
A Hybrid Genetic Swarm Algorithm for
Interactive Inverse Kinematics

Sebastian Starke

A thesis submitted for the degree of
Master of Science

Technical Aspects of Multimodal Systems (TAMS)
Knowledge Technology (WTM)

Faculty of Mathematics,
Informatics and Natural Sciences

University of Hamburg

June 27th, 2016

Supervisors: Prof. Dr. Jianwei Zhang

Dr. Sven Magg

Advisor: Dr. Norman Hendrich

mailto:9starke@informatik.uni-hamburg.de
mailto:zhang@informatik.uni-hamburg.de
mailto:sven.magg@uni-hamburg.de
mailto:hendrich@informatik.uni-hamburg.de

Sebastian Starke

Student Number: 6146302

Rübenkamp 86

22307 Hamburg

II

Abstract

This thesis presents a novel biologically-inspired approach for solving the inverse
kinematics problem efficiently on arbitrary joint chains. It provides high accuracy,
convincing success rates and is capable of finding suitable solutions in real-time.
The algorithm tackles the problem by optimization and incorporates joint con-
straints, reliably avoids getting stuck in suboptimal extrema and scales notably
well even for increasing non-linearity as well as greatly higher-dimensional degree
of freedom. It can achieve minimal joint displacement with respect to the amount
of change within the target and successfully converges to a solution even when the
target objective can not be satisfied by any configuration in joint space.

The algorithm merges the evolutionary and collective strengths of genetic algo-
rithms and swarm intelligence which results in biologically plausible hybridization.
Applying randomized multi-objective weights follows the principle of natural evo-
lution within continually changing environments and genetic niching then allows
for an efficient simultaneous exploitation of local extrema for multimodal solutions
where dead-end paths can be detected by a simple heuristic.

Experimental results show that the presented solution performs significantly
more robust and adaptive than traditional or various related methods and can be
tuned for individual performance and behaviour preferences which is greatly ben-
eficial for interactive applications. The algorithmic design is modular and generic
and thus might also be applied to various other problems that can be solved by
optimization techniques.

III

Zusammenfassung

Diese Arbeit präsentiert einen neuartigen biologisch-inspirierten Ansatz, um das
Problem der inversen Kinematik auf beliebigen Gelenkketten effizient zu lösen.
Dieser bietet sowohl hohe Genauigkeiten als auch überzeugende Erfolgsraten und
ist fähig, geeignete Lösungen in Echtzeit zu finden. Der Algorithmus basiert auf
Optimierung und beachtet Einschränkungen der Gelenke, erkennt und vermeidet
suboptimale Extrema zuverlässig und besitzt bemerkenswerte Skalierbarkeit unter
zunehmender Nichtlinearität sowie enorm hochdimensionalen Freiheitsgraden.

Der Algorithmus vereint die evolutionären und kollektiven Vorteile genetischer
Algorithmen und der Schwarmintelligenz, was letztlich in einer biologisch plausi-
blen Hybridisierung resultiert. Die Verwendung von randomisierten Gewichtun-
gen für eine Optimierung unter mehreren Zielfunktionen verfolgt das Prinzip von
natürlicher Evolution innerhalb einer sich kontinuierlich verändernden Umwelt.
Genetische Nischenbildung ermöglicht letztlich eine effiziente simultane Verbesse-
rung innerhalb lokaler Extrema, um multimodale Lösungen zu erhalten, wobei
nicht zielführende Pfade durch eine simple Heuristik erkannt werden können.

Die Resultate einer experimentellen Analyse zeigen, dass der präsentierte Al-
gorithmus eine signifikant höhere Robustheit sowie Adaptivität gegenüber tradi-
tionellen sowie verschiedenen verwandten Ansätzen besitzt. Zudem kann dieser
entsprechend individueller Performanzaspekte angepasst werden, was hinsichtlich
interaktiver Anwendungen besonders vorteilhaft ist. Das algorithmische Design
ist modular sowie generisch und kann demnach ebenfalls auf verschiedene an-
dere Probleme angewandt werden, die durch Optimierungsverfahren gelöst werden
können.

V

Acknowledgements

First and foremost, I would like to greatly thank Prof. Dr. Jianwei Zhang and also
Dr. Sven Magg for supervising my thesis and for their infinite patience as well as
valueable inspirations, guidance and comments on my work.

I further want to give my sincere thanks to Dr. Norman Hendrich not only for his
scientific and helpful advices during this thesis, but also for his outstanding and
continuous support with immense knowledge throughout my complete study.

Also, I would like to show my appreciation to Dr. Matthias Kerzel, Dennis Krupke,
Lasse Einig, Florens Wasserfall and also to all other members of the TAMS and
WTM groups whose office doors were always open for any kind of conversation.

I want to thank my fellow students and good friends Matthis, Jonas and Tobias
for the interesting and motivating discussions, sleepless nights before deadlines and
the best collaborative preparation for exams I could ever have imagined.

Many thanks also go to my family for their everlasting backing and support that
brought me through my study and life in general.

Finally, I must express my deepest love and gratitude in all respects to my won-
derful girlfriend Christina. This accomplishment would not have been possible
without her. Thank you.

VII

”Nature is the source of all true knowledge. She has her own logic,
her own laws, she has no effect without cause nor invention without

necessity.”

