, the KidSize, TeenSize, and AdultSize. The
rules between the leagues di�er in player count on a team, ball size, and �eld size. The
AdultSize League has some special rules, like the robots may be saved from falling by a
human, to prevent damages caused by impact. In the following, aspects of the rules [Rob19]
relevant for self-localization are explained.

3

2. Fundamentals

Robots

The robots need to be shaped like a human. They must have two legs, two arms and a head
with speci�c proportions. The restrictions for the robot heights in the leagues can be seen in
Table 2.1.

Kid Size Teen Size Adult Size

Robot Height 40 - 90 cm 80 - 140 cm 130 -180 cm

Table 2.1.: Robot height restrictions in the Humanoid Soccer Leagues. [Rob19]

Furthermore, they are only allowed to be equipped with human-like sensors, which must be
at the corresponding humanoid positions in the robot. Up to two cameras are allowed, with
a total �eld of view of 180°. The maximum pan-tilt motion of the head must be humanoid.
The cameras need to be passive, so visual sensors like laser range �nders or other depth
cameras other than stereo cameras are not allowed. While a game is running, they must act
autonomously. The robots may communicate with each other via WiFi.

Field

In Figure 2.2 the �eld as it is de�ned in the laws of the game is visualized and in Table 2.2
the corresponding values for the Humanoid Leagues can be found.

It de�nes the overall size of the playing �eld, the size of the �eld markings, and the position
and size of the goals. The line width is speci�ed to be at least 5 cm.

The �eld surface is arti�cial turf with a height of about 3 cm. Robots in the KidSize and
TeenSize League fall frequently, because of the unevenness of the �eld's surface.

Referee, Gamecontroller & Robot Handler

Similar to regular soccer games, there are referees in RoboCup Soccer. Each �eld of play
includes a computer running the GameController software, which is operated by the second
referee. All referee decisions are fed into the GameController, which communicates this
information via WiFi to the robots. Each team needs to provide a robot handler. The duty
of the robot handler is to remove a robot from play when instructed to do so by the referee
or reposition them for reentering the game.

The Game

A game is played in two halves of 10 minutes. To start the game or after a goal was scored
the kick-o� procedure is performed. When the referee gives the signal READY all robots have
to go to their own half. The ball lies on the center mark. Then the referee gives the signal
SET and illegally positioned robots are removed by the robot handler. A robot is illegally
positioned if it is not inside its own half or inside the center circle for the team not having
kick-o�. The team having kick-o� may manually place its goalkeeper robot and a robot for

4

2.1. RoboCup

Figure 2.1.: Field of play in the RoboCup Humanoid Soccer Leagues [Rob19].

Kid & Teen Size Adult Size

A Field length 9 m 14 m

B Field width 6 m 9 m

C Goal depth 0.6 m 0.6 m

D Goal width 2.6 m 2.6 m

Goal height 1.8 m 1.8 m

E Goal area length 1 m 1 m

F Goal area width 5 m 5 m

G Penalty mark distance 1.5 m 2.1 m

H Center circle diameter 1.5 m 3 m

I Border strip width 0.7 m 1 m

Table 2.2.: Dimensions of the �eld of play in the Humanoid Soccer Leagues [Rob19].

doing the kick-o�. The goalkeeper needs to be somewhere inside the goal area, touching the
goal line. The position of the robot doing the kick-o� only needs to be somewhere inside
the teams half, but it is common in the league to place it close to the center mark, facing
the opposite goal. Then the referee gives the signal PLAY and the team having kick-o� is
allowed to play the ball.

The referee can give removal penalties to robots. It is a time penalty of 30 seconds. The
robot is removed by the robot handler. After the end of the penalty, it needs to reenter the
�eld from the touchline of the team's own half, at the height of the penalty mark. The referee
indicates the side.

5

2. Fundamentals

2.1.2. Hamburg Bit-Bots

The Hamburg Bit-Bots have participated in the Humanoid Kid Size League since 2011. A
short overview of the relevant hardware and software used in this work is given.

The Wolfgang Platform

TheWolfgang robot is a humanoid robot with 20 degrees of freedom. The joints are actuated
by Robotis Dynamixel MX64 [3] and MX106 [4] motors, which are equipped with rotary
encoders. It is equipped with three computation units: An Intel Nuc, which handles most
of the software stack, an Nvidia Jetson TX2, handling the image acquisition and computer
vision and an Odroid XU4. The camera of Wolfgang is the Basler ace acA2040-35gc [5],
which is equipped with a Computar M1214-MP2 lens with a diagonal opening angle of 49.2°
[6]. Furthermore, the robot is equipped with an Inertial Measurement Unit (IMU) and foot
pressure sensors.

Vision

The Hamburg Bit-Bots vision pipeline is presented in [FBG+19]. The relevant aspects for
this work are the detection of �eld markings, the �eld boundary, and the goals posts, which
are presented in the following.

In the vision pipeline, di�erent modules handle speci�c object detection tasks. The color
detector matches given pixels to the corresponding color space. The color spaces are con�g-
ured by human operators before the game. The color space used to detect lines is de�ned
by upper and lower bounds for each channel of the hue, saturation, value (HSV) space. For
the color space de�ning the green of the arti�cial turf, a lookup table is generated using a
speci�c tool. This way, more speci�c shades of green can be included, which is necessary, as
the color highly depends on the viewing angle and the lighting conditions.

The green color space is used in the �eld boundary detector. To detect the outer edge of
the �eld, the �eld boundary detector scans the image for the uppermost detection of green.
The number of scanned rows can be con�gured to save resources, When the �eld boundary
is blocked by an obstacles, it forms a dent under that obstacle in the image. To smooth the
detected �eld boundary and make it more accurate, the convex hull over it is calculated.

The line detector detects points in the image, that are located on the �eld markings, instead
of complete lines, to reduce computational e�ort. Random pixels in the image are checked
against the color space for lines. Three strategies are applied to improve performance. First
of all, no points above the highest point of the �eld boundary are checked, as this could
lead to many false-positive detections. Secondly, with the height of the image, the density
of randomly chosen pixels is increased. This is done, since a point higher up in the image
corresponds to a point that is further away. The increase in density compensates the decreased
size of features caused by the perspective transformation. To compensate for that, the density
of randomly chosen pixel is increased in higher regions of the image.

For the goalpost detection the Hamburg Bit-Bots changed from the conventional method
based on color spaces to using YOLOv3 [RF18], a convolution neural network (CNN). It was

6

2.1. RoboCup

Ground Plane

Backprojection
Ray

Projection
Plane

Intersection

Figure 2.2.: Visualization of transformation from image space to Cartesian space [Gü18]. The
projection plane is calculated based on the camera matrix. A ray is cast from the
camera frame through the point on the projection plane which corresponds with
the detection in the image. The intersection of that ray with the ground plane is
the detection's position in Cartesian space.

trained on images taken on RoboCup competitions as well as images taken in the Bit-Bots
test laboratory.

Transformation from Image Space to Cartesian Space

The objects detected in the image need to be transformed into Cartesian space to contain
valuable information. As the camera does not provide depth information, the transformation
needs to be done based on prior knowledge.

It is assumed that when the robot is standing on the �eld its feet are parallel to the planar
surface of the �eld. Using forward kinematics (see Section 2.3), the camera's pose relative to
the ground plane can be calculated. Furthermore it is assumed, that all detection are on this
plane. This is clearly true for planar objects like line points and �eld boundary points, but
also detection of goal posts are provided in a form that represents their lowest point, right
above the �eld. Given the camera matrix the projection plane can be calculated. A ray is
cast from the camera through the projection plane at the corresponding point of detection in
the image. The intersection of that ray with the ground plane is the point in Cartesian space
relative to the robot.

As the playing �eld consists of soft arti�cial turf, the feet are not always parallel to the
ground plane. This especially a�ects points that are projected far away from the robot. They
underlie larger errors in Cartesian space than points that are projected closer to the robot.

7

2. Fundamentals

Hardware Control Manager

The robot's state is controlled by the state machine of the Bit-Bots Hardware Control Manager
(HCM). The HCM keeps track of the robot's current state, handles the getting up motion
after a fall, and decides which nodes may write motor goals. It provides information that is
valuable for localization, such as if the robot is currently falling or already fallen. In these
situations, the transformation of data from image space to Cartesian is not working correctly,
see Section 2.1.2. So this information should not be used for localization. Furthermore, the
robot's pose after falling and getting up is not necessarily the same as before the fall. This
needs to be handled by the localization.

2.2. ROS

The Robot Operating System (ROS), is an open-source middleware between the actual op-
erating system and the application [QCG+09] [7]. It provides a structure in which software
components, called nodes, can communicate. The communication is done via messages.
Nodes can publish data in the format de�ned by the message to a topic. Messages are re-
ceived by subscribing to a topic. Several Nodes can publish to one topic, and several nodes can
subscribe. The ROS master handles the connections between publishers and subscribers. The
communication happens directly between the nodes. If the one-way communication provided
by messages is not su�cient, services can be used. These are particular kinds of messages
that have two parts: one for the request and the other one for the response. A node can
o�er a service, and a client can send the request message and then wait for the reply. The
ROS software framework provides tools for debugging and visualization, such as rviz [8] for
3D visualization.

2.3. Forward Kinematics

In a kinematic chain like a robotic arm, the pose of the end e�ector relative the robot's
base frame can be calculated with forward kinematics [SK16]. In ROS these calculations can
be done by the robot_state_publisher [9] node, based on given joint angles and the robot
model. The resulting coordinate frames can be handled by the transform library tf2 [10]. If the
frames are connected in a tree-like structure, tf2 can calculate the transformation between
any two frames in that tree. It stores the frames so that the transformation can also be
done in retrospect. This is important in two ways. Firstly it possible to get transformations
between two coordinate frames from a particular point in time in the past. For this work, this
is important for the transformation process from image space to Cartesian space, see Section
2.1.2. Due to the processing time of the vision pipeline, the corresponding pose of the camera
for the current visual data lies in the past. Secondly, the change over time between coordinate
systems can be tracked. In this work, this is necessary to get the robots last motion.

8

2.4. Odometry

2.4. Odometry

Odometry refers to measuring the changes in the robot's joint angles to estimate its motion
[SK16]. Based on this estimated motion, the change of the robot's pose over time can be
estimated. Each pose estimate depends on the previous one. So the errors of each prediction
step add up, making the estimated pose drift over time. In the Bit-Bots software, according
to the ROS Enhancement Proposals (REP) 105 [11] and 120 [12] the odometry data is
published as a frame relative to the robots base_link which is located in its torso, and the
base_footprint frame is published relative to the base_link.

2.5. Bayes Filter, Particle Filter and Monte Carlo

Localization

This section is based on [TBF05]. With Bayes �lters, a belief distribution, that represents
the current state of the robot is calculated. It is a recursive approach, as the belief at time tx
(bel(tx)) depends on the previous belief (bel(tx−1)). Additionally it takes as input the most
recent control (ut) and measurement (zt) data. For all belief states xt �rst the prediction
step is performed, see Listing 2.1, Line 3, in which the control data that represents the
robots last movement in the world is applied. On the humanoid robot used in this work, it
is the leg's movement, that forms steps and thus changes the robot's state. Then on the
resulting prediction (bel(xt)) in line 4 the measurement update is done. Here the prediction
is multiplied with the probability to actually observe the measurement zt in that state.

1 Algorithm bayes_filter(bel(xt−1), ut, zt):
2 for all xt do

3 bel(xt) =
∫
p(xt|ut, xt−1) bel(xt−1) dxt−1

4 bel(xt) = η p(zt|xt) bel(xt)
5 endfor

6 return bel(xt)

Listing 2.1: Bayes �ltering algorithm. [TBF05]

Beliefs usually have to be approximated in robotics, as they could only be calculated pre-
cisely for very simple scenarios. There are two prominent ways to do so: Gaussian based
�lters, like the Kalman �lter, that work on unimodal Gaussian distributions. The Kalman
�lter can be extended to nonlinear problems. In such an extended Kalman �lter (EKF), the
nonlinear function can be described by its tangent, which is linear.

