
A Forward Kinematics Data Structure for
Efficient Evolutionary Inverse Kinematics

S. Starke, N. Hendrich and J. Zhang

Department of Informatics, Group TAMS (Technical Aspects of Multimodal
Systems), University of Hamburg, 22527 Hamburg, Germany
e-mail: (starke,hendrich,zhang)@informatik.uni-hamburg.de

Abstract. Various approaches to solving inverse kinematics implicitly rely on computing forward
kinematics in order to obtain an approximate solution. This work proposes an optimised data struc-
ture to efficiently compute these equations by avoiding redundant transformations and calculations.
This is particulary relevant for highly articulated kinematic models and multiple end effectors with
shared joints along their kinematic chains. By integrating the developed OFKT (Optimised For-
ward Kinematics Tree), less computation time within each iteration is required, which contributes
to a significant speedup in convergence. Experiments were conducted using a novel evolutionary
approach which was designed for handling complex kinematic geometries.

Key words: Forward Kinematics, Inverse Kinematics, Data Structures, Computational Efficiency,
Evolutionary Optimisation, Robotics, Character Animation

1 Introduction

A rigid body kinematic system can be described by a set of kinematic chains, each
consisting of a consecutive set of segments and joints from the root to the end ef-
fectors. Each end effector results in a certain Cartesian configuration X given a
specific joint variable configuration θ . Together, the motion axes of the joints define
the DOF (Degree of Freedom) and thus the computational complexity of the whole
kinematic system. [1]

While forward kinematics (FK) is straightforward to compute by a consecutive
set of coordinate transformations, obtaining solutions for inverse kinematics (IK) in
contrast is not as easy. For any given IK query, a varying or even infinite number
of solutions can exist, and it is not generally clear which one to prefer. However,
IK takes an important role in various applications such as robotics, including object
manipulation and grasping with anthropomorphic hands, as well as for character
animation in computer graphics. Since analytical approaches to this problem are
not generally available as they must be derived individually for specific kinematic
structures, numerical algorithms for obtaining approximate solutions have become
more popular. In order to optimise an appropriate solution for IK, such methods

1

Author's
 vers

ion



2 S. Starke, N. Hendrich and J. Zhang

rely on calculating the FK equations using the known kinematic structure. Then,
sampling-based joint variable updates are generated using gradient-based or proba-
bilistic techniques, and the Cartesian end effector configurations are calculated in-
dividually for each objective. Multiple end effector systems—such as the finger tips
of an arm—usually contain many shared joints along their kinematic chains, and
the FK equations then become partially equivalent. As a result, most computation
time is typically required for repeated FK computation, and many transformations
become redundant when only small joint variable changes are applied. This is espe-
cially the case for evolutionary approaches, for which the genetic operators—such
as recombination and mutation—cause most joint variable configurations to be only
slightly modified within each generation. Given the joint variables which correspond
to the genes of an individual, the resulting end effector configurations X1,...k can be
obtained by evaluating the FK function. Based on this, it is then possible to define
the multi-objective fitness function Ω to be minimised as the root-mean-square error
over all individually weighted objectives L1,...k with end effector targets Y1,...k.

φ = Ω(x) =

√√√√1
k

k

∑
i=1

wiL 2
i (Xi,Yi) (1)

Repeated evaluation of the fitness φ of each individual within the population then
drives the evolutionary optimisation. Hence, efficient computation of the FK is es-
sential for the overall performance and convergence of the IK algorithm. Fig. 1
demonstrates solving articulated IK of the Kyle humanoid, with the OFKT (Opti-
mised Forward Kinematics Tree) data structure integrated to achieve higher compu-
tational efficiency for repeated and only slightly varying joint variable queries.

Fig. 1 Kinematic geometry from the pelvis to the head and finger tips of the Kyle humanoid
(28 DOF). Inverse kinematics is solved by evolutionary computation while efficiently calculating
forward kinematics using the OFKT data structure.

Author's
 vers

ion



A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics 3

2 Background and Related Work

Solving IK is a fundamental problem which is relevant in very different fields of re-
search, such as robotics, computer graphics or human-computer interaction. Typical
scenarios include control of virtual characters and runtime manipulation of underly-
ing animations, grasping with anthropomorphic hands, teleoperation tasks as well as
motion planning and trajectory generation. Therefore, numerous sophisticated ap-
proaches have been developed that tackle the problem by the specific requirements
of their applications, typically regarding computational efficiency, accuracy or flex-
ibility. The numerical methods can be categorised into four groups: gradient-based,
probabilistic, geometric or learning. In this work, we will primarily focus on the
former two as they require generating FK samples for IK optimisation.