– Leonardo da Vinci

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Research Question . 3
1.3 Outline . 4

2 Fundamental Knowledge 5
2.1 Robot Kinematics . 6

2.1.1 Coordinate Transformations 7
2.1.2 Forward Kinematics . 8
2.1.3 Inverse Kinematics . 9
2.1.4 Degree of Freedom . 11
2.1.5 Joint Types and Constraints 12
2.1.6 Singularities . 12

2.2 Algorithmic Methodology . 13
2.2.1 Analytical . 13
2.2.2 Numerical . 14
2.2.3 Randomization . 14

2.3 Biologically-Inspired Artificial Intelligence 15
2.3.1 Genetic Algorithms . 16
2.3.2 Particle Swarm Optimization 23

3 State of the Art 27
3.1 Jacobian Solvers . 28
3.2 Cyclic Coordinate Descent . 30
3.3 FABRIK . 32
3.4 Artificial Neural Networks . 34
3.5 Genetic Algorithms . 35
3.6 Particle Swarm Optimization . 36

4 Algorithmic Approach 37
4.1 Problem Statement . 38
4.2 Complete Overview . 39
4.3 Hybrid Genetic Swarm Algorithm 40

4.3.1 Encoding . 41
4.3.2 Fitness Function . 41

XI

Contents

4.3.3 Parent Selection . 42
4.3.4 Recombination . 43
4.3.5 Mutation . 43
4.3.6 Adoption . 45
4.3.7 Niching . 46
4.3.8 Survivor Selection . 46
4.3.9 Exploitation . 47
4.3.10 Initialization . 48
4.3.11 Termination . 49
4.3.12 Wipe . 49

4.4 Résumé . 50

5 Experimental Analysis 53
5.1 Environmental Setup . 54
5.2 Kinematic Models . 55
5.3 Parameter Study . 57
5.4 Selective Study . 59

5.4.1 HGSA versus SGA . 59
5.4.2 Extinction Factor . 60
5.4.3 Multi-Objective Weight Randomization 61
5.4.4 Adoption . 63
5.4.5 Exploitation . 64
5.4.6 Wipe Criterion . 66

5.5 Performance Study . 67
5.5.1 Success . 67
5.5.2 Accuracy . 70
5.5.3 Time . 72
5.5.4 Displacement . 74
5.5.5 Flexibility . 76

5.6 Comparative Study . 79

6 Conclusion 81
6.1 Summary . 82
6.2 Contributions . 84
6.3 Future Work . 85

Bibliography 87

XII

List of Figures

2.1 Example of a Robotic Kinematic Model [40] 6
2.2 Principle of Forward and Inverse Kinematics 7
2.3 General Cycle of Genetic Algorithms 16
2.4 Real-Valued Encoding Scheme . 17
2.5 Uniform Recombination . 19
2.6 One Point Recombination . 19
2.7 Arithmetic Recombination . 19
2.8 Bit Flip Mutation . 20
2.9 Add Value Mutation . 20
2.10 Swap Content Mutation . 20
2.11 Algorithmic Performance of Evolutionary Algorithms [25] 22
2.12 General Cycle of Particle Swarm Optimization 23
2.13 Gradient of Motion for Particles [89] 25

3.1 Jacobian Transpose, DLS and SVD-DLS Performance on a 10-DoF
Kinematic Chain [3] . 30

3.2 Visual Example for the Cyclic Coordinate Descent Algorithm [59] . 31
3.3 Visual Example for the FABRIK Algorithm [3] 32
3.4 FABRIK and CCD Performance on a 10-DoF Kinematic Chain [3] . 33
3.5 FABRIK Performance in Body Tracking [3] 33
3.6 Hyper-Redundant Manipulators [15] 36

4.1 Hybrid Genetic Swarm Algorithm 39
4.2 Pseudocode of the Hybrid Genetic Swarm Algorithm 51

5.1 Implementation Setup in Unity . 54
5.2 Kinematic Joint Editor Component 54
5.3 IK Solver Editor Component . 55
5.4 Kinematic Models . 56
5.5 Fitness Gain of Parameters . 57
5.6 Computation Time Gain of Parameters 58
5.7 Parameter Efficiency . 58
5.8 Fitness Convergency of HGSA over SGA 59
5.9 Improvement Ratio of HGSA over SGA 60
5.10 Evolution of Extinction Factors over 100 Generations 61

XIII

List of Figures

5.11 Effect of Multi-Objective Weight Randomization in Fitness Conver-
gency . 62

5.12 Improvement Ratio by Multi-Objective Weight Randomization . . . 62
5.13 Effect of Adoption in Fitness Convergency 63
5.14 Improvement Ratio by Adoption . 64
5.15 Effect of Exploitation in Fitness Convergency 65
5.16 Improvement Ratio by Exploitation 65
5.17 Effect of the Wipe Criterion in Fitness Convergency 66
5.18 Improvement Ratio by the Wipe Criterion 67
5.19 Successfully satisfied Target Poses over 1000 Random Samples . . . 68
5.20 Successfully satisfied Target Positions over 8000 Uniform Samples . 68
5.21 Success Rate under a Pose Objective over 10.000 Random Samples . 69
5.22 Number of Generations to evolve a Solution under a Pose Objective 70
5.23 Accuracy in Position and Orientation after 1

30
s 70

5.24 Accuracy in Pose Tracking at 60Hz Frame Rate 71
5.25 Computation Time for Objectives at predefined Accuracy 72
5.26 Computation Time for Pose Tracking at predefined Accuracy 73
5.27 Increase in Computation Time with respect to the desired Accuracy 74
5.28 Displacement Visualization by following a Cartesian Trajectory . . 74
5.29 Joint Displacement in Pose Tracking at 60Hz Frame Rate 75
5.30 Hyper-Redundant Kinematic Models 76
5.31 Flexibility with rising Degree of Freedom 77
5.32 Flexibility with different Joint Types 77
5.33 Flexibility with unreachable Targets 78

XIV

List of Tables

3.1 Orocos KDL and TRAC-IK Performance on Robot Manipulators [7] 29
3.2 Jacobian Transpose and Damped Least Squares Performance for