The unscented Kalman �lter (UKF) calculates a linearized approximation of the nonlinear
function. Particle �lters, on the other hand, approximate the posterior by a �nite number
of samples. The particle �lter algorithm is based on the bayes_filter algorithm presented
above, but the belief state is represented by so-called particles, which are samples drawn from
the belief distribution. It takes as input a set of N particles xt−1, representing the last belief,
the most recent control data ut and measurements zt and outputs a new set of particles xt,
representing the new belief. In listing 2.2, line 4, a predicted particle xt

[n] is sampled given the

9

2. Fundamentals

the old particle x
[n]
t−1 and the current control data ut. This corresponds to the prediction step

of the Bayes �lter. In line 5 the measurement update is performed, which in particle �lters

calculates the weight of each particle w
[n]
t . It equals the probability of sensing the current

measurement data, given the predicted particle (p(xt|ut, x[n]t−1)). The distribution over all
weighted particles is an approximation of the belief distribution bel(xt) in the Bayes �lter.
In particle �lters, the resampling step is done additionally. In this step, for each particle, a
particle of that set is drawn with replacement according to the weight distribution wt. It
focuses the computational resources on the most likely hypotheses by rejecting highly unlikely
ones. The resulting set represents the updated belief xt.

1 Algorithm Particle_filter(Xt−1, ut, zt):
2 X̄t = Xt = ∅
3 for n = 1 to N do

4 sample x
[n]
t ∼ p(xt|ut, x

[n]
t−1)

5 w
[n]
t = p(zt|x[n]

t)
6 X̄t = X̄t + 〈x[n]

t , w
[n]
t 〉

7 endfor

8 for n = 1 to N do

9 draw i with probability ∝ w[i]
t

10 add x
[n]
t to Xt

11 endfor

12 return Xt

Listing 2.2: Particle �lter algorithm [TBF05]

The Monte Carlo Localization is an algorithm based on particle �lters [TBF05]. In addition
to the particle �lter algorithm presented above, it depends on a map (m), to process the
measurement data, see listing 2.3. In the following, the algorithm is presented using an
example.

It takes as input a set of N particles xt−1, representing the last belief on the robots' pose,
the most recent control data ut and measurements zt and outputs a new set of particles
xt, representing the new belief, see listing. Initially the particles are randomly distributed,
as no information on the robots' pose is available, as can be seen in Figure 2.3 for a one-
dimensional example. The robot can move left and right and is equipped with a sensor,

that can sense doors. For each particle x
[n]
t−1 in the input set, again, �rst the prediction step

is performed, by sampling a new particle x
[n]
t according to the given control data ut. The

di�erent approaches to do this sampling will be discussed below. The particle distribution

after this step still is random. In the prediction step, for the updated particle x
[n]
t a weight

value w
[n]
t is calculated, given the latest measurement data zt and the mapm. An overview of

the di�erent measurement model algorithms is provided below. In Figure 2.3 (b) this step is
visualized for the measurement of a door. Particles that represent states with a high likelihood
to sense a door get a high weight. Finally, the resampling step is done, and the updated set
of particles is returned. After the resampling, the particle weights are equal again, but the
particles now are distributed according to the weight.

Figure 2.3 (c) visualizes the distribution after the next prediction step after the robot has

10

2.6. Robot Motion Model

moved to the right. In 2.3 (d) the next measurement update can be seen. Again, particles
with high probability to sense a door get high weights. After the next resampling step in
Figure 2.3 (e) the particles form regions, that represent the robot's pose estimation.

1 Algorithm MCL(Xt−1, ut, zt, m):

2 X̄t = Xt = ∅
3 for n = 1 to N do

4 x
[n]
t = sample_motion_model(ut, x

[n]
t−1)

5 w
[n]
t = measurement_model(zt, x

[n]
t ,m)

6 X̄t = X̄t + 〈x[n]
t , w

[n]
t 〉

7 endfor

8 for n = 1 to N do

9 draw i with probability ∝ w[i]
t

10 add x
[n]
t to Xt

11 endfor

12 return Xt

Listing 2.3: Monte Carlo Localization algorithm [TBF05]

2.6. Robot Motion Model

To implement the Monte Carlo localization, a motion model is necessary, which models the
state transition in Bayesian �ltering. It describes the posterior distribution, that the motion
command ut changes the robot's state from xt−1 to xt. According to [TBF05], two typical
approaches can be distinguished: those based on velocity and odometry-based models. The
velocity motion model can be applied to robots, that are not equipped with rotary encoders
It models the motion of the robot based on its velocity, which is obtained from control data.
The odometry based approach models the robot's motion based on odometry measurements,
which usually is more precise, according to the authors. So as the Wolfgang platform is
equipped with rotary encoders in the actuators, an odometry based motion model is used in
this work.

2.7. Measurement Model

With measurement models, the noise in sensor measurements is modeled, as they underlie
uncertainty. There are three prominent ways to approach the measurement model, according
to [TBF05], that work on raw data input: the beam model, map matching, and likelihood
�elds models. The authors focus on range-sensor but state that the principles and equations
can be applied to di�erent kinds of sensors. In the beam model, for each particle, the ranges
to the next obstacle on the map are calculated by raycasting. The measured laser scan
beams are then compared to the calculated one and based on that the particle's probability
is calculated. So with the beam model, only the error in the distance can be modeled. When
applying this model to data provided by a camera, it could not model the angular error that
could occur.

11

2. Fundamentals

The idea of the map matching model is to build an occupancy map from all measurements
and calculate the particle weights on the degree to which the calculated map �ts the actual
map. This method is independent of the type of sensor, as it only depends on the calculated
map from the sensor measurement, not on the measurements directly. It could be easily
applied to work on camera data.
The likelihood �elds model is more abstract. For each particle, the measured laser range

data is projected onto the map. Then, for each laser scan, the distances to the nearest objects
are calculated. So in contrast to the beam model, where the probability of the particles is
calculated only the ray directly, here the possible surrounding of the ray is included in the
probability calculation. Still, it can be adapted to visual observation. In comparison to the map
matching approach, it provides more �exibility, as it works on single measurements and not a
map generated from them. In this work, the measurement model was implemented according
to the likelihood �eld model, because it provides �exibility while modeling di�erent kinds of
errors. It also can work on precomputed probability values and thus saves computational
resources.

12

2.7. Measurement Model

Figure 2.3.: MCL procedure [TBF05]. (a) Initially, the robot's position is unknown, and the
particles are distributed uniformly. (b) A measurement is done, and the particle
weights are updated according to the measurement. (c) After resampling, the
particle's weights are equal, and they are distributed according to their former
weights. The robot moves, and the movement is applied to the particle's position
(prediction step). (d) Again, a measurement is done, and the particle's weights
are updated. (e) After another resampling, many particles are located around the
robot's true position.

13

3. Related Work

In the following work in the �eld of Monte Carlo Localization is presented. Section 3.1 gives an
overview of MCL and some relevant variants and applications of it. In Section 3.2, adaptions
of MCL in RoboCup Soccer are presented. Two prominent ROS package that implement
MCL are presented in Section 3.3.

3.1. Monte Carlo Localization

Delleart et al introduced the term Monte Carlo Localization (MCL) in 1999 [DFBT99]. For a
detailed description, see Section 2.3. They run two experiments on wheeled robots equipped
with laser range �nders, one in an o�ce scenario and one in a museum. The algorithm was
able to globally estimate the robot's pose correctly as well as track the robot's precisely.
One year later Lenser at all added the resampling step[LV00]. In that step, if the mean

probability over all particles is low after the measurement step, some samples are replaced
with samples drawn from the probability density of all particles. This way, fewer particles are
needed, and the algorithm is more robust against errors, especially for small sample sizes.
In 2002 [Fox02] introduced KLD-Sampling. It adapts the sample size dynamically to in-

crease e�ciency, based on the approximation error. In this approach, the approximation error
is measured by the Kullback-Leibler distance, giving the KLD-Sampling its name.
The Monte Carlo Localization was successfully applied to a humanoid robot platform by

Thompson et al. [TKN06] in 2006. A 3-dimensional Monte Carlo Localization was imple-
mented, working on a 2.5-dimensional map. The robot was 155cm high with 30 degrees of
freedom and equipped with a laser range sensor inside its head. The presented a motion
model, which includes temporal uncertainty in odometry. An experiment on pose tracking
that was conducted on the robot revealed a maximum error of 40 cm, while mostly being
close to the ground truth, as measured by a motion capture system.

3.2. MCL in RoboCup Soccer

In 2004 Röfer et al. implemented a localization approach in the RoboCup Sony Four-Legged
Robot League (SFRL) [RJ04].It was based on MCL and used the lines and the white wall
around the playing �eld as localization information.
In their experiments on pose tracking error, they achieved a mean error of 10.5 cm. They did
not report the angular error.
This work was later further developed to also work on color-coded beacons next to the
playing �eld provided for localization and the color-coded goals [RLT06], but no experiments
on precision were done. .

15

3. Related Work

Muzio et al. [MAMP16] implemented a version of Monte Carlo Localization based on the
goalposts, the corner �ags and the lines in the RoboCup 3D Soccer Simulation League. The
showed that the localization estimate is more precise when using all three types of localization
information instead of only goalposts and corner �ags in a position tracking scenario with the
robot being kidnapped.

In the RoboCup Standard Platform League, many teams state in their team reports hav-
ing some localization method, like rUNSWift [BHJ+18], Camellia Dragons [TTK+16] and
[Nao18].
The team b-Human provides a detailed description of their localization approach. The robot
states are implemented with Unscented Kalman Filters (UKF); each pose hypothesis is rep-
resented by one UKF. These UKF are handled by a particle �lter. The �eld lines, the line
crossings, the center circle, and the penalty marks are used as localization source.

In the RoboCup Humanoid Kid Size League, the team Rhoban Football Club is one of
the few teams reporting to use localization techniques [AGH+19]. They use a particle-�lter
based approach, with 300 particles. It works on goal posts, and the corners of the playing
�eld, detected by computer vision approaches on the camera image. Moreover, it integrates
information from the referee about the state of the game. Furthermore, they improved the
quality of odometry by equipping their robots with pressure sensors below the feet.

The team Barelang-FC also uses a particle �lter-based approach, which only relies on
goalposts as localization information [SJS+19]. It works on only 100 particles.

3.3. MCL with ROS

There are several ROS packages available on localization. Two prominent ones are presented
here.

3.3.1. amcl

The ROS package amcl [13] provides an implementation of KLD-Sampling, see 3.1, which
also known as adaptive Monte Carlo Localization. It is developed to localize a wheeled robot,
that is equipped with a laser range �nder on a 2D plane.

It o�ers two measurement models: the beam_range_finder_model or
the likelihood_fields model, both of them working on laser range �nder data, as pre-
sented in 2.7.

Two motion models are available: the sample_motion_model_odometry algorithm and
an extension of it.

The package o�ers the possibility to initialize the algorithm with a Gaussian as initial belief.
The mean and standard distribution one each dimension can be speci�ed. Furthermore, it
o�ers a service for global localization, where all particles are spread over the whole map.

The package is only very limited usable with robots that are equipped with a 2D RGB cam-
era. When converting line point detections into a message of type sensor_msgs/LaserScan [14],

16

3.3. MCL with ROS

much information can get lost, because only the measurements closest to the robot are cov-
ered.
Moreover, it is not possible to fuse several information sources into the �lter.
Also, the possibilities for initialization are quite limited, as only one pose can be given.

This pose would need to cover both sides of one �eld half, and the given angular value would
need to cover two opposite orientations.
The other possibility, global localization, which is available via a service call of

global_localization, spreads the particles uniformly distributed over the whole map. This
is also not very helpful, as due to the symmetry of the �eld, this will result in two equally
good pose estimations, one on each half of the �eld.

3.3.2. humanoid localization

The ROS package humanoid localization provides an implementation of MCL in 3D space.
As amcl it takes as input a sensor_msgs/LaserScan message, but it can also work on point

cloud data and can fuse orientation data provided by an IMU (inertial measurement unit) into
the �lter.
It also o�ers the possibility to initialize the robots pose with Gaussian distribution or do

global localization. Both options are not well suitable in the context of humanoid soccer, as
discussed above.
Again, only one kind of information is possible.

17

4. Approach

In this work a version of Monte Carlo Localization is developed, that works on a small
humanoid robot and can process several input data sources at once. It is divided into two
separate parts: the localization node itself, working on vision data projected into Cartesian
space, and the localization handler, which (re-)initializes the �lter with information of the
robot's state and the state of the game. The integration into the Hamburg Bit-Bots' software
stack with the information �ow is depicted in Figure 4.1.