Considering the FK calculation for a given a kinematic structure, homogeneous
coordinate transformations in robotics are commonly represented using Denavit-
Hartenberg parameters, which can achieve a considerable reduction in the required
amount of calculations [4, 5]. Implementing rotations by quaternions rather than ma-
trices is slightly more efficient from a computational perspective, and also offers a
unique representation for the resulting orientations. Furthermore, information about
axis alignments in serial or parallel mechanisms can be incorporated [2, 3]. How-
ever, those computational optimisations are only appropriate for specific geometries
and must be derived individually. It is also possible to learn the FK equations by
neural networks which can be used to create a functional relation between joint and
Cartesian space [6]. Nevertheless, this method introduces an additional inaccuracy
for the numerical IK optimisation due to the inherent learning error.

Gradient-based Jacobian or SQP methods optimise an IK solution by slightly
modifying each joint variable to obtain the gradient [7, 8, 9]. These methods are
often applied in robotics as they can achieve a fast convergence, but can suffer from
multiple local extrema in the search space. In this regard, genetic algorithms (GA)
perform a more robust search space exploration by means of biologically inspired
probabilistic optimisation, and offer better scalability for higher DOF [10, 11]. The
key idea is to encode joint variable configurations as individuals, and to iteratively
evolve new solutions until convergence. The fitness is obtained by the resulting end
effector errors using the FK equations. However, traditional methods require many
parameters to be tuned, or the required computation time or attainable accuracy
might remain insufficient. In our prior work, a novel evolutionary hybridisation of
GA and swarm intelligence achieved promising results both in accuracy and com-
putation time, with adaptive parameter control for varying dimensionality and kine-
matic geometries [12, 13]. As each fitness evaluation for every individual requires
a FK pass in order to obtain the resulting errors in position and orientation, it was
observed that most of the computation time was due to the required coordinate trans-
formations. More specifically, many of those were redundant as with increasing ac-
curacy, fewer genetic mutations were applied, and partially shared kinematic chains
for multiple end effectors were computed repeatedly.
Author's

 vers
ion



4 S. Starke, N. Hendrich and J. Zhang

3 Algorithmic Approach

The main purpose of our OFKT data structure is to avoid calculating repeating or
redundant consecutive transformations. Given a single joint variable configuration
θ = (θ1, ...,θn) as input, the individual Cartesian transformations for end effectors
X1,...,k can be obtained as denoted by (2). Hence, calculating FK becomes process-
ing a tree of single kinematic chains with either individual or partially shared joints.

f (θ) = X1,...,k (2)

For each kinematic chain (3), the end effector configuration is computed by consec-
utive transformations starting from its root.

rootTee =
root T1

1T2 ...
n−1Tee (3)

According to (4), these transformations between the single relevant segments can be
grouped into reference and local transformations, Ri and Li respectively.

Ri = Ri−1 Li Li = Si T (θ j) (4)

However, not every segment of the kinematic chains is necessarily connected to
a joint. Thus, the static transformation Si denotes the constant transformation be-
tween the segment’s preceding non-static segment to the segment’s local transfor-
mation with θ j = 0. Note that Si only needs to be computed once, and is then stored
to avoid recalculating non-changing transformations. The OFKT itself is then rep-
resented by a linked list of segments, one for each moveable part of the kinematic
structure. Within each node, Ri and Li are individually computed and stored, to-
gether with the currently assigned corresponding joint variable θ j. While the former
depends on the preceding reference and the current local transformation, the latter
is calculated using the segment’s static transformation Si modified by θ j. Alg. 1
summarises building the OFKT data structure which can then be used for efficiently
processing multiple successive FK queries.

Algorithm 1: Building the Optimised Forward Kinematics Tree
Input : Geometry, Root, End Effectors

1 OFKT = CreateLinkedList(Root, End Effectors);
2 Chains = GetChains(Root, End Effectors);
3 foreach Segment in Chains do
4 if Segment.HasJoint() then
5 Node = OFKT.Insert(Segment);
6 Node.ComputeAndStoreStaticTransformation();
7 Node.StoreJointVariable();
8 Node.ComputeAndStoreLocalTransformation();
9 Node.ComputeAndStoreReferenceTransformation();