Real-Time Motion Capture [75] . 29
3.3 CCD Performance for Real-Time Motion Capture [75] 31
3.4 Memetic GA Performance on Planar, PUMA 560 and PA10-7C

Robot Manipulators [84] . 35
3.5 PSO Performance on Hyper-Redundant Manipulators [15] 36

4.1 Mathematical Symbols . 40

5.1 Degree of Freedom of Kinematic Models 56
5.2 Comparison between Orocos KDL, TRAC-IK and HGSA 79
5.3 Comparison between PASO and HGSA 79
5.4 Algorithmic Comparison on the reported Efficiency and Performance 80

XV

Chapter 1

Introduction

”It is not the most intellectual or the strongest species that survives, but the species
that survives is the one that is able to adapt to or adjust best to the changing en-
vironment in which it finds itself.” – Charles Darwin

In natural sciences, we are typically concerned with understanding natural phe-
nomena and try to discover appropriate models, systematic descriptions or math-
ematical formulas to imitate all kinds of simple to complex processes. To any
given problem, we design an algorithm by which we intend to provide an optimal
solution. We consider all kinds of available information and constraints, integrate
knowledge of which we specifically assume to describe our model best – and in the
end we fail in genericity and adaptivity simply because we unintentionally overfit
by making our approach work best for some certain predefined scenario. This issue
becomes even more noticeable by the ever increasing amount of data and require-
ments to manage high-dimensional information as well as dynamically changing
environments.

The goal of computer science and artificial intelligence nowadays is to overcome
exactly this kind of problem. Purely mathematical and statistical approaches have
proven to perform successfully under constrained and well-defined settings, but
standards scale with rising computational power which allows for more advanced
and adaptive models and algorithms. In fact, nature itself mostly provides opti-
mal solutions for many problems where it is beneficial to – if possible – adopt the
underlying patterns and processes. Gaining more insight into this area of research
will help to create more dynamic and flexible solutions and thus allows to enhance
intelligence rather than artificiality in computational systems.

This thesis adresses the problem of inverse kinematics which constitutes one
of the most fundamental issues in robotic systems and control of motion. It is
formulated by attempting to find a suitable configuration of joint variables sat-
isfying a Cartesian objective and represents the opposite to forward kinematics
which describes deriving a certain Cartesian result from a given consecutive joint
variable configuration. While the computation of forward kinematics is straight-

1

Chapter 1. Introduction

forward by a direct mathematical mapping from joint to Cartesian space through
coordinate transformations and thus analytically solveable, the same does not hold
true the other way round. For inverse kinematics, analytical closed-form solutions
can only be derived for specific kinematic geometry that is typically correlated
to a comparatively low degree of freedom. As soon as the kinematic model be-
comes more complex, analytical methods are not available and efficient numerical
methods are required. More particularly, inverse kinematics represent no bijective
mapping but a relation between Cartesian and joint space for which zero up to
infinite configurations can exist and it remains difficult to prefer one over another.
In addition, several other issues arise concerning singularities, joint constraints and
displacement followed by self-collision as well as smooth and collision-free planning
of motion, multiple end effectors and lastly incorporation of physical dynamics.

Some of the most widely known and popularly applied traditional methods are
based upon computing the Jacobian [11]. The solution for inverse kinematics is
then either found by taking its transpose [5, 93], pseudoinverse [91, 57], the damped
least squares [87, 33] or by further improvements using singular value decomposi-
tion [10]. However, problems were not only observed by getting stuck in suboptimal
extrema depending on the geometric complexity of the kinematic model but also
by unrealistic motion. Constructive approaches successfully tried to overcome a
few of these issues by performing random or heuristic restarts from random initial
configurations [8]. Further, the Cyclic Coordinate Descent [88] method is acknowl-
edged for its simplicity in computation and accuracy but whereby – unfortunately –
resembling issues remain as for the Jacobian. FABRIK [3] outlines a novel efficient
iterative geometric approach to handle multiple end effectors and but encounters
difficulties when dealing with orientation constraints. Recently, much acceptance
has also been paid to algebraic [19, 20] approaches that are convincing due to their
extremely low computational cost but encounter problems by highly articulated,
constrained and increasingly complex kinematic models and thus lack in scalabil-
ity. Same drawback holds for solutions that rely on expensive precomputation and
reachability analysis [86] which therefore are restricted to a lower-dimensional de-
gree of freedom. Other approaches formulate the problem by biologically-inspired
models such as Particle Swarm Optimization [74, 73, 24, 90, 72, 15] or Genetic
Algorithms [76, 77, 63, 1, 84]. Those clearly convince in terms of dimensional
scalability, robustness and genericity resulting in less difficulties with highly ar-
ticulated kinematic models. However, they typically depend on a large number
of parameters and might not converge as fast or accurate as other approaches
which incorporate information about the gradient or specific geometric properties.
Lastly, Artificial Neural Networks have been applied to approximate the inverse
kinematics function by learning rather than computing the relations between joint
and Cartesian space [16, 42, 36, 28]. Nevertheless, the optimal choice of training
samples remains unclear, the training must be applied in advance and can take
unacceptably long and finally the attainable precision might be too large. All to-
gether, this demonstrates the complexity of this ongoing area of research and offers
the opportunity for improvements and the design of novel scientific approaches.

2

1.1. Motivation

1.1 Motivation

Inverse kinematics is a fascinating research problem where numerous sophisticated
algorithms have been presented during the last decades but no universal solution
could yet be found. Most prominent approaches either attempt to directly derive
a geometric solution from the kinematic model or aim to solve the problem it-
eratively by following the gradient where suboptimal extrema are just one major
issue. Others try to interpolate the solution from precomputed joint space configu-
rations under some certain domain-specific resolution but suffer from the Curse of
Dimensionality [9]. When successfully mastering these issues, approaches may still
fail to obtain sufficiently small errors, continue convergence or to succeed within a
reasonably short amount of time.