Figure 4.1.: Information �ow diagram. The modules from the Hamburg Bit-Bots software
stack are marked in yellow. The blue ones were implemented in this work. The
Localization Handler initializes and reinitializes the Monte Carlo Localization ac-
cording to information provided by GameController and Hardware Control Man-
ager. Odometry data is used for the prediction step of MCL. The measurements
for the update step are provided by the Bit-Bots vision pipeline and are trans-
formed into Cartesian space.

In Section 4.1 the implementation of the MCL algorithm is presented, including the state
de�nition, the motion model, possible state distributions for initialization, the adapted mea-
surement model, the service for initialization and the way the pose estimate is generated from
the particle distribution. The localization handler is presented in Section 4.2 and in Section
4.3 the visualization setup is described.

4.1. Localization Node

For the implementation of the Monte Carlo Localization (MCL), the particle �lter library [15]
was used, which is easily integrable into ROS. It is a lightweight implementation that is highly
�exible and thus applicable in di�erent contexts. The particle �lter library o�ers the basic

19

4. Approach

structure in which a custom state model, motion model, state distributions and measurement
and map model and can be implemented. The developed version of MCL can integrate
di�erent kinds of measurements. A measurement model for laser range �nders was adapted
to work on measurements from a 2D image. The MCL can be (re-)initialized with di�erent
state distributions, based on prior knowledge.

The localization is implemented according to the MCL algorithm [TBF05], see Section 2.5.

In the �lter's main loop, �rst the newest measurements are set, if the corresponding infor-
mation type should be used in that step and the data is newer than the one used in the last
�lter step

Then the latest robots latest movement on the �eld, from the last �lter step to now, is
looked up in the tf-tree.

After that the prediction step is performed, as described in Section 2.6, by applying drift
and di�usion.

In the measurement step afterward, the observation model, as described in Section 2.7, is
applied.

Then the resampling step is done with Importance Resampling, as proposed in [DGA].
Unlike suggested in [LV00], this is not only done if the mean weight over all particles is low
but after a �xed number of �lter steps, that can be adjusted. This was done with regard
to the evaluation done is this work, as is keeps the results among di�erent conditions easier
comparable.It is not done after every �lter step, because with each resampling hypothesis on
the robot's pose are rejected. On a robot with a moving head and a limited �eld of view, the
particle weight always is calculated only on a very limited part of the possible observations.
Including more consecutive measurements into the particle weight before resampling makes
it more robust against rejecting good particles.

Finally, the pose estimate, as the mean over the best particles, is published as
geometry_msgs/PoseWithCovarianceStamped message [16] and the markers for visualiza-
tion of are generated and published.

The localization node is implemented using dynamic recon�gure [17]. It allows the user to
adjust the parameters of the localization, while it is running.

4.1.1. Robot Pose State

The states representing the robot's pose in the world are represented by the vector

xy
θ

,

where x and y refer to the robot's position on the ground plane and θ to its rotation around its
yaw axis, which is orthogonal to that plane. The robots reference frame is the base_footprint
frame.

4.1.2. Robot Motion Model

Two kinds of motion can be applied to the particles, called drift and di�use.

20

4.1. Localization Node

Drift

The drift models the robot's motion relative to the ground plane. It is implemented according
to the algorithm sample_motion_model_odometry by [TBF05]. It updates a given state with
the current odometry data.

The odometry data contains odometry measurements from the last time step and the

current one: ut =

(
x̄t−1
x̄t

)
, retrieved from the tf tree. This way, the step size, over which

the robot motion should be retrieved can be easily adjusted to the particle �lter frequency.

From these measurements three parameters are retrieved, that model the robots' latest
motion: a rotation δrot1, a translation δtrans and a second rotation δrot2, see Figure 4.2.

Figure 4.2.: Visualization for the odometry motion model. [TBF05]. The robot's motion can
be model by a rotation, followed by a translation and a �nal rotation.

The �rst rotation δrot1 models the direction of motion implicitly given by the translational
movement in x and y direction. The translation δtrans can then be calculated as the distance
between the old and the new position. The second rotation δrot2 models the robots' �nal
orientation, taking into account the old orientation and the �rst rotation. The calculation is
done in lines 3-5 in Listing 4.1.

21

4. Approach

1 Algorithm sample_motion_model_odometry(ut, xt−1):

2

3 δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
4 δtrans =

√
(x̄− x̄′)2 + (ȳ − ȳ′)2

5 δrot2 = θ̄′ − θ̄ − δrot1
6

7 δ̂rot1 = δrot1− sample(α1δrot1 + α2δtrans)
8 δ̂trans = δtrans− sample(α3δtrans + α4(δrot1 + δrot2))
9 δ̂rot2 = δrot2− sample(α1δrot1 + α2δtrans)
10

11 x′ = x+ δ̂transcos(θ + δ̂rot1)
12 y′ = y + δ̂transsin(θ + δ̂rot1)
13 θ′ = θ + δ̂rot1 + δ̂rot2
14

15 return xt = (x′, y′, θ′)T

Listing 4.1: Algorithm to sample from the motion model based on odometry [TBF05]. The
function sample(s) samples from a Gaussian distribution with zero mean and
standard deviation s.

The algorithm takes as input the odometry information ut and an initial pose xt−1 and
outputs the updated pose xt.

First, the three relative motion parameters discussed above (δrot1, δtrans, δrot2) are retrieved
from the odometry data (line 3-5).

Then, in line 7-9, to each of these motion parameters, Gaussian noise is applied, depend-
ing on the related parameters to account for errors in the robots' odometry. The function
sample(s) samples from a Gaussian distribution with zero mean and standard deviation s.
In this implementation, all of the parameters α1 to α4 were set to 0.001, as the correct errors
were unknown. In Figure 4.3 possible samples for three di�erent sets of the error parameter
α1 − α4 are visualized. Figure 4.3 (a) has moderate parameter values. In Figure 4.3 (b) the
results of a high value of α3 can be seen and in (c) α3 is small but α1 and α2 are large. The
�nal orientation of the samples is not visualized, but it varies in the same amount as δrot1
does, as it also depends on α1 and α2.

Figure 4.3.: Possible samples from the odometry motion model [TBF05] for three di�erent
sets of the error parameters α1 − α4.

22

4.1. Localization Node

In lines 11-13, a new pose is calculated by applying the updated parameters to the given
old pose. Finally, the updated pose is returned.

Di�use

Di�usion adds random Gaussian noise to the particles. The amount can be dynamically
con�gured.

The di�usion of particles has two purposes. Firstly it was added to compensate for the
unknown motion error parameters in the drift model. Adding noise afterward scatters the
predicted particles and thus might help to reduce the particles to concentrate on faulty states.
Secondly, di�using the particles in each �lter step could improve the e�ciency of the particle
�lter, because fewer particles might be needed. The intention behind that is that a limited
number of particles can cover only a part of the robot's possible states. If the robot does not
move, it is possible that the true pose is not su�ciently covered with particles. So by adding
noise to the particles in that case, more states can be covered. The Gaussian noise added
in this step is applied to the particle directly, so the distribution of samples, in this case, is
centered around each dimension of the particle.

4.1.3. State Distributions for Initialization with Prior Knowledge

If some information on the robot's pose it available, it can be used to initialize the particle
�lter. This is done by distributing the states according to the prior knowledge. For di�erent
prede�ned situations in the game, the localization node can be initialized with di�erent state
distributions. They are based on information provided by the laws of the game or help to
reinitialize the localization e�ciently after the robot fell.

Pose known

One of the simplest cases of localization is to keep track of a (roughly) known pose. In a
RoboCup Soccer game, this can happen if robots of the team having kicko� were not able
to position themselves legally on the �eld, or positioned themselves strategically disadvan-
tageously. The robot handler then is allowed to position for instance the robot playing the
goalkeeper �within the team's own goal area touching the goal line� [Rob19].

So when the game enters the playing phase, the goalkeeper's localization can be initialized
inside its own goal, as is needs to be there either by self-positioning or being positioned there
manually. The initial state distribution for a goalkeeping robot of a team having kicko� can
be modeled with a Gaussian distribution, centered between the own goalposts and oriented
towards the �eld, as can be seen in Figure 4.4.

Position known, orientation unknown

A slightly more complicated case is to localize the robot with a more or less known position
but unknown orientation. This scenario can occur if a robot has fallen. After getting up its
position on the �eld is approximately the same, but as the exact direction of falling is hard

23

4. Approach

Figure 4.4.: State distribution for a known pose. The particles are distributed at initialization

with Gaussian distribution centered around the pose

−4.5
0
0

 with a standard

deviation of 0.1 on each dimension.

to determine, especially if the robot falls onto another robot and rolls over, its orientation is
unknown. So the localization node needs to be reinitialized with a roughly known position but
unknown orientation. The state distribution for initializing the localization after a fall could
be a Gaussian deviation on x and y as for the known pose, but with uniformly distributed θ.

Multiple speci�ed regions

When a robot re-enters the �eld, for instance after a removal penalty, it is only allowed to
do so �from the team's own half of the �eld close to the penalty mark facing the opposite
touch line� [Rob19]. The referee de�nes the side of the half and the exact position. In the
laws, some information on possible positions and the orientation are provided, but the exact
pose needs to be determined. So the initial state distribution for this scenario is two Gaussian
distributions, one at each touchline, with the position centered at the height of the penalty
mark, and the orientation facing towards the �eld, as can be seen in Figure 4.5.

Field half

If no information on the pose is available, for instance, if no information is received from the
GameController because of network errors, a more general state distribution is required at
initialization. Here, particles are spread with uniform distributed position and orientation over
one half of the �eld. The side can be manually con�gured.

A complete global localization, with an initial state distribution over the whole �eld, is only
useful if at least one input source provides non-symmetric information. Otherwise, the Monte

24

4.1. Localization Node

Figure 4.5.: State distribution for multiple speci�ed regions. The particles are distributed at

initialization with Gaussian distribution centered around the poses

 2.5
3

−1.57

 and 2.5
−3
1.57

 with standard deviation of 0.8 on x and 0.1 y and θ.

Carlo Localization will result in two equally good pose estimates on the corresponding poses
on the �eld.

4.1.4. Measurement Model and Map Model

The measurement model was implemented following the Likelihood Fields approach by [TBF05],
which provides a rating for each particle, depending on the overall likelihood to actually sense
the incoming sensor data.

It was adapted to model data from a 2D RGB camera instead of a range �nder and to deal
with several kinds of inputs simultaneously. The original algorithm is provided in Listing 4.2.

1 Algorithm likelihood_field_range_finder_model(zt, xt,m):

2 q = 1
3 for all k do

4 if zkt 6= zmax

5 xzkt
= x+ xk,senscosθ − yk,senssinθ + zkt cos(θ + θk,sens)

6 yzkt
= y + yk,senscosθ − xk,senssinθ + zkt sin(θ + θk,sens)

7 dist = min
x′,y′
{
√

(xzkt
− x′)2 + (yzkt

− y′)2|〈x′, y′〉 occupied in m}
8 q = q × (zhit × prob(dist, σhit) + zrandom

zmax
)

9 return q

Listing 4.2: Likelihood �eld range �nder model [TBF05]

25

4. Approach

Figure 4.6.: State Distribution for �eld half. The particles are distributed at initialization with
uniform distribution inside the dimension on the �eld half and uniform distribution
on θ between 3.14 and -3.14.

It takes as input the current laser range reading zt = {z1t , ..., zKt }, a pose xt and a map
m. For all values of zt �rst, it is checked if the value is a maximal sensor range reading, in
which case the data is ignored. Otherwise, the endpoint coordinates of the sensor reading
are transformed onto the map, given the robots pose and the heading direction of the laser
range �nder θk,sens (line 5 and 6). Then the minimum distance to the nearest obstacle is
calculated, and the probability for the sensor beam is calculated. Finally, the sum of all sensor
measurement probabilities is returned.

Two main changes were made, to adapt the algorithm to work on information provided by
a 2D RGB camera.

Firstly the measurements from the 2D camera, transformed into the robots base_footprint
frame were handled like laser beam endpoints. The distance calculation from the sensor to
the detection was skipped, as it only provides information on the three-dimensional space
where the measurement was taken. This cannot be applied to the two-dimensional map the
localization works on, as the calculated ray does not provide any information on the two
dimensional (possible) detection on the �eld.