10 end
11 end

Author's
 vers

ion



A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics 5

When performing a FK query, a joint variable configuration is given as input to
the OFKT. The goal is to perform kinematic queries efficiently by using the stored
variables for the current transformation and the joint value within each node. As
described by Alg. (2), the update procedure is started at the root node of the linked
list, and is recursively called for all childs. Also, a boolean parameter is recursively
passed which initially assumes that no update would be required. The flag is set in
case of joint variable changes, as otherwise the stored local transformation can be
reused. As soon as one local update occured during the FK calculation, a relative up-
date is also neccessary for all subsequent nodes. Note that transformation updates in
local and reference space are treated independently by propagating the boolean flag.
After the tree traversal, the resulting end effector transformations can be returned in
world space using (5), where the additional worldTroot transformation is prepended
to handle movement in world space. Thus, the OFKT keeps all transformations in
reference to the kinematic model while representing only non-static connections.

Wi =
world Troot Ri (5)

Algorithm 2: Querying the Optimised Forward Kinematics Tree
Input : Joint Variable Configuration
Output: End Effector Transformations

1 Function UpdateFK(Node, RequireUpdate):
2 if HasJointVariableChanged() then
3 Node.StoreJointVariable();
4 Node.ComputeAndStoreLocalTransformation();
5 RequireUpdate = true
6 end
7 if RequireUpdate then
8 Node.ComputeAndStoreReferenceTransformation();
9 end

10 foreach Child of Node do
11 UpdateFK(Child, RequireUpdate);
12 end
13 return;
14 UpdateFK(OFKT.Root, false);
15 foreach End Effector Node do
16 return Node.ComputeWorldTransformation();
17 end

Intuitively, the OFKT data structure is optimised to efficiently process multiple
FK queries by caching transformations from preceding calculations, assuming that
only a few joint values will change between successive queries. Considering the
genetic evolutionary IK algorithm which was our original motivation, only some
genes (joint angles) of an individual are usually modified during one generation,
and many reference as well as local transformations can be reused, resulting in a
large performance increase.

Author's
 vers

ion



6 S. Starke, N. Hendrich and J. Zhang

4 Evaluation and Results

First, a theoretical evaluation for the OFKT data structure is done regarding the
total required transformations in four scenarios, summarised in Tbl. 1. Given a n-
dimensional serial joint variable configuration, one FK pass requires calculating n
local transformations which are then concatenated by n transformations, and 1 fur-
ther from world to root — this will be used as baseline for performance comparison.

1. FK computation by updating a (random) number of values along a serial kine-
matic chain: This is the typical query after evolving the genes of an individual. In
general, 2n+1 calculations would be needed for independent FK queries. Using
the OFKT, previous results can be reused efficiently, and the required amount
of local transformation updates becomes equivalent to the number of changed
joint values j < n. Traversing the single segments then results in n− i instead of
n reference transformations, where i is the first modified index along the serial
kinematic chain.

2. Predicting the end effector world transformation by modifying exactly one joint
value: This is helpful for determining or estimating the error gradient. Only 1
local L

′
i as well as 3 further transformations Ri−1 L

′
i R−1

i Ree are neccessary for
calculating the end effector transformation, followed by 1 additional world trans-
formation. In particular, the required transformations of the single segments are
already available, and enable to directly obtain the relative end effector change.

3. Iteratively updating exactly one joint value while maintaining information about
all segment transformations: This is particularly important for enabling effi-
cient further computation of relative transformations within the kinematic tree.
n queries are performed iteratively, requiring n(2n+ 1) calculations. Using the
OFKT, each of the n queries automatically avoids recalculating unchanged trans-
formations, resulting in n local updated segments and a total of n(n+1)

2 calcula-
tions for the affected reference transformations.

4. FK calculations on different chains with multiple end effectors of an anthropo-
morphic arm: This is relevant in terms of scalability for complex geometries.
A 27 DOF anthropomorphic geometry is considered, starting with a 7 DOF arm
and splitting up into a hand with five 4 DOF fingers — giving rise to k = 5 chains
with 11 DOF each. Hence, calculating all end effectors individually would re-
quire k(2n+ 1) transformations, while the OFKT automatically avoids recalcu-
lating the shared s = 7 joints along the arm.

Table 1 Comparison of the required amount of transformations in different scenarios.