While inverse kinematics has originally evolved from the discipline of robotics,
it has lately gained significant importance also in the field of character animation
and interaction. Therefore, it is no more only related to industrial robot sys-
tems but also to applications settled in the movie and video game industry which
represent an increasingly growing market and community. Modern game engines
like Unity3D [81, 53] and Unreal Engine [26, 54] are becoming more popular and
greatly ease the creation of virtual reality and the research in human-computer
as well as human-robot interaction. Inverse kinematics has become an interdisci-
plinary study where it is no more solely required to be solved as fast and accurate
as possible, but also to obtain plausible solutions on arbitrary kinematic models.

To successfully master these challenges and considering the growing demand in
intelligent and adaptive systems, more universal solutions are required in order to
create a realistic and interactive behaviour of artificial life that will inevitably be
part of the next generation in robotics, virtual reality and modern technology.

1.2 Research Question

The objective of this thesis is to design an efficient biologically-inspired approach
to the inverse kinematics problem that is primarily based on genetic algorithms
and particle swarm optimization and which can find accurate solutions in real-
time even for highly articulated kinematic models. While related methods often
encounter problems with the problem of suboptimal extrema, it is valuable to
discover new strategies that simultaneously serve exploitation and exploration but
remain efficient and sensitive to local extrema. In addition to this, the applicability
for industrial robots as well as for interactive applications in virtual reality is of
high interest. Ultimately, evolutionary algorithms offer to be revisited from a
theoretical point of view with intent to make them behave in a more biologically
plausible way. Traditionally, genetic algorithms optimize a problem by random
jumps without consideration of system changes and dynamics but what is not true
for the principle of natural evolution.

3

Chapter 1. Introduction

1.3 Outline

While this chapter served for introducing the problem of inverse kinematics from
an aerial perspective in order to provide a rough overview, the following chapters
are structured as follows:

Chapter 2 first provides the necessary fundamental knowledge for robot kinematics
that is required from a mathematical perspective but also introduces important re-
lated terms of robot technology. Afterwards, the algorithmic principle of analytical
and numerical algorithmic approaches will be discussed leading to the efficient tech-
nique of randomization. Lastly, an insight into the area of biologically-inspired ar-
tificial intelligence with particular detail on genetic algorithms and particle swarm
optimization is given.

Chapter 3 then continues providing a more detailed description and presentation
of the current state of the art related to inverse kinematics. More particulary, this
includes the class of approaches based on the Jacobian, the Cyclic Coordinate De-
scent, FABRIK, Particle Swarm Optimization as well as Genetic Algorithms and
finally Artificial Neural Networks.

Chapter 4 subsequently presents the algorithmic approach that was developed
during this thesis. Introducing with a complete overview on the whole algorithm,
the decision of each design aspect, improvement and modification will be explained
and discussed in very detail with regard to the initial problem statement.

Chapter 5 follows with an experimental analysis based upon the approach de-
scribed in chapter 4 and is subdivided into four parts. Those cover an initial
parameter study which is then followed by a selective study which highlights the
effects of the individual algorithmic improvements. Subsequently, a performance
and comparative study on the complete algorithmic solution is conducted on vari-
ous kinematic models which explicitiely demonstrates the efficiency and flexibility
of the algorithm.

Chapter 6 concludes with a summary, a list of contributions and an outlook to
future work.

4

Chapter 2

Fundamental Knowledge

”In order to arrive at knowledge of the motions of birds in the air, it is first neces-
sary to acquire knowledge of the winds, which we will prove by the motions of water
in itself, and this knowledge will be a step enabling us to arrive at the knowledge
of beings that fly between the air and the wind.” – Leonardo da Vinci

Robot kinematics is primarily based on advanced principles in geometric algebra
and functional relations. Consequently, section 2.1 first briefly introduces related
principle aspects and continues with formal descriptions of coordinate transforma-
tions as well as forward and inverse kinematics. Further, various knowledge that
covers the degree of freedom of a kinematic model, joint types as well as their
constraints and finally the problem of singularities will be presented.

Since chapter 1 has already mentioned that analytical methods may not always
be sufficient to solve the problem of inverse kinematics, section 2.2 explains the
algorithmic concepts of numerical optimization as well as randomization in order
to efficiently approximate to accurate solutions.

Section 2.3 lastly outlines the science field of biologically-inspired artificial intel-
ligence and introduces the concepts of evolutionary and collective systems which
consitute a major significance within this thesis.

5

Chapter 2. Fundamental Knowledge

2.1 Robot Kinematics

Kinematics is a subfield from the domain of Mechanics and defines the positional
and rotational motion of objects with respect to the physical properties of veloc-
ity and acceleration but without consideration of mass, force and torque which
are part of Dynamics. The fundamental equations of kinematics are given by (2.1)
(velocity) and (2.2) (acceleration) where r is a vector of translation or rotation. [62]

vptq � 9rptq � drptq
dt

(2.1)

aptq � :rptq � dvptq
dt

(2.2)

In Robotics, the motion of a Manipulator from its Base to its End Effector is
defined by a Kinematic Chain which is given by a consecutive set of Links and
Joints. Each joint then defines a particular axis of motion which describes the
either translational or rotational movement for the connected link. The hierar-
chical composition of these elements is related to a sequence of relative successive
coordinate transformations which then define the individual aligned coordinate
systems. An example of a serial kinematic chain is given by Fig. 2.1. Further,
these transformations are most commonly expressed using the Denavit-Hartenberg
notation which uses homogeneous matrices that can be constrained from a six- to
four-dimensional concatenation given their D-H Parameters. [17, 18, 46, 56]