Secondly, only the measurement noise zhit and unexplained random measurements zrand
were included in the measurement model. The measurement noise models the error of the
detection, either caused by inexact detection in the image or due to errors when transforming
it into the robot's base_footprint frame, see 2.1.2. Random measurements are false positives
detections in the vision algorithms. In the Hamburg Bit-Bots vision pipeline, the are more
likely to occur on the �eld rather than outside the �eld, as image processing strategies like the
�eld boundary were implemented to search only the image parts that actually are on the �eld
[FBG+19]. Failures like max range readings for range �nder do not occur in data provided by
object detection algorithms on 2D RGB images.

The pseudo-code of the adapted likelihood_field_model can be found in Listing 4.3.

26

4.1. Localization Node

1 Algorithm likelihood_field_model_humanoid(Zt, xt,m):

2 r = []
3 w = 0
4 for all zt in Zt do

5 q = []
6 for all k do

7 dm = measuerment_on_map(xt, z
k
t)

8 q.push_back(get_rating(d_m , m))

9 q = ((
∑q.size()

i=0 q[i])/q.size()) ∗ fz
10 r.push_back(q)

11 if r.size() =! 0

12 w = (
∑r.size()

i=0 r[i])/r.size())
13 return w

Listing 4.3: Likelihood �eld model for a humanoid robot

It takes as input di�erent kinds of localization information Zt. Then for each kind of
measurement zt, the measurement is done equivalently to the original algorithm.

Transforming the detection into the map frame could be simpli�ed, because the measure-
ments are already transformed into the base_footprint frame and thus are independent of
the camera's orientation relative to the robot. To make the calculation of xzkt

and yzkt
better

understandable, an approach using polar coordinates was chosen. The measurement zkt �rst
was transformed into the polar coordinate representation. This way, the particle's orientation
θ can be added to the angular component of the measurement. The resulting rotated mea-
surement z′t

k is oriented in a way, that it only needs to be shifted to the particle's position
x, y. This can easily be done by converting z′t

k back to Cartesian coordinates and adding
them. This is done for each single detection zkt in the function measurement_on_map() in
line 7.

The detection probabilities for each detection type were pre-computed in lookup tables with
1 cm resolution, which is precise enough in the context of robot soccer. Due to an error in the
early stages of this work, the probabilities are not represented in the interval [0, 1], but in the
range from -10 to 100. Although this lacks a correct mathematical explanation, the results
were su�cient. This shows the robustness of the used particle �lter library. The probability
ratings on these maps range from 0 to 100, with 0 being very unlikely for the particle actually
to sense that observation to 100, very likely. The measurement noise zhit is modeled with
Gaussians around the true positions of possible detections. An observation outside the map
gets a rating of -10, which models the unexpected random noise zrand.

The function get_rating(d, m) provides the rating of a single measurement on the spec-
i�ed map.

Over all single measurement of one information source, the arithmetic mean is calculated,
see line 9, to keep the provided rating per information source independent from the number
of measurements used for it. The resulting information source ratings can be weighted by a
factor, to adapt the degree in which they are used for the �nal particle weight. In this work,
all information source factors were one.

In line 12, these ratings provided by the di�erent kinds of information again were combined

27

4. Approach

to a �nal particle weight w by calculating the mean over all information source ratings.
In the following, the di�erent information sources for the observation model are discussed.

Lines One of the primary information sources a soccer �eld provides for localization is the
line-markings. The are detected by the vision pipeline 2.1.2 and published as hu-
manoid_league_msgs/LineInformationRelative, as proposed by [Bes17]. The message
de�nition can be found in B.5 and B.6. The data is then applied to the measurement

Figure 4.7.: Lookup table for lines. The lighter the pixel the line point is projected on, the
lower its rating. Line points outside the map get the lowest rating. The overall
information source rating is calculated by adding up all line ratings and dividing
by the number of line points detected in that measurement.

model and checked against the probability lookup table shown in Figure 4.7.

Goal posts Another essential information for robot self-localization on a soccer �eld are the
goals. Complete goals are hard to detect, as often only parts of the goal are in the �eld of
view. However, even the goalposts without the crossbar provide valuable information for
localization. They are published as the humanoid_league_msgs/GoalRelative message,
see B.4 If only one goalpost is detected, it is a convention at the Hamburg Bit-Bots to
�ll both goal post �elds in the message with that one goal post.

So before applying the measurement to the localization, it is checked if both goalposts
are identical. In that case, the goal post is fed into the particle �lter only once.

The detected goalpost measurements are rated according to the lookup table in �gure
A.1a.

Field boundary The �eldBoundaryRelative message provides information, on where the out-
side border of the �eld was detected. Its de�nition can be found in B.2.

28

4.1. Localization Node

The �eld boundary points need to be �ltered before passing into the Observation model
to provide more robust information. The �ltering is necessary in two ways. First of all,
the algorithm provides wrong data when transformed into Cartesian space in case the
complete �eld of view is covered with green �eld. As in this case always the uppermost
row in the image is classi�ed as �eld boundary, because it is the �rst detection of green,
the �eld boundary transformed to Cartesian space will be on the �eld and moving with
the head movement.

The other case is that it is not possible in this �eld boundary detection for the furthest
left and right point to distinguish whether it is a correct detection of the �rst green
point in that column or caused by an obstacle. As mentioned above, the convex hull
helps to get rid of most of these dents. However, the outermost points always belong to
the convex hull and thus need to be ignored for localization. So for each FieldBound-
aryRelative message, the corresponding FieldBoundaryInImage message needs to be
checked for the y coordinates of the points. The de�nition can be found in B.1. New
points are only interpolated starting with the second point to the second last point and
only if two corner points have a y value greater then 0. The probability lookup table
for �eld boundary data can be seen in Figure A.1b

Field marking features The �eld markings can be seen as the line points mentioned above,
but they can also be seen on a higher abstraction level. They are de�ned to form
patterns like corners, crossings, or crosses. Depending on the style of the �eld marking,
also points can be such a �eld marking feature, as they can be used for the penalty
marks and the center point. These features consist of at least two lines that meet in a
certain way.

In this work, three types of features are distinguished: L-shaped corners, T-shaped
crossings, and crosses. Corners appear at the outside of the �eld marking and at the
goal areas, see the blue markings in Figure 4.8. T-crossings are located where the goal
areas meet the goal lines, and the middle line meets the touchlines, see green markings.
The penalty marks and the center circle can be marked either as points or as crosses.
In this work, they are assumed to be crosses. Furthermore, the crossings of the center
circle with the middle line are classi�ed as crosses, although they are not perfectly
cross-shaped. They are marked in red.

In comparison with the line points, the �eld marking features provide less information,
because the lines between the features are ignored. However, the provided information
is more precise. While there is a variety of possibilities to map a piece of line onto the
�eld markings, a detected crossing can only be mapped to one of 8, a T-crossing to
one of 6 and a cross to one of 5 di�erent positions. As the features are spread over
the whole playing �eld, they are often in the robot's �eld of view so that no active
head movement is necessary for localization. Depending on the detection method for
these �eld features, di�erent levels of information can be gained from them. If the
exact position and orientation of the �eld features are available, it could be handled
similar to the procedure for lines described above, with the advantage that a detected
feature could not be �tted onto a line erroneously, but only onto another feature of its

29

4. Approach

Figure 4.8.: Visualization of �eld marking features. Corners are marked in blue, t-crossings in
green and crosses in red.

30

4.2. Localization Handler Node

kind. However, the features can also be used for localization if no relative orientation is
provided by the detection method. The detected �eld marking feature measurements
are rated according to the lookup tables in Figures A.1c, A.1d and A.1e.

4.1.5. Initialization Service

The localization node can be re-initialized by a service call of reset_�lter. It resets the
particles according to the distribution speci�ed in the service call. For initialization over one
�eld half and the start distribution with multiple speci�ed regions, on the according mode
needs to be set. If the node should be initialized with known position, the position needs
to be speci�ed in the request. Due the limited scope of this work, the initialization with a
known pose was not included in the service call.

1 int64 init_mode

2 int64 x

3 int64 y

4 ---

5 bool success

Listing 4.4: De�nition of the reset_�lter service. A certain initialization mode can be
requested and, if necessary, a position can be speci�ed.

4.1.6. Calculation of Estimated Pose

The estimated pose is calculated over the mean of the particles with the highest weights.
How many particles should be considered can be set by dynamic recon�gure.

The pose estimate is published in two ways. Firstly a transform from the map frame to the
odom frame is published. Additionally it is published as PoseWithCovarianceStamped [16]
message. This includes the covariance matrix, which is calculated over all particles, not only
the ones used to calculate the estimated pose itself. This way information on the quality of
the pose estimation is available.

4.2. Localization Handler Node

To make the localization more robust, a node that initializes the localization with knowledge
from the game state on the one hand and the robot state on the other was implemented.
According to the information received from the GameController on the state of the game and
the robot's role in the game, the best initial state distribution for particles is chosen. The
information is received as humanoid_league/GameState message, see Listing B.3. Moreover,
it tracks the last pose estimate, and in case the robot falls, it reinitializes the particle �lter
with the known position but unknown pose. The information is published by the HCM as
humanoid_league/RobotControlState. Its de�nition can be found in B.7.

31

4. Approach

4.3. Visualization

For debugging and parameter adjustment, a visualization setup was built in rviz [8]. The
particles are published as visualization_msgs/MarkerArray [19] of type arrow. Each particle
weight is indicated by the color of the arrows, with red close to 1 and black close to zero.
The incoming measurements were visualized by a marker message of type point. Each line
point and each �eld boundary point was visualized as one point, as well as each goalpost
detection and each �eld marking detection. After one �lter step, the measurements used in
that step are transformed into the frame of the resulting pose estimate. Then a rating process
equivalently to the measurement step was performed, and the resulting measurement rating
for the pose estimate was published with colors ranging from cyan to magenta, with magenta
for high ratings. Measurements that were not on the map are published in blue.

(a) Visualization of line point data.

(b) Visualization of a detected goalpost with a low rating.

32

4.3. Visualization

(c) Visualization of �eld boundary point data.

(d) Visualization of of a detected �eld marking feature, a
t-crossing, with a high rating.

Figure 4.9.: Vizualization setup in rviz. The red to black arrows represent the particles. The
more reddish the particle, the higher is its weight. The cyan and violet to pink
squares visualize di�erent measurements and their ratings for the pose estimation.
The cyan ones are projected outside the map and thus have the smallest weight.
The more reddish, the higher the weight.

33

5. Evaluation

To evaluate which kinds of information sources and which combinations of them provide
the most accurate pose estimation, two experiments were conducted on localization and
one on pose tracking. The information sources used in this evaluation are line point data,
�eld boundary data, goal post data and the �eld marking features (corners, t-crossings, and
crosses).The �rst experiment evaluates the precision of the robot's estimated pose on one
�eld half. The robot is stationary in this experiment. In the second experiment, the precision
to track a robot's known pose while moving is evaluated. The experiments were conducted
on simulated data because the robots true pose is provided by the simulation software. The
simulation was run using Gazebo [20], which is well integrated into ROS.
The line point detections and �eld boundary detections were provided by the Bit-Bots

vision pipeline. The goalpost detections and detections of �eld features (corners, t-crossings,
crosses) were simulated. This was necessary because the Bit-Bots goalpost detection was
developed to work on real-world data. So as the net was trained on image sets recorded on
competition setups and in the Bit-Bots test laboratory, it does not have a high performance on
images recorded in simulation. The �eld feature detections needed to be simulated, because
due to the limited scope of this work is was not possible to implement feature detection.
Each feature and goal post was added to the tf-tree on the correct position in the simulated
environment. Only those goalposts and �eld marking features that were currently in the robots
�eld of view were published, containing the position relative to the robot's base_footprint
frame. The goals posts were published using the usual humanoid_league_msgs/GoalRelative
message, while the features were put into the humanoid_league_msgs/PixelRelative and
humanoid_league_msgs/PixelsRelative messages. The message de�nitions can be found in
B.8 and B.9.
So these measurements were simulated without errors, while the lines points and �eld

boundary points were subject to the usual errors that occur in the Bit-Bots vision pipeline.
Figure 5.1 shows an example image taken from the robot's camera in gazebo.
All in all seven di�erent realistic scenarios recorded to rosbags [21]. In all scenarios the

robot was standing on the playing �eld, moving its camera with a �xed pattern. The head
turned from left to right and back, with the direction of gaze being further up in the one
direction and further down in the other one. In some scenarios, the robot moved around.
The localization node was con�gured for the evaluation with the settings in Listing C.1.