Scenario Standard OFKT

Random Modifications 2n+1 n− i+ j+1
End Effector Computation 2n+1 5
Single Iterative Modifications 2n2 +n n2

2 + 5n
2

Multiple End Effectors k(2n+1) k(2n+1)−2(k−1)s

Author's
 vers

ion



A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics 7

In order to put the previous FK evaluations into practical context, experiments
were conducted in performing IK on an articulated 10 DOF kinematic model using
the presented algorithm in [12, 13]. It was observed that ≈ 103 generations in aver-
age were required for solution convergence. In this regard, Fig. 2 demonstrates the
computational improvement at each generation during one IK query (left) and in av-
erage for increasing DOF (right) when using the OFKT. In particular, note that less
computation time per generation is required since fewer genetic changes are applied
as the population scores progress over several generations. It can be observed that
this computational improvement scales significantly for more complex geometries,
reaching a cost reduction per generation by a factor of ≈ 8 for 30 DOF.

Fig. 2 Computational cost per generation for one IK query (left) and for increasing DOF (right).

Ultimately, we investigated the speedup in solving evolutionary IK on different
robot geometries of 6 to 10 DOF. The results are shown in Fig. 3 and are averaged
over 10.000 randomly generated samples using full pose objectives. In particular,
a considerable computational improvement can be observed by requiring approxi-
mately one third of the original time for convergence on all tested kinematic models.

Fig. 3 Computational cost in solving random reachable IK queries on different robots.

Author's
 vers

ion



8 S. Starke, N. Hendrich and J. Zhang

5 Conclusions

This work proposed a method to efficiently compute the FK equations for mul-
tiple consecutive queries with only slightly varying joint variable configurations.
The developed OFKT data structure caches results that were computed in preceding
calls, and only updates the transformations along the kinematically affected seg-
ments within the whole kinematic tree. Hence, the required amount of costly cal-
culations for sampling-based IK optimisation on complex and multiple end effector
geometries can be reduced. Integrating the OFKT into our evolutionary IK algo-
rithm, one third of the original computation time for solving full poses on typical
lower DOF industrial robots was required, with significantly larger improvements
obtained for increasing DOF. This work will be further investigated applied to dex-
terous manipulation, humanoid robots and character animation.

Acknowledgements This research was funded by the German Research Foundation (DFG) and
the National Science Foundation of China (NSFC) in project Crossmodal Learning, TRR-169.

References

1. Kathib, O. and Siciliano, B.: Handbook of Robotics. Springer (2008)
2. Wu, P. and Wu, C. and Yu, L.: An Method for Forward Kinematics of Stewart Parallel Ma-

nipulators. In: Proceedings of the IEEE International Conference on Intelligent Robotics and
Applications, 171-178 (2008)

3. Song, S. and Kwon, D.: Efficient formulation approach for the forward kinematics of 3-6
parallel mechanisms. Advanced Robotics, 16(2), 191-215 (2002)

4. Denavit, J. and Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on
matrices. Transactions in ASME – Journal of Applied Mechanics, 23, 215-221 (1955)

5. Denavit, J. and Hartenberg, R.: Kinematic synthesis of linkages. McGraw-Hill Series in Me-
chanical Engineering, 435 (1965)

6. Sadjadian, H. and Taghirad, H.D. and Fatehi, A.: Neural Networks Approaches for Com-
puting the Forward Kinematics of a Redundant Parallel Manipulator. International Journal
of Computer, Electrical, Automation, Control and Information Engineering, 2(5), 1664-1671
(2008)

7. Beeson, P. and Ames, B.: TRAC-IK: An Open-Source Library for Improved Solving of
Generic Inverse Kinematics. In: Proceedings of the IEEE RAS Humanoids Conference (2015)

8. Kim, I. and Oh, J.: Inverse Kinematic Control of Humanoids Under Joint Constraints. In:
International Journal of Advanced Robotic Systems (2012)

9. Lee, D. and An, S.: Prioritized Inverse Kinematics with Multiple Task Definitions. In: IEEE
International Conference on Robotics and Automation (2015)

10. Tabandeh, S. and Clark, C.M. and Melek, W.W.: An adaptive niching genetic algorithm ap-
proach for generating multiple solutions of serial manipulator inverse kinematics with appli-
cations to modular robots. Robotica, 28, 493-507 (2010)

11. González Uzcátegui, C.E.: A Memetic Approach to the Inverse Kinematics Problem for
Robotic Applications. Doctoral Thesis, Carlos III University of Madrid (2014)

12. Starke, S.: A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics. Master
Thesis, University of Hamburg (2016)

13. Starke, S. and Hendrich, N. and Magg, S. and Zhang, J.: An Efficient Hybridization of Genetic
Algorithms and Particle Swarm Optimization for Inverse Kinematics. In: Proceedings of the
IEEE International Conference on Robotics and Biomimetics (2016)

Author's
 vers

ion