Figure 2.1: Example of a Robotic Kinematic Model [40]

6

2.1. Robot Kinematics

The posture of the manipulator is controlled by a set of joint variables which
then allow to compute the forward kinematics or must be set by means of inverse
kinematics. Fig 2.2 illustrates the general principle of forward and inverse kine-
matics on how to obtain a result in Cartesian space from joint space variables
θ1, ..., θn through applying transformations T0, ..., Tn or vice versa. [61, 46]

Figure 2.2: Principle of Forward and Inverse Kinematics

2.1.1 Coordinate Transformations

In robot kinematics, geometric coordinate transformations between two domains
A,B can be defined through a bijective mapping f : A ÞÑ B ^ f�1 : B ÞÑ A where
ff�1 � I and f : Rn ÞÑ Rn. Further, only translation and rotation are required
which can be consistenly specified using homogeneous transformation matrices as
shown in (2.3) where t, R P R3 denote a three-dimensional translation vector or
rotation matrix.

Tt �

�����
1 0 0

0 1 0 t

0 0 1

0 0 0 1

����� TR �

�����
0

R 0

0

0 0 0 1

����� (2.3)

The corresponding rotation matrices Rx, Ry, Rz P R3 are always constrained to a
rotation about a certain axis by an angle α and are denoted by (2.4) considering
the right-hand rule where S and C abbreviate the sine and cosine functions.

Rxpαq �

���1 0 0

0 Cα �Sα
0 Sα Cα

���Rypαq �

��� Cα 0 Sα

0 1 0

�Sα 0 Cα

���Rzpαq �

���Cα �Sα 0

Sα Cα 0

0 0 1

��� (2.4)

Successive multiplication of transformations T0, ..., Tn then again gives a transfor-
mation matrix where its first three columns define the axis alignments and fourth
the position of the final resulting coordinate system. Since matrix multiplications
usually do not offer commutativity, it can be shown that left-hand side multiplica-
tion causes global transformation while right-hand side multiplication results in a
local transformation what is of particular interest for various applications. [51, 23]

7

Chapter 2. Fundamental Knowledge

Another way to perform coordinate transformations in kinematics and espe-
cially in computer graphics is to use vector additions for translation and quater-
nions for rotation. Given a set of Euler angles pφ, θ, ψq where φ denotes a Roll
about the X-axis, θ a Pitch about the Y-axis and ψ a Yaw about the Z-axis, homo-
geneous transformations can be used to determine the orientation of a coordinate
system. However, quaternions are from a computational point of view much more
efficient and also semantically consistent in contrast to Euler angles. For the latter,
the order of rotation matters although quaternion multiplication itself does also
not generally provide commutativity. A quaternion is simply a four-dimensional
vector defined by (2.5) where the final orientation is determined by rotating about
an arbitrarily defined three-dimensional normalized axis pax, ay, azq by an angle α.

q � px, y, z, wq � paxSα
2
, ayS

α

2
, azS

α

2
, C

α

2
q x, y, z, w P R (2.5)

The position then is obtained by incorporating the internal quaternion rotation to
the axis of translation where the rotation can be expressed by (2.6). [51, 23]

Rq �

���1 � 2y2 � 2z2 2xy � 2zw 2xz � 2yw

2xy � 2zw 1 � 2x2 � 2z2 2yz � 2xw

2xz � 2yw 2yz � 2xw 1 � 2x2 � 2y2

��� (2.6)

2.1.2 Forward Kinematics

The objective of forward kinematics is to determine the configuration X in Carte-
sian space from a consecutive set of joint variables θ � θi�1,...,n in joint space what
can formally be denoted as (2.7).

X � fpθq (2.7)

The transformation from the base to the end effector link is then given by a series
of successively applied transformations (2.8) where i�1Ti describes a transforma-
tion from link li�1 to li.

baseTee �0 T1
1T2 ...

n�1Tn (2.8)

Revisiting the previously introduced Denavit-Hartenberg notation in section
2.1 as one of the most common techniques to compute the forward kinematics of
a robotic manipulator, there are basically three rules to be followed:

• The zi�1-axis is set along the axis of motion of joint i

• The xi-axis is normal to the zi�1 axis and points away from it

• The yi is selected such that it completes the right-handed coordinate system
by the cross product yi � zi � xi

8

2.1. Robot Kinematics

Each transformation i�1Ti is defined by composition of four homogeneous trans-
formations (2.9) where its parameters are:

• A rotation θi about the zi�1 axis

• A translation di along the zi�1 axis

• A translation ai along the xi axis

• A rotation αi about the xi axis

i�1Ti � TRpzi�1, θiqTtpzi�1, diqTtpxi, aiqTRpxi, αiq (2.9)

Ultimately, the final homogeneous transformation matrix between two consecutive
links controlled by their joint variable θi results in (2.10). [46, 71, 17, 18]

i�1Ti �

�����
Cθi �CαiSθi SθiSαi aiCθi

Sθi CαiCθi �SαiCθi aiSθi

0 Sαi Cαi di

0 0 0 1

����� (2.10)

As observed, the solution to forward kinematics is straightforward and can be
efficiently obtained by analytical computation. Since the result is always mathe-
matically accurate and unique, calculating the forward kinematics is often used in
order to iteratively approximate a solution in inverse kinematics.

2.1.3 Inverse Kinematics

The problem of inverse kinematics is formulated in reverse to forward kinematics
denoted by (2.11) where the particular interest is in determining a joint variable
configuration θ � θi�1,...,n in joint space that satisfies a given target X in Cartesian
space. This Cartesian objective is mostly given by a six-dimensional pose but can
also consist only of a three-dimensional position or orientation depending on the
application.