The publishing rate was set to 25, as the highest frequency of subscribed messages was around
20.
On each scenario, ten trials were run, to evaluate repeatability. Each trial was initial-

ized with a new pseudo-random distribution of particles. This way, independence from a
speci�c distribution could be evaluated. The results were published using the custom hu-
manoid_league_localization/Evaluation message type. Its de�nition can be found in B.10.

35

5. Evaluation

Figure 5.1.: Exemplary image from the robot's camera in Gazebo. The red points visualize
line point detection, the yellow line the detected �eld boundary.

For each �lter steps it contains the header, the covariance matrices of the best 1 %, 5%,
10%, 20% and over all particles, whether resampling was done in that step and the number
of detections for each information source. In Section 5.1, the experiment on localization is
described, and the results are presented. The experiment on pose tracking and its results are
shown in Section 5.2.

5.1. Localization

This experiment was conducted to evaluate the ability of the developed MCL variant to
estimate the correct pose with particles initialized over one �eld half.

5.1.1. Setup

The �rst part of the evaluation was conducted on scenarios where the robot remained station-
ary and only moved its head. Three di�erent typical poses were chosen, which are visualized
in Figure 5.2: a start scenario, marked in red, a striker's pose close to the center circle,
marked in green and the goal keeper's pose inside the goal, marked in blue.

In this experiment at initialization, the particles were distributed over the current half, see
Chapter 4.1.3. Each of the scenarios was recorded for about a minute.

5.1.2. Results

Firstly a summary of all three scenarios is presented. Then each scenario is analyzed separately.

36

5.1. Localization

−4 −2 0 2 4

−4

−2

0

2

4

x-position in m

y-
p
os
it
io
n
in

m

Figure 5.2.: The three arrows show the poses in which the localization experiment was con-
ducted. In red, a starting pose, of a robot about to enter the �eld is marked.
The green arrow is a typical striker's pose, and the blue arrow is the pose of the
goalkeeper.

All scenarios

Figure 5.3 shows the error distributions between the localization estimates and the true pose
over all three localization scenarios. In each of the 15 conditions, 30 trials were run, 10 on
each scenario. The box plots show the error distribution over all �lter steps.

In both criteria, the euclidean distance error and the angular error, all lower whiskers reach
zero as well as most �rst quartiles. The upper whiskers in most conditions stay below 3 m and
1 rad. The highest ones reach beyond 7 m and up to 3.14 rad, where 3.14 rad is the highest
possible value on that scale, as it describes the opposite orientation. The highest possible
value for the euclidean distance can be seen to be the highest expansion of the �eld, which
is 12.76 m. Due to the initial distribution of particles over one �eld half only, this maximal
error might be unlikely to reach but still is possible due to the particle movement caused by
di�usion. Most median values across conditions in the euclidean distance error are below 1 m
and below 0.5 rad in the angular error.

In general, it can be said, that broader error distributions on the euclidean error correspond
with broader distributions on the angular error, for example in the G, F and G/F conditions.
It is not the case for FB/F and L/G/F, but here the medians on the euclidean distance error
are relatively low with values below 1m, compared with the other conditions.

Among the four conditions containing only one kind of information source, lines (L) and
�eld boundary (FB) produced the least erroneous results, with small interquartile ranges on
both criteria and low medians close to zero.

This result can also be found in the conditions containing two information sources, where
the combinations including lines (L/G, L/FB, and L/F) achieved more precise localization
estimates than the ones without lines. Among the conditions not containing lines, the two
including the �eld boundary (G/FB and FB/F) achieved the lowest median values, but the
third quartile is quite high in the FB/F condition.

37

5. Evaluation

Figure 5.3.: Error distributions over all scenarios in the localization experiment. The absolute
error in euclidean distance is given in m and the absolute angular error in rad.
The distributions are presented as box plots, where the upper and lower whisker
reach to the �rst data points within 1.5 times the interquartile range. The green
tone in the background indicates the number of information sources that were
used per condition, from light green for the single information conditions to dark
green for the condition containing all four information sources. The absolute
error in euclidean distance is given in m and the absolute angular error in rad.

The median values among the conditions with three input sources were all close to zero
in both criteria. Those including line and �eld boundary information (L/G/FB and L/FB/F)
resulted in narrower distributions with upper whiskers around 1 in the euclidean distance error
compared to roughly 7.5 m and 3.5 m for L/G/F and G/FB/F and about 1 rad in the angular
error for both.
By including all four information sources for localization (L/G/FB/F), the median value is

close to zero, and the deviation is quite narrow, with the upper whisker below 1.5 m for the
euclidean distance error and below 0.5 rad for the angular error.
All in all, the best results were achieved in the L/FB/F condition. The conditions L/G/F-

B/F, L/G/FB, and L/FB had similar results, and even the error distribution of only lines (L)
was not much worse.
Line information seems to be the most reliable information source for localization, as it

produces the most precise localization estimates regarding euclidean distance error as well as
angular error. The already good precision can be further improved by including �eld boundary
information. Additionally, including the �eld marking features makes it even more precise.

38

5.1. Localization

The second-best information source for localization is the �eld boundary data, which results
in slightly more erroneous pose estimates than line data.

Analysis of scenarios

To check, whether these �ndings can be applied across situations, an equivalent analysis is
done for each of the three situations.

Entering the �eld In Figure 5.4 the error distributions for all 15 conditions on the start
scenario data on 10 trials are visualized. The robot's pose in this scenario is visualized in

Figure 5.4.: Error distributions in the �rst scenario of the localization experiment: The robot
is about to enter the �eld from the touchline.

Figure 5.2 with the red mark. Again all lower whiskers are around 0, but the interquartile
distances and ranges are larger in both criteria (the euclidean distance error and the
angular error) compared to the overall analysis in Figure 5.3. The median values are
in a similar range, with the exception of condition, where the median in the euclidean
distance error is around 5 m.

Regarding the median, a similar role of lines and �eld boundary can be found in the
one-information-conditions, as they have the lowest median values in both criteria. The
distribution of errors in the line condition is similar to the overall analysis, but in the
�eld boundary condition, the interquartile range and upper whisker are a lot higher in
both criteria.

39

5. Evaluation

Among the conditions with two information sources, the combination of lines and �eld
boundary information (L/FB) bears the smallest risk for errors with a low median value
and narrow distribution. While most conditions in this category have low median values
in both criteria, the combination of �eld boundary information and features (FB/F) has
a very high one for euclidean distance error, with around 5 m.

The other combinations containing two information sources (L/G, L/F, G/FB, and
G/F) all have low median values in euclidean distance error and angular error, but quite
high ranges in at least on of them.

For the four conditions with three information sources again, L/FB/F achieved least
localization estimate errors. The other conditions (L/G/FB, L/G/F, and G/FB/F) have
similarly low median values in both criteria, but broader distributions.

The condition with all four information sources (L/G/FB/F) resulted in low median
values, but relatively large interquartile distances and large ranges in both criteria.

The least erroneous results were achieved in this scenario in the L/FB/F condition.
Similar results could only be achieved in the L/FB condition.

So all in all, line information seems to be the most precise information source in the
situation of a robot entering the playing �eld. Adding �eld boundary information (L/FB)
helps to reduce localization errors in euclidean distance as well as angle. Including
features (F/FB/F) improves the estimation even more. The resulting error distribution
in this condition on both criteria is similar to the one achieved in the overall analysis,
while many other conditions achieved less precise estimates.

Striker In Figure 5.5, the localization errors for the striker scenario is plotted. The robot's
pose in this scenario is visualized in Figure 5.2 with the green mark. As before, all
�rst quartiles in both criteria (euclidean distance error and angular error) are close to
zero error, as well as most median values. Many conditions have a very narrow error
distribution with upper whiskers below 1 m and 0.5 rad.

As in the overall analysis, the best single information conditions are lines (L) and
�eld boundary information (FB) with very small deviations in both criteria in the lines
condition and only slightly more in the �eld boundary condition.

Of the conditions with 2 information sources, the best estimates were achieved by the
ones containing lines (L/G, L/FB, L/F) as well as the combinations containing �eld
boundary information (G/FB and FB/F) information. Among these, only FB/F has
the upper whisker over 1 m and 0.5 rad. The other four error distributions are even
smaller.

All condition with three information sources achieved very gut results with upper
whiskers under 1m and 0.5 rad, as well as the condition containing all four information
sources.

In this scenario, again lines and �eld boundary information provided a good information
source for localization, as well as all combinations, including one of them and other
sources.

40

5.1. Localization

Figure 5.5.: Error distributions in the second scenario of the localization experiment: The
robot is standing in front of the center circle.

Many conditions had very narrow error distributions close to zero, including L/G/FB/F,
all combinations of three, most combinations of two but also the lines and �eld boundary
information on their own.

This indicates that the localization task on the strikers' pose might be easier than when
entering the �eld.

Goal keeper In Figure 5.6, the error distributions for localizing at a goal keeper's pose are
visualized. The robot's pose in this scenario is visualized in Figure 5.2 with the blue
mark. The data range is very di�erent among conditions, as some conditions have very
small ranges close to zero and some have very wide ones, especially on the angular
error.

Median values range from close to zero up to 4 m in the euclidean distance error and
from close to zero rad up to pi.

It striking, that two error distributions have their lower whisker and �rst quartile quite
far away from zero in the euclidean distance error.

One of them is the �eld boundary condition (F), which was also not very precise in the
other two scenarios. Here, the localization estimate provided by it is not only unprecise
but can even be seen to be usually incorrect. The best conditions among the single
information conditions, here again, are lines and �eld boundary information (L, FB), as
they have narrow distributions close to zero on both conditions.

41

5. Evaluation

Figure 5.6.: Error distributions in the �rst scenario of the Localization experiment: The robot
is standing inside the goal.

In this scenario again the conditions with two information sources are most precise if
they contain line information (L/G, L/FB, L/F), with very narrow error distributions
close to zero.

The combination of line and �eld boundary information is also most successful among
the conditions with three information sources (L/G/FB and L/FB/F). The condition
with all four inputs also achieved quite precise results with narrow distributions close
to zero on both criteria.

This experiment showed that in many conditions, a good pose estimation could be achieved.
Across all scenarios, it can be seen, that relying on line information only can already result in

reasonable localization estimates. This also applies to the �eld boundary information, except
for the �rst scenario, where the �eld boundary alone bears a high risk to localize wrongly,
with errors of several meters in euclidean distance 3 rad in angle.
Combining line and �eld boundary information leads to reliable localization estimation

across all scenarios. Adding more information sources as goal posts or features does not
improve the estimation precision a lot further, as line and �eld boundary information already
result in very small errors. In fact, including goalposts and feature information led to slightly
more errors, especially in the �rst scenarios. This e�ect might be caused by the small sample
size of ten trials each.
The results show that di�erent scenarios can be quite di�erent in di�culty, from relatively

high errors over all conditions in scenario one, quite small errors over most conditions in

42

5.2. Pose Tracking

scenario two, to scenario three, where in some conditions most errors were far away from
zero.

5.2. Pose Tracking

To evaluate how a well a pose estimation is updated according to the robot's movement, this
experiment was done.

5.2.1. Setup

The second part of the experiment was done on moving scenarios. In Figure 5.7 the four
di�erent realistic scenarios are visualized: two scenarios of the robot moving from a pose
outside the �eld to two di�erent start poses on the �eld (red and green lines), one scenario
of a goalkeeper positioning itself inside its goal (dark blue line) and one of a robot turning
around its own axis (blue cross). In each of the scenarios, �nally, the robot was oriented
towards the other �eld half.

−4 −2 0 2 4

−4

−2

0

2

4

x-position in m

y-
p
os
it
io
n
in

m

Figure 5.7.: Visualization of the four scenarios in the experiment on pose tracking.

As in the �rst part of the experiment, ten trials were run per condition in each scenario.
The initial distribution, unlike the �rst part of the experiment, was around the true starting
pose.

5.2.2. Results

First of all, a summary of all four scenarios is presented, then all scenarios are analyzed
separately.