θ � f�1pX q (2.11)

In contrast to forward kinematics, no general analytical solution is available and
zero up to infinite solutions can exist. This already indicates the complexity and
ambiguity of inverse kinematics. Although it is possible to derive an algebraic
solution for simple kinematic geometry with lower-dimensional degree of freedom,
this methods breaks down for increasing geometric complexity so that most ap-
proaches rely on numerical approximation to solve an inverse kinematics problem.
This technique however brings other issues into play such as suboptimal extrema
which correlates to presuming a suitable convergency critera, singularities as well as
constraints but also a higher computational effort than analytical methods. Since
this thesis solves the problem by optimization, the focus will be on highlighting the

9

Chapter 2. Fundamental Knowledge

numerical rather than analytical methods due to their scalability and robustness
which will be demonstrated during the next chapters and also how to overcome
the previously mentioned drawbacks.

The core principle however is to iteratively compute a joint variable vector Θ
weighted by µ that moves the previous configuration θ ÞÑ θ1 in a way that the
result obtained by forward kinematics progressively matches the Cartesian target
Y . This can be denoted by (2.12) where d is an arbitrary metric distance function
under a given Cartesian objective.

θ1 � θ � µΘ dpfpθ1q,Yq dpfpθq,Yq (2.12)

It is important to mention that different objectives require different metrics and
which are essential for optimization techniques. Let the objective be described
solely by position, so the translational distance dt can be calculated by computing
the Euclidean distance between two points p1, p2 defined as (2.13).

dt � ||p1 � p2|| �
b
pp1x � p2xq2 � pp1y � p2yq2 � pp1z � p2zq2 (2.13)

Regarding the orientation objective, the computation of rotational distances de-
pends on the mathematical representation which can be given by Euler angles or a
quaternion where the former can easily be converted into the latter and vice versa.
Considering a quaternion representation, the rotational distance dr between two
quaternions q1, q2 can be obtained by (2.14) using their dot product.

dr � q1 � q2 � 2 arccospq1xq2x � q1yq2y � q1zq2z � q1wq2w

|q1||q2| q (2.14)

Considering a full pose objective including both position and orientation, numeri-
cal methods for inverse kinematics run into a multi-objective optimization problem
where the performance heavily depends on the resulting Pareto front. Since rota-
tional distances are limited but translational distances can be arbitrarily large, it is
necessary to calculate a rebalanced translational distance d̂t that can be achieved
by (2.15). In this, l denotes the fixed length of the kinematic chain and ∆ is the
variable Euclidean distance from the base to the end effector depending on the
current posture of the kinematic model.

d̂t � πdt?
l∆

(2.15)

It is then possible to define a combined multi-objective distance dp (2.16) that can
be used for optimization approaches that require a single objective function where
each included objective can further be modified by an individual weight.

dp � wtd̂t � wrdr (2.16)

10

2.1. Robot Kinematics

Many approaches to iteratively optimize the joint variable configuration com-
pute a gradient by applying a small change σ � 0 to each joint variable in order to
estimate the first-order derivatives with respect to the change of the end effector.
This yields the Jacobian Jpθq that is a matrix that has dimensionality defined by
the number of joint variables and the objective and can be calculated using (2.17).

Jpθq �
�
BX
Bθ

�
(2.17)

A mutable inverse of the Jacobian and the error vector ~e of the end effector to
the target lastly give rise to the joint variable change (2.18) that must be applied
to (2.12) where µ ¡ 0. Note that the error can both consist of translational and
rotational information where each dimension must be treated independently.

Θ � J�1pθq~e (2.18)

This method results in a greedy behaviour and supports fast convergency to local
extrema but might get stuck in those especially for a higher degree of freedom.
Other strategies try to solve the problem by means of biologically-inspired con-
cepts where information to the problem is not obtained by the gradient but by
a specifically designed suitable objective function. Those provide a impressively
higher flexibility and robustness with increasingly articulated kinematic models
but by exchange of higher computational effort and slower convergence.

This section was mainly responsible for introducing the fundamental definitions
and mathematical foundations for inverse kinematics with particular focus on the
numerical concepts. A deeper insight into the individual approaches will be given
in section 2.3 as well as in chapter 3 which presents the current state of the art.

2.1.4 Degree of Freedom

In the domain of robotics, the term Degree of Freedom (DoF) is ambiguous and
shares two different meanings. First, it describes the translational (Surge, Sway,
Heave) and rotational (Roll, Pitch, Yaw) dimensions in which a particular object
can move or operate. Hence, these dimensions give an upper bound by a six-
dimensional degree of freedom in Cartesian space where Surge/Roll is related to
the X-axis, Sway/Pitch to the Y -axis and lastly Heave/Yaw to the Z-axis with
respect to the object’s coordinate system. In this interpretation, the number of
joints does not generally give rise to a robot’s inherent degree of freedom since
there might be redundant axes of motion that do not contribute to an overall
higher degree of freedom. Second, the degree of freedom is defined by the sum
of the robot’s independently moveable bodies and their each individually defined
motion axes resulting in distinct joint space dimensions. Accordingly, the robot’s
calculated degree of freedom can grow arbitarily high where a suggestion of different

11

Chapter 2. Fundamental Knowledge

methods on how to compute the resulting degree of freedom is presented in [64].
For inverse kinematics, the latter representation is mostly used in order to indicate
the geometric complexity since a higher degree of freedom usually leads to an
increasingly non-convex optimization problem and thus to a higher occurance of
local extrema as well as singular configurations. [56, 64]

2.1.5 Joint Types and Constraints

There are many different joint types to define the motion of an articulated robot.
Each joint possesses its own degree of freedom for which the specific dimensions
can also be contrained. This section only introduces the most essential joint types.
A more detailed overview from a larger variety that depends on the kinematic and
geometric purposes is given in [64].

• Fixed joints allow no motion by any axis and thus have 0-DoF. Although
they do not represent a real joint in the mechanical sense, they can be used
for defining constant hierarchical connections between links.

• Prismatic joints denote 1-DoF translations along the defined axis of motion.

• Revolute joints denote 1-DoF rotations about the defined axis of motion.

• Planar joints allow 2-DoF translation and 1-DoF rotation within a plane
that is perpendicular to the defined axis of motion.

• Spheric joints allow any 3-DoF rotation within a sphere.

All motion for a joint can be constrained which means that independent lower
or upper limits for each degree of freedom can be set. This is not only greatly
beneficial in order to describe realistic motion but also to restrict the dimensional
domains – especially for translational motion – in the resulting joint space.

2.1.6 Singularities

The first derivative of the kinematics equations (2.1) yields the velocity and thus
allows to describe the Jacobian matrix. A kinematic singularity is then observed
as the Jacobian becomes rank deficient – and thus singular – which causes an in-
stantaneous loss in the degree of freedom of the kinematic model. Basically, this
means that different joint variables within the kinematic joint space do not remain
independent anymore and the inverse of the matrix becomes numerically unstable.

As already mentioned in section 2.1.3, many numerical approaches to solve the
inverse kinematics problem approximate the end effector gradient to the Cartesian
objective by applying small changes to all joint variables. In the sense of forward
kinematics, these changes would describe internal joint space singularities which
are configurations that do not cause a change of the end effector in position or
orientation and thus make joint motions redundant. In terms of inverse kinemat-
ics, these changes cause the calculated joint velocities diverge to infinity. External

12

2.2. Algorithmic Methodology

singularities typically occur at the domain boundaries of the joint space dimen-
sions. Those can be observed either by completely extended manipulators or by
Cartesian targets that would require a configuration that is not contained within
the joint space. [21, 46]

Usually, the occurence of singular configurations rises with the degree of free-
dom and the geometric complexity of the kinematic model. Approaches that rely
on computing the Jacobian are then not able to reliably obtain solutions anymore
since the gradient can not be inverted. This is where biologically-inspred iterative
methods greatly benefit by solving the problem without directly incorporating in-
herent knowledge of them problem.

2.2 Algorithmic Methodology

There are two fundamental concepts for solving the inverse kinematics problem
which have been studied for decades and were mentioned several times during
this chapter. Those can be classified by their algorithmic methodology that is
either analytical or numerical. This thesis follows the latter and hence will more
focus on introducing the numerical strategies for which further the principle of
randomization can offer great opportunities in efficiency and adaptivity.

2.2.1 Analytical

The winning fact of analytical methods is that those are rapidly fast and ex-
act. Since the computational solution is directly derived from the structure of the
kinematic model, inverse kinematics can be solved within one step and can give
identical results repeatedly. Analytical methods can primarily be subdivided into
algebraic and geometric approaches. The former directly rely on the transforma-
tion sequences from the base to the end effector and apply algebraic mathematical
conversions in order to obtain a solution for each joint variable. The latter also
derive a solution for each joint variable, but instead incorporate direct information
about the spatial geometry of the manipulator which is described by the individ-
ual link lengths to their joints and can then be formulated as equations consisting
of trigonometric terms. Examples for different robot manipulators on how to ob-
tain their joint variables both algebraically and geometrically can be found in [46].
Deriving these solutions is typically eased by intersecting or parallel consecutive
joint axes since these can induce redundancy for the end effector configurations.
However, due to the dramatically increasing mathematical complexity and espe-
cially non-linearity not only by each additional degree of freedom but also caused
by different joint types and constraints, such closed-form solutions are highly non-
trivial – or even non-existent – and thus only available for simple kinematic models.
Accordingly, analytical approaches become poorly scalable and impracticable for
character animation due to arbitrary kinematic geometries and the degree of free-
dom is often higher in comparison to most industrial robots. [79, 46, 32]

13

Chapter 2. Fundamental Knowledge

2.2.2 Numerical

At first glance, numerical methods appear to be slower and considerably more ex-
pensive than analytical approaches and also do not guarantee to find an exact solu-
tion. Nevertheless, this methodology robustly allows to approximate to a solution
that is still highly accurate and hence mostly remains with a negligibly small error.
More particularly, it allows to find solutions which could not be obtained by ana-
lytical methods due to the complexity of the problem which has encouraged their
use to solve inverse kinematics problems. Numerical analysis and optimization is
a mathematical technique that has consistently proven to perform successful for
various different and highly complex problems [50, 92, 41]. Those either compute
functional derivatives and integrate inherent knowledge of the problem in order to
provide a stable and efficient convergency or try to satisfy a predefined objective
function by finding local extrema. Their most common type for inverse kinematics
is given by iterative methods such as the widely used and well known Jacobian ap-
proaches as well as the Cyclic Coordinate Descent. While they are comparatively
fast and more predictable, the lack of these in terms of inverse kinematics is that
they follow a certain presumed model that is iteratively computing the gradient.
This usually results in a far more present exploitation than exploration and thus
in frequently getting stuck in suboptimal extrema. Biologically-inspired methods
then again are based on optimization where information about the gradient is
not neccessarily required but although can efficiently approximate to an accurate
solution. While both techniques offer great scalability in contrast to analytical so-
lutions, the challenge among these is in mastering the trade-off between accuracy
and computational effort that is required in order to find a suitable solution. The
use of numerical methods is particularly interesting for applications that do not
rely on precisely accurate solutions where this imprecision might already be given
by technical limitations such as sensor noise, but also in robotics simulation and
virtual reality including motion capture and animated characters. [11, 57, 88, 58]