All Scenarios

Figure 5.8 shows the absolute error distribution between the pose estimate and the true pose.
In each of the 15 conditions, 40 trials were run, 10 on each scenario. The box plots show the

43

5. Evaluation

error distribution over all �lter steps.

Figure 5.8.: Error distributions over all scenarios in the experiment on pose tracking. The
plot is equivalent to Figure 5.3, except that the whiskers in this plot show the
maximal and minimal values of the distribution.

In comparison with the equivalent plot from the �rst part of the experiment, Figure 5.3,
fewer di�erences across conditions can be found. Please note that the range of scale on the
euclidean plot has changed from 9 m to 4 m.

As in the localization experiment, the lower whiskers on both the euclidean distance error
and the angular error are at 0. In most scenarios, the estimated pose had less than 0.5 m
and 0.2 rad error in 75% of the data. As the upper whiskers show the maximal value over
all 4 scenarios, they are discussed in the scenario they appeared. All median values are quite
low, with most values below 0.25 m and 1 rad.

Although the di�erences across conditions are small, still the features condition (F) has
the lowest third quartile in euclidean distance error and the angular error among the condi-
tions with only one information source. Among the conditions with two information sources,
the combination of goalposts and features (G/F) has the lowest third quartile in euclidean
distance compared to the others, while the angular error distribution is very similar to the
other condition with two information sources. There seems to be no di�erence in the error
distributions between the combinations of three information sources. The combination of all
for information sources also seems to provide a quite precise pose estimate, but not as good
as goalposts and features or features alone.

44

5.2. Pose Tracking

Scenarios

To check, whether these �ndings can be applied across situations, an equivalent analysis is
done for each of the four situations.

Walking In Figure 5.9 and 5.10 two similar scenarios are visualized. Both are entering the
�eld from a start position, ending inside the own half, facing the opponent's goal.

Figure 5.9.: Error distributions in the �rst scenario of the Pose Tracking experiment: The
robot is entering the �eld from the touchline.

They were chosen to be similar, to draw conclusions on the relation between similarity
in situation and the similarity of the resulting error distributions. The similarity can be
found in the plots. In many conditions, they have slightly narrower error distributions
on both criteria, compared to plot 5.8. The upper whiskers, which mark the maximal
value, range between 0.5 and 2 m and an 0.2 rad and 1.2 rad.

The line points resulted in the most precise localization estimates in both scenarios,
and the �eld boundary produced the most erroneous results among the conditions with
only one localization information. In the other conditions, it can be seen that the
combination of lines either with goalposts or features or both resulted in smaller errors.
Adding the �eld boundary information as fourth information source increases the error.

In Figure 5.11, two exemplary results of the condition including line points, goal posts,
and features, which achieved one of the most precise results, can be seen. For each

45

5. Evaluation

Figure 5.10.: Error distributions in the second scenario of the Pose Tracking experiment: The
robot is entering the �eld and moving to the striker's position.

scenario, one trial was chosen randomly and plotted against the ground truth. The
results are subject to the usual noise as it appears in Monte Carlo Localization. It
might be reduced with optimized parameter settings. In (b) of that �gure, it can be
seen, that the initial pose with which the algorithm was initialized was about 50 cm
away from the true pose. Still, the localization could recover from that.

Turning In Figure 5.12 the error distributions on a scenario in which the robot is standing
in front of the center circle and turning around its own axis is visualized. Similar to
the plots of the walking scenarios presented above, the error distributions on both the
euclidean distance and the angle are quite narrow and close to zero.

Two things stand out compared to the other scenarios. One is the relatively high upper
whisker of over 2 m in the goalposts condition. The other one is the high �rst quartile
in the �eld boundary condition, as well as in the combination of �eld boundary informa-
tion with goalposts (G/FB) and �eld boundary information with features (FB/F). As
before in the walking scenarios, those condition containing line points but not the �eld
boundary information seem to be the most precise ones, but with smaller di�erences
between conditions compared to the walking scenarios.

Walking and Turning The plot 5.13 looks quite di�erent from the ones before, with higher
third quartiles in both criteria and way higher upper whiskers. In the scenario on which
this experiment was executed, the robot enters the �eld from a start position and

46

5.2. Pose Tracking

−4 −2 0

0

2

4

x-position in m

y-
p
os
it
io
n
in

m

(a) Robot entering the �eld.

−4 −2 0

0

2

4

x-position in m

y-
p
os
it
io
n
in

m

(b) Robot reaching the striker's position. Although
the given initial position was about 50 cm away
from the true position, the algorithm could re-
cover from that.

Figure 5.11.: Exemplary results of the walking scenarios in the pose tracking experiment. Both
plots show randomly chosen trials from the condition including line points, goal
posts, and features (L/G/F). The green and red plot are the true position, they
gray ones are the estimates.

positions itself inside the goal, facing outside the �eld. Then it makes a half turn to
face inside the �eld. So this scenario is a combination of the walking and the turning
scenarios discussed above. A signi�cant di�erence compared to the other scenarios are
the high upper whiskers in both criteria. Most of them range from around 2.5 to 4 m
and from 2.2 to 3.14 rad. The large outliers were caused when the robot reached its
position in the goal, facing outside and started turning. In many cases, this movement
could not be tracked correctly, and the particle cloud was stuck. So when the robot
�nished the movement, the angular error half a turn. If this happened often, the particle
cloud started to wander around the �eld randomly, which causes the high outliers in
the euclidean error.

In this scenario, the localization information with the smallest errors on both criteria
were the features. The most precise condition of the scenario was the combination
of features with goalposts (G/F). It is striking here, that the upper whiskers are very
small compared to the other conditions in this scenario, with around 1 m and around
1.25 rad. In both conditions combining three kinds of localization information, that
contain features and goals (L/G/F and G/FB/F) the error distribution is slightly broader
in the euclidean distance and both have quite high upper whiskers.

In Figure 5.14, an exemplary trial from the condition combining goal posts and features
is plotted against the robot's true position. In this condition, the angular error did not
reach such high values as in many other conditions. So also the error in position stayed

47

5. Evaluation

Figure 5.12.: Error distributions in the third scenario of the Pose Tracking experiment: The
robot is standing at the striker's position and makes a complete turn.

small, as the particles did not start to wander around. In the exemplary plot, it can
be seen that the position stays quite stable when the robot reaches the goal and starts
turning.

This experiment has shown several things. As in the localization experiment, di�erent
scenarios produced di�erent error distributions. Besides, in this experiment, it could be
shown that similar scenarios can result in similar error distributions..
While the overall analysis of all situations indicated that the combination of features and

goalposts are the most accurate localization information source, in the walking scenarios as
well as in the turning scenario it was the line points. The tendency for features and goalposts
is caused by the walking and turning scenario. Facing outside seems to be hard and requires
a special localization source.

48

5.2. Pose Tracking

Figure 5.13.: Error distributions in the fourth scenario of the Pose Tracking experiment: The
robot is entering the �eld and moving to the goal keeper's position.

−6 −4 −2 0

0

2

4

x-position in m

y-
p
os
it
io
n
in

m

Figure 5.14.: Exemplary results of the Walking-and-Turning scenario in the Pose Tracking
experiment. The plot shows one randomly chosen trial from the condition in-
cluding goalposts and �eld features (G/F). The true position is plotted in blue
and the estimate in gray. Even when the robot started to turn, the position
could be tracked precisely.

49

6. Discussion

In the following, the evaluation results are discussed. In Section 6.1, a conclusion on this
work is given, and future work is suggested in Section 6.2.
The results of the experiments have shown, that the version of Monte Carlo Localization

developed in this work, can estimate the robots pose in terms of localization and pose tracking
on speci�c scenarios with data provided by a simulation environment.
Over all seven tested scenarios, the line points lead to quite accurate localization estimates.

Only on the scenario, that included walking and turning, it only scored second. This might be
caused by the high number of false-positive line points detection on the goalposts and the net.
However, between localization and pose tracking, there were di�erences in the second-best
information for pose estimation. In the stationary localization scenarios, the �eld boundary
information was the next best source for pose estimation.
It often provided a good estimation on its own and improved the estimation when combined

with lines. For the pose tracking scenarios, the �eld marking features were the next best source
for localization. In two of the pose tracking scenarios, the features condition had the second-
best error distribution after the lines, and in one, it was even the best. The reason for this
might be the high number of false positives in the line points condition, as mentioned above.
Lines seem to very reliable in general. This might be because they are often inside the

�eld of view. Furthermore, if they are detected precisely, they o�er more precise information
for localization. For example, the center circle, which is crossed by the centerline, can hardly
be mixed up with any other combination of lines on the �eld. The same applies for the goal
areas, which, together with the goal line and the touchlines form uniquely identi�able patterns
on the �eld.
The pose estimation based on �eld boundary information provided quite accurate results

on the stationary scenarios, while in the moving ones, it resulted in more errors. This can be
explained by the amount of time it was inside the robots �eld of view. The head movement
pattern had two main perspectives on the �eld, one with the head lifted more of than the
other. The �eld boundary often was in the robot's �eld of view, when the head was lifted
further up and seldom when the head was more oriented more towards the ground. In the
localization scenario, this lack of information over roughly half the time seemed to produce
no negative e�ect on the localization scenarios. An analysis on how much time the conditions
needed to �nd the correct pose might reveal, that it took longer for the �eld boundary
conditions. In the pose tracking scenarios, on the other hand, this absence of information
might have led to more erroneous results, as the particles di�use away from the estimated
pose when no information enters the �lter.
Field marking features, just as line points, are also quite often in the �eld of view. They

can be seen as a more abstract representation of the same entity. So the low errors they
produce on pose tracking scenarios �t the �ndings from line points. The reason why the

51

6. Discussion

�eld features do not match the results in the localization scenarios needs to be evaluated
further. It might also be caused by an implementation error in the script publishing them.
The goal post detections, which are published by that script, often occur in 3-5 consecutive
�lter steps, which seems plausible, as they are in the robot's �eld for some time. The features
though usually appear in only a single �lter step. So they provide less information than they
actually could. The goals, like the �eld boundary, are seldom detected and thus were not
a very good source for pose estimation over all scenarios. It could be shown the combining
information sources, which already provided precise results on their own, the pose estimation
accuracy could be further improved. Whether the improvements are signi�cant and justify
the increased computational e�ort required to gain this information needs to be evaluated
further. Including information sources, that in the single-information condition led to higher
errors, decreased the pose estimation. This shows that only with one good localization source,
su�cient results can be achieved, that can be further improved by adding one or two other
reliable sources.

The pose estimates errors in the pose tracking experiment, in general, were smaller than
in the localization experiment. One reason for that is that in the localization experiment the
pose was unknown and so the localization estimate could not be correct. After some time,
the particles formed clusters, and the pose estimate became reliable. However, in some trials
the estimated pose was incorrect. In these cases, as the robot did not move, only di�usion
was applied to the particles and so the MCL could not recover from that. Trials like these
increase the estimation error in the localization experiment. In the pose tracking experiment,
however, the pose was given and was only lost in some trials of the combined walking and
turning experiment. The particles could not track the turning correctly, causing high errors
in angle as well as in distance.

While the errors in the localization setup could be reduced by choosing the best combination
of localization information according to the current situation, for the pose tracking it can be
said, that the source of localization information did not much a�ect performance. In this
experiment setup, the results could be improved if the robot had sensed more information
when it started the turning part. This problem could be overcome by adjusting the head
movement in such a situation so that more information is available. One strategy might be
to choose the direction of gaze according to the turning direction and �xate the corner of
the �eld. Using this approach, the corner of the �eld, and possibly one goal post would be
in sight while the robot is turning. Therefore, at least three kinds of localization information
would have been available.

The results seem promising to be used on a real robot. Although the experiment was done
simulated data, the quality of that data was not perfect. The line points and �eld boundary
detection was provided by the Bit-Bots vision pipeline, and so contained usual detection
errors. Also, the simulated detections seemed to be imperfect due to the implementation
error mentioned above.

On the simulated data estimating the robot's pose with an initial particle distribution
over one half of the �eld worked in many cases. With less perfect data from a real-world
scenario, more prior knowledge could be used to compensate for that, by using a di�erent
initial distribution.

52

6.1. Conclusion

6.1. Conclusion

In this work, a version of Monte Carlo Localization was developed for the RoboCup Humanoid
League Context. It can integrate several information sources provided by a 2D RGB camera.
Furthermore, a node was developed, that handles the initialization of the localization based
on prior knowledge and the robot's state. Two experiments on the precision of four di�erent
visual information sources for localization and their combinations were run. The data for the
experiments was provided by a simulation environment.It could be shown that the line points
in many scenarios provide one of the most precise localization estimates. In the localization
task also the �eld boundary information resulted in less erroneous pose estimations and in
the pose tracking task, the �eld marking features produced smaller errors compared to the
other kinds of localization information. The results show that the combination of good
localization sources can further improve the precision of the pose estimate. While the precision
of localization estimates in the localization task depends on the combination of information
sources, the performance di�erences in the pose tracking scenarios were quite small between
the combinations. In these scenarios, the performance could be improved by ensuring that
any localization information is available.

6.2. Future Work

To improve the results of this work, the unknown errors parameter values in the odometry
model and in the measurement model should be evaluated. Instead of working on arti�cial
ratings, the algorithm should be changed to work on probabilities. The approach should
be evaluated on a real robot with all data provided by the vision pipeline. The number of
particles should be adjusted to provide a good tradeo� between computational complexity
and performance. Also, a good value for di�usion and resampling rate should be evaluated.
The exact weighting between the information sources needs to be evaluated. The results
of this work suggest that the weight of the lines should be high. Furthermore, the distance
factor, that adjusts the reliability of a measurement based on its distance to the robot should
be evaluated, as well as a good value for the resampling interval.

It could be evaluated, whether other variants of MCL, like KLD sampling, which adapts the
number of particles dynamically, improve the results. Another variant of MCL is to include the
map into the motion model. By doing so, no particles could be outside the map. That could
save computational resources. Although the robot might be standing next to the playing
�eld, in that situation, the transformation from image space to Cartesian space would be
corrupted, and so the information would be incorrect.

Moreover, the evaluation could be extended on more information sources for localization,
like data provided by a visual compass approach. By doing so, real global localization could be
performed, because the information provided by it could solve the problem of symmetry. Also,
the abstraction level on the information sources used in this work could be evaluated further.
Instead of working on points representing the �eld markings and the �eld boundary, it could
be evaluated, whether �tting lines through them improves the localization estimates. The
corners and t-crossings of the �eld markings could also be provided, including the orientation.

53

6. Discussion

That might also improve the pose estimation.
Furthermore, the localization handler node could be developed further. If the scattering of

particles increases it could request more visual information, either from the vision by adjusting
parameters like the number of randomly checked pixel for line points. Alternatively, it could
request a di�erent motion, like stopping to walk and look around. This could even be extended
to active vision approaches, that control the robots head based on the pose estimate, like
[MVY+15].
Moreover, the localization handler could adjust the weighting between the information

sources or include and exclude them from the pose estimation.

54

Bibliography

[AGH+19] J Allali, L Gondry, L Hofer, P Laborde-Zubieta, O Ly, S N'Guyen,
G Passault, A Pirrone, and Q Rouxel. Rhoban football club � team
description paper. https://submission.robocuphumanoid.org/uploads/

/Rhoban-tdp-5c05011865144.pdf, 2019.

[Bes17] Marc Bestmann. Towards Using ROS in the RoboCup Humanoid Soccer League,
2017.

[BHJ+18] Kenji Brameld, Fraser Hamersley, Ethan Jones, Tripta Kaur, Liangde Li, Wen-
tao Lu, Maurice Pagnucco, Claude Sammut, Qingbin Sheh, Peter Schmidt,
et al. Robocup spl 2018 runswift team paper. http://cgi.cse.unsw.edu.

au/~robocup/2018/TeamPaper2018.pdf, 2018.

[DFBT99] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for
mobile robots. In Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C), volume 2, page 1322�1328 vol.2, May
1999.

[DGA] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte
carlo sampling methods for bayesian �ltering. page 12.

[FBG+19] Niklas Fiedler, Hendrik Brandt, Jan Gutsche, Florian Vahl, Jonas Hagge, and
Marc Bestmann. An open source vision pipeline approach for robocup humanoid
soccer. In RoboCup 2019: Robot World Cup XXIII. Springer, 2019. Accepted.

[Fox02] Dieter Fox. Kld-sampling: Adaptive particle �lters. In Advances in neural infor-
mation processing systems, pages 713�720, 2002.

[Gü18] Jasper Güldenstein. Comparison of Measurement Systems for Kinematic Calibra-
tion of a Humanoid Robot, 2018.

[KAK+97] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup: The robot world cup initiative. In Proceedings of the �rst international
conference on Autonomous agents, pages 340�347. ACM, 1997.

[Lab04] Frédéric Labrosse. Visual compass. Proceedings of Towards Autonomous Robotic
Systems, University of Essex, Colchester, UK, pages 85�92, 2004.

55

 https://submission.robocuphumanoid.org/uploads//Rhoban-tdp-5c05011865144.pdf
 https://submission.robocuphumanoid.org/uploads//Rhoban-tdp-5c05011865144.pdf
http://cgi.cse.unsw.edu.au/~robocup/2018/TeamPaper2018.pdf
http://cgi.cse.unsw.edu.au/~robocup/2018/TeamPaper2018.pdf

BIBLIOGRAPHY

[LV00] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mo-
bile robots. In Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 2, pages 1225�1232 vol.2, 2000.

[MAMP16] Alexandre Muzio, Luis Aguiar, Marcos R.O.A. Maximo, and Samuel C. Pinto.
Monte carlo localization with �eld lines observations for simulated humanoid
robotic soccer. In 2016 XIII Latin American Robotics Symposium and IV Brazilian
Robotics Symposium (LARS/SBR), page 334�339. IEEE, Oct 2016.

[MVY+15] Matías Mattamala, Constanza Villegas, José Miguel Yáñez, Pablo Cano, and
Javier Ruiz-del Solar. A Dynamic and E�cient Active Vision System for Hu-
manoid Soccer Robots, volume 9513, page 316�327. Springer International Pub-
lishing, 2015.

[Nao18] Nao-Team HTWK. Team research report nao-team htwk. https://

htwk-robots.de/documents/TRR_2018.pdf, 2018.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018.

[RJ04] Thomas Röfer and Matthias Jüngel. Fast and Robust Edge-Based Localization
in the Sony Four-Legged Robot League, volume 3020, page 262�273. Springer
Berlin Heidelberg, 2004.

[RLT06] Thomas Röfer, Tim Laue, and Dirk Thomas. Particle-Filter-Based Self-
localization Using Landmarks and Directed Lines, volume 4020, page 608�615.
Springer Berlin Heidelberg, 2006.

[Rob19] RoboCup Humanoid Technical Committee. Laws of the Game
2019. http://www.robocuphumanoid.org/wp-content/uploads/

RCHL-2019-Rules-final.pdf, 2019.

[SJS+19] Hendawan Soebhakti, Eko Rudiawan Jamzuri, Andrey Karona Sitepu, Al-
wan Putra, Jony Arif Ricardo, Junito Suroto, and Eko Priono. Bare-
lang fc team description paper humanoid kid size league of robocup
2019. https://submission.robocuphumanoid.org/uploads//Barelang_

FC-tdp-5c4b1cb222c5f.pdf, 2019.

[SK16] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer,
2016.

56

 https://htwk-robots.de/documents/TRR_2018.pdf
 https://htwk-robots.de/documents/TRR_2018.pdf
http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2019-Rules-final.pdf
http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2019-Rules-final.pdf
 https://submission.robocuphumanoid.org/uploads//Barelang_FC-tdp-5c4b1cb222c5f.pdf
 https://submission.robocuphumanoid.org/uploads//Barelang_FC-tdp-5c4b1cb222c5f.pdf

BIBLIOGRAPHY

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[TKN06] S. Thompson, S. Kagami, and K. Nishiwaki. Localisation for autonomous hu-
manoid navigation. In 2006 6th IEEE-RAS International Conference on Humanoid
Robots, page 13�19, Dec 2006.

[TTK+16] T. Tanaka, T. Tsubakimoto, M. Kawamura, K. Kumagai, H. Matsubara, K. Hi-
daka, Y. Aizawa, M. Nakagawa, Y. Iwai, T. Suzuki, and K. Kobayashi. Camellia
dragons 2016 team description, 2016.

57

Online References

[1] �RoboCup O�cial Website.� https://www.robocup.org. Accessed: 19-09-20.

[2] �RoboCup 2018 Montreal.� http://2018.robocup.org/. Accessed: 19-09-23.

[3] �Robotis Dynamixel MC 64.� http://emanual.robotis.com/docs/en/dxl/mx/

mx-64-2/. Accessed: 19-09-24.

[4] �Robotis Dynamixel MC 106.� http://emanual.robotis.com/docs/en/dxl/mx/

mx-106/. Accessed: 19-09-24.

[5] �Basler acA2040-35gc Camera.� https://www.baslerweb.com/en/products/

cameras/area-scan-cameras/ace/aca2040-35gc/. Accessed: 19-09-23.

[6] �Computar M1214-MP2 Lens.� https://www.baslerweb.com/fp-1489067453/

media/downloads/documents/accessories_datasheets/lenses/M1214-MP2.pdf.
Accessed: 19-09-23.

[7] � ROS Wiki.� https://wiki.ros.org/. Accessed: 19-09-22.

[8] �rviz - ROS.� https://wiki.ros.org/rviz. Accessed: 19-09-26.

[9] �robot_state_publisher - ROS.� https://wiki.ros.org/robot_state_publisher.
Accessed: 19-09-26.

[10] Blaise Gassend, �tf2 - ROS Wiki.� https://wiki.ros.org/tf2. Accessed: 19-09-22.

[11] �REP 105 - Coordinate Frames for Mobile Platforms.� https://www.ros.org/reps/

rep-0105.html. Accessed: 19-09-24.

[12] �REP 120 - Coordinate Frames for Humanoid Robots.� https://www.ros.org/reps/
rep-0120.html. Accessed: 19-09-24.

[13] Brian P. Gerkey, �amcl - ROS Wiki.� https://wiki.ros.org/amcl. Accessed: 19-08-
26.

[14] �sensor_msgs/LaserScan - ROS.� https://docs.ros.org/api/sensor_msgs/html/
msg/LaserScan.html. Accessed: 19-09-20.

[15] Hamburg Bit-Bots, �particle_�lter (GitHub).� https://github.com/bit-bots/

particle_filter. Accessed: 19-07-28.

59

https://www.robocup.org
http://2018.robocup.org/
http://emanual.robotis.com/docs/en/dxl/mx/mx-64-2/
http://emanual.robotis.com/docs/en/dxl/mx/mx-64-2/
http://emanual.robotis.com/docs/en/dxl/mx/mx-106/
http://emanual.robotis.com/docs/en/dxl/mx/mx-106/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2040-35gc/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2040-35gc/
https://www.baslerweb.com/fp-1489067453/media/downloads/documents/accessories_datasheets/lenses/M1214-MP2.pdf
https://www.baslerweb.com/fp-1489067453/media/downloads/documents/accessories_datasheets/lenses/M1214-MP2.pdf
https://wiki.ros.org/
https://wiki.ros.org/rviz
https://wiki.ros.org/robot_state_publisher
https://wiki.ros.org/tf2
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0120.html
https://www.ros.org/reps/rep-0120.html
https://wiki.ros.org/amcl
https://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
https://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
https://github.com/bit-bots/particle_filter
https://github.com/bit-bots/particle_filter

ONLINE REFERENCES

[16] �PoseWithCovarianceStamped - ROS Wiki.� https://docs.ros.org/kinetic/api/

geometry_msgs/html/msg/PoseWithCovarianceStamped.html. Accessed: 19-09-
29.

[17] Blaise Gassend, �dynamic_recon�gure - ROS Wiki.� https://wiki.ros.org/

dynamic_reconfigure. Accessed: 19-09-22.

[18] Hamburg Bit-Bots, �humanoid_league_msgs (GitHub).� https://github.com/

bit-bots/humanoid_league_msgs/tree/master/msg. Accessed: 19-08-25.

[19] �visualization_msgs/MarkerArray - ROS.� https://docs.ros.org/api/

visualization_msgs/html/msg/MarkerArray.html. Accessed: 19-09-29.

[20] �Gazebo.� http://gazebosim.org/. Accessed: 19-09-29.

[21] Tim Field, Jeremy Leibs, James Bowman, �rosbag - ROS Wiki.� https://wiki.ros.

org/rosbag. Accessed: 19-08-26.

60

https://docs.ros.org/kinetic/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html
https://docs.ros.org/kinetic/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html
https://wiki.ros.org/dynamic_reconfigure
https://wiki.ros.org/dynamic_reconfigure
https://github.com/bit-bots/humanoid_league_msgs/tree/master/msg
https://github.com/bit-bots/humanoid_league_msgs/tree/master/msg
https://docs.ros.org/api/visualization_msgs/html/msg/MarkerArray.html
https://docs.ros.org/api/visualization_msgs/html/msg/MarkerArray.html
http://gazebosim.org/
https://wiki.ros.org/rosbag
https://wiki.ros.org/rosbag

Appendices

61

A. Likelihood Field Lookup Tables

A. Likelihood Field Lookup Tables

(a) Lookup table for goal
posts data.

(b) Lookup table for �eld
boundary data.

(c) Lookup table for corners
data.

(d) Lookup table for t-
crossings data.

(e) Lookup table for crosses
data.

Figure A.1.: Likelihood �eld lookup tables. Points, that are transformed onto black regions
get the highest weight, points on the light gray regions a very low on. Points,
that do not correspond to a pixel/grid cell get the lowest weight.

B. Message De�nitions

1 # Contains points in the image representing the field boundary.

2

3 # The header is included to get the time stamp for later use in tf

4 std_msgs/Header header

5

6 # The points representing the field boundary.

7 # They are taken in the image coordinate system (x->right , y->down)

8 geometry_msgs/Point [] field_boundary_points

Listing B.1: De�nition of the FieldBoundaryInImage Message.

1 # Relative position to a point on the field boundary

2

3 # The header is included to get the time stamp for later use in tf

4 std_msgs/Header header

5

6 # The points representing the field boundary.

7 geometry_msgs/Point [] field_boundary_points

Listing B.2: De�nition of the FieldBoundaryRelative Message.

63

1 # This message provides all information from the game controller

2 # for additional information see documentation of the game controller

3 # https :// github.com/bhuman/GameController

4

5

6 std_msgs/Header header

7

8 uint8 GAMESTATE_INITAL =0

9 uint8 GAMESTATE_READY =1

10 uint8 GAMESTATE_SET =2

11 uint8 GAMESTATE_PLAYING =3

12 uint8 GAMESTATE_FINISHED =4

13 uint8 gameState

14

15 # Secondary state , penaltyshoot is penalty shootout at the end of the

game ,

16 # penaltykick is a kick during the game

17 uint8 STATE_NORMAL = 0

18 uint8 STATE_PENALTYSHOOT = 1

19 uint8 STATE_OVERTIME = 2

20 uint8 STATE_TIMEOUT = 3

21 uint8 STATE_DIRECT_FREEKICK = 4

22 uint8 STATE_INDIRECT_FREEKICK = 5

23 uint8 STATE_PENALTYKICK = 6

24 uint8 secondaryState

25

26 # For newest version of game controller

27 # Tells which team has the free kick or penalty kick

28 uint8 secondaryStateTeam

29

30 bool firstHalf

31 uint8 ownScore

32 uint8 rivalScore

33

34 # Seconds remaining for the game half

35 int16 secondsRemaining

36 # Seconds remaining for things like kickoff

37 uint16 secondary_seconds_remaining

38

39 bool hasKickOff

40 bool penalized

41 uint16 secondsTillUnpenalized

42 # Allowed to move is different from penalized.

43 # You can for example be not allowed to move due to the current state of

the game

44 bool allowedToMove

45

46 # Team colors

47 uint8 BLUE = 0

48 uint8 RED = 1

49 uint8 teamColor

50

51 bool dropInTeam

64

B. Message De�nitions

52 uint16 dropInTime

53

54 # The number of the current penalty shot during penalty shootout

55 uint8 penaltyShot

56 # a binary pattern indicating the successful penalty shots (1 for

succesful , 0 fpr unsuccessful)

57 uint16 singleShots

58

59 string coach_message

Listing B.3: De�nition of the GameState Message.

1 # Relative position to a goal

2

3 # The header is included to get the time stamp for later use in tf

4 std_msgs/Header header

5

6 # Position of the left goal post feet (in meter)

7 geometry_msgs/Point left_post

8

9 # Position of the right post , null if only one post was seen

10 geometry_msgs/Point right_post

11

12 # Vector pointing to the (probable) center of the goal (in meters).

13 # Should only be used if only one goal post is visible. If both are

visible this should be none.

14 # This is normally an educated guess , using the goal bar or the position

of the post on the image

15 geometry_msgs/Point center_direction

16

17 # A certainty rating between 0 and 1, where 1 is the surest.

18 # 0 means no goal was found

19 float32 confidence

Listing B.4: De�nition of the GoalRelative Message.

1 # Contains all relative information about line features on the field

2

3 # The header is included to get the time stamp for later use in tf

4 std_msgs/Header header

5

6 LineIntersectionRelative [] intersections

7 LineSegmentRelative [] segments

8 LineCircleRelative [] circles

Listing B.5: De�nition of the LineInformationRelative Message.

1 # A line segment relative to the robot

2

3 # Start and end position of the line

4 # x in front of the robot

5 # y to the left

6 # z should be 0

65

7 geometry_msgs/Point start

8 geometry_msgs/Point end

9

10 # A certainty rating between 0 and 1, where 1 is the surest.

11 float32 confidence

Listing B.6: De�nition of the LineSegmentRelative Message.

1 # This message provides the current state of the hardware control manager

(HCM), which is handling falling , standing up and the decision

2 # between playing animations and walking

3

4 # Robot can be controlled from a higher level

5 uint8 CONTROLABLE =0

6 # Robot is currently falling

7 # it can not be controlled and should go to a position that minimizes the

damage during a fall

8 uint8 FALLING =1

9 # Robot is lying on the floor

10 # maybe reset your world model , as the state should be unsure now

11 uint8 FALLEN =2

12 # Robot is currently trying to get up again

13 uint8 GETTING_UP =3

14 # An animation is running

15 # no walking or further animations possible

16 # Falling detection is deactivated

17 uint8 ANIMATION_RUNNING =4

18 # The hardware control manager is booting

19 uint8 STARTUP =5

20 # The hardware control manager is shutting down

21 uint8 SHUTDOWN =6

22 # The robot is in penalty position

23 # It can not be controlled

24 uint8 PENALTY =7

25 # The robot is getting in or out of penalty position

26 uint8 PENALTY_ANIMANTION =8

27 # The robot is used for recording animations

28 # Reserved all controling to a recording process

29 # No falling detection is processed and no stand ups will be done

30 uint8 RECORD =9

31 # The robot is walking

32 uint8 WALKING =10

33 # A state where the motors are turned off , but the hardware control

manager is still waiting for commandos and turns the motors on ,

34 # if a move commando comes

35 uint8 MOTOR_OFF =11

36 # Last status send by the hardware control manager after shutting down

37 uint8 HCM_OFF =12

38 # Robot has hardware problems and is not controlable

39 uint8 HARDWARE_PROBLEM =13

40 # Robot is currently picked up by a human. Should normally not move

during this time.

41 uint8 PICKED_UP =14

42 # Robot is currently kicking the ball

66

C. Localization Parameters

43 uint8 KICKING =15

44

45 uint8 state

Listing B.7: De�nition of the RobotControlState Message.

1 # A pixel with one channel with a position in Cartesian space (for

transformed heatmaps)

2

3 geometry_msgs/Point position

4

5 float32 value # between 0 and 1

Listing B.8: De�nition of the PixelRelative Message.

1 # A list of pixels with one channel with a position in Cartesian space (

for transformed heatmaps)

2

3 std_msgs/Header header

4

5 PixelRelative [] pixels

Listing B.9: De�nition of the PixelsRelative Message.

1 std_msgs/Header header

2

3 float64 [36] cov_estimate_best

4 float64 [36] cov_estimate_5

5 float64 [36] cov_estimate_10

6 float64 [36] cov_estimate_20

7 float64 [36] cov_mean

8

9 int32 resampled

10

11 int32 lines

12 int32 goals

13 int32 fb_points

14 int32 corners

15 int32 tcrossings

16 int32 crosses

Listing B.10: De�nition of the Evaluation Message.

C. Localization Parameters

1

2 ########

3 # MISC #

4 ########

5

6 # the initial pose of the robot

67

7 initial_robot_x1: 2.5

8 initial_robot_y1: 3

9 initial_robot_t1: -1.5

10 initial_robot_x2: 2.5

11 initial_robot_y2: -3

12 initial_robot_t2: 1.57

13

14 initial_robot_x: -4.5

15 initial_robot_y: 0

16 initial_robot_t: 0

17

18 init_mode: 4

19

20 map_path_lines: '../ models/lines_simulator.png '

21 map_path_goals: '../ models/posts.png '

22 map_path_field_boundary: '../ models/fieldboundary.png '

23

24 map_path_corners: '../ models/corners.png '

25 map_path_crosses: '../ models/crosses_simulator.png '

26 map_path_tcrossings: '../ models/tcrossings.png '

27

28 #field size

29 field_x: 9 #5.45

30 field_y: 6 #3.88

31

32 # for field boundary map

33 field_padding: 0.7 #0.1

34

35 field_boundary_interpolation_steps: 1

36

37

38 #############

39 # ROS -Stuff #

40 #############

41

42 line_topic: 'line_relative '

43 non_line_topic: 'non_line_field_points_relative '

44 goal_topic: 'goals_simulated '

45 fieldboundary_topic: 'field_boundary_relative '

46 fieldboundary_in_image_topic: 'field_boundary_in_image '

47 corners_topic: 'corners '

48 tcrossings_topic: 'tcrossings '

49 crosses_topic: 'crosses '

50

51 publishing_frame: '/localization_estimate '

52

53 pose_publishing_topic: 'pose '

54

55 particle_publishing_topic: 'pose_particles '

56

57 publishing_frequency: 25

58

59 #################

68

C. Localization Parameters

60 # Visualization #

61 #################

62

63 debug_visualization: true

64

65

66 ###################

67 # Particle Filter #

68 ###################

69

70

71 particle_number: 500

72 resampling_interval: 15

73

74 use_lines: false

75 use_non_lines: false

76 use_goals: false

77 use_fieldboundary: false

78 use_corners: false

79 use_tcrossings : false

80 use_crosses: false

81

82 diffusion_x_std_dev: 0.8

83 diffusion_y_std_dev: 0.8

84 diffusion_t_std_dev: 0.5

85 diffusion_multiplicator: 0.05

86

87 min_weight: 0.01

88 min_resampling_weight: 0.5

89 percentage_best_particles: 5

90

91 distance_factor : 0.5

92 lines_factor: 1

93 non_lines_factor: 0

94 goal_factor: 1

95 field_boundary_factor: 1

96 corners_factor : 1

97 tcrossings_factor: 1

98 crosses_factor : 1

99

100 min_motion_linear: 0.0

101 min_motion_angular: 0.0

102 filter_only_with_motion: false

Listing C.1: Parameters of the Localization Node.

69

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel � ins-
besondere keine im Quellenverzeichnis nicht benannten Internet-Quellen � benutzt habe.
Alle Stellen, die wörtlich oder sinngemäÿ aus Verö�entlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf
dem elektronischen Speichermedium entspricht.

Hamburg, den 30. September 2019 Judith Hart�ll

Verö�entlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 30. September 2019 Judith Hart�ll

	List of Figures
	List of Listings
	Introduction
	Thesis Goals

	Fundamentals
	RoboCup
	Humanoid Soccer Leagues
	Hamburg Bit-Bots

	ROS
	Forward Kinematics
	Odometry
	Bayes Filter, Particle Filter and Monte Carlo Localization
	Robot Motion Model
	Measurement Model

	Related Work
	Monte Carlo Localization
	MCL in RoboCup Soccer
	MCL with ROS
	amcl
	humanoid localization

	Approach
	Localization Node
	Robot Pose State
	Robot Motion Model
	State Distributions for Initialization with Prior Knowledge
	Measurement Model and Map Model
	Initialization Service
	Calculation of Estimated Pose

	Localization Handler Node
	Visualization

	Evaluation
	Localization
	Setup
	Results

	Pose Tracking
	Setup
	Results

	Discussion
	Conclusion
	Future Work

	Bibliography
	Appendices
	Likelihood Field Lookup Tables
	Message Definitions
	Localization Parameters