2.2.3 Randomization

Randomization itself represents a concept which has always been present in the
course of human history although the first attempts of finding a mathematical
formalization for probability theory are comparatively young. With rising compu-
tational capabilities, it constitutes a powerful tool to improve solving complex –
in particular higher-dimensional – problems or even to find approximate solutions
to NP-hard problems. In more detail, randomness can dramatically ease the al-
gorithmic design and greatly reduce the required computational effort while it is
still able to obtain surprisingly good results. The algorithmic class of randomized
algorithms can primarily be subdivided into Las-Vegas and Monte-Carlo strate-
gies. First provide an exact solution to the given problem while second return
an approximate result constrained by a bounded error probability. Related to the
inverse kinematics problem, the latter randomization methodology is common as
an additional or even fundamental part of numerical approaches. More precisely,

14

2.3. Biologically-Inspired Artificial Intelligence

randomness can be used to weigh the iterative change that is applied to the joint
variables but also to perform an efficient guided random search within the solution
space as characteristic for biologically-inspired evolutionary and collective systems.
Another use is to randomly generate different initial configurations by which gra-
dient descent approaches are then able to obtain distinct results. Accordingly,
randomization greatly serves to realize an efficient search space exploration and
thus to enhance the robustness and adaptivity of an algorithm. [37, 69, 52, 78, 8, 63]

In this thesis, randomization is an essential part of the algorithmic solution
that is presented in chapter 4 and will particularly demonstrate its effectiveness
applied to the problem of multi-objective optimization.

2.3 Biologically-Inspired Artificial Intelligence

Classical methods in artificial intelligence aim to design solutions that are able to
reproduce cognitive capabilities and therefore provide a descriptive solution to a
given problem. In contrast to this, biologically-inspired artificial intelligence di-
rectly emerges from various concepts and patterns that can be observed in natural
phenomena. This usually results in the property that former solutions are good
in solving problems that human beings show difficulties with while vice versa they
do not succeed in tasks that latter approaches can easily solve and that living
organisms seem to fulfill almost effortlessly. [29, 13, 65]

The most prominent and widely researched biologically-inspired models are
constituted by artificial neural networks which are designed to imitate the capabil-
ities among the individual cortical areas of the human brain. While they behave as
function approximators and can be used both for regression analysis or classifica-
tion, they have not only been successfully applied to stock market prediction and
control systems but have also become an important area of research for pattern
recognition in language processing as well as computer vision. [34, 49, 45]

Cellular systems have been developed by inspiration of biological cells in living
organisms. Their simplest model is given by cellular automata which became pop-
ular by Conway’s Game of Life [43, 44]. They are represented by a cellular grid
where each cell can only influence its closest neighbouring cells under a predefined
transition function and aim to let complex behaviour emerge from a set of simple
rules.

A particular relevance of biologically-inspired approaches in this thesis is given
by genetic algorithms as well as particle swarm optimization and is discussed in
more detail during the following sections 2.3.1 and 2.3.2. While both share the
same concept of letting a group of rather simple individuals solve a specific problem,
they follow different strategies and dynamics for search space exploration observed
in natural phenomena.

15

Chapter 2. Fundamental Knowledge

2.3.1 Genetic Algorithms

In biologically-inspired artificial intelligence, Genetic Algorithms (GA) constitute
a subfield of evolutionary systems which have been introduced by J. F. Holland
[35] although first motivations were already given earlier by famous computer sci-
entists such as A. Turing [80] and J. v. Neumann [85] as well as later on in [70, 30].
They are driven by the theory of natural evolution and genetics that have been
formed by C. Darwin and G. Mendel and follow the principle of Survival of the
Fittest according to the introducing quote in chapter 1. In biology, there are four
Pillars of Evolution which are given by Population, Diversity, Heredity and Selec-
tion. Clearly, there can not be any evolution without a population that consists
of a group of individuals. Diversity then mentions that each of these individuals
must have distinct characteristics which is basically defined by their genotype that
is the genetic material of chromosomes. The meaning of heredity is that those
characteristics can be transmitted from the ancestry to their offspring over many
generations what is related to sexual reproduction. Selection lastly states that
only few individuals are capable of reproducing – namely those that are “most
responsive to change” – what is determined by their phenotype that performs dif-
ferently successful under various environmental constraints and thus guides the
evolutional progress. However, in contrast to natural evolution in which organisms
have no specific global goal but many separate and independent local goals, genetic
algorithms in artificial evolution are used to solve optimization problems in which
the measure of individual success is predefined by a shared global objective. [29, 25]

Given a population by a number of individuals, genetic algorithms model evo-
lution by the cycle of selection, recombination and mutation. Each individual is
assigned a fitness value depending on the measurable quality of appearance and
functionalities emerging from its encoded genes under a given fitness function. This
general process is illustrated by Fig 2.3 and will be explained in more detail.

Figure 2.3: General Cycle of Genetic Algorithms

16

2.3. Biologically-Inspired Artificial Intelligence

Population

The population is the set of all individuals of the current evolved generation. In
this, each individual shares the same chromosome encoding scheme for the genes
and represents one candidate solution with assigned fitness value under the given
objective. The initialization of the population is usually random but can also be
biased with purpose to advance convergence or to search for solutions only within a
small neighbourhood. The algorithm terminates as soon as an individual is found
whose phenotype performs well under the given problem. However, termination
can also be forced by detection of the population being stuck in a suboptimal
extrema or by exceeding a limited number of iterations or amount of time.

Encoding

There are various possible ways to model the encoding scheme of the genotype for
the individuals and it highly depends on the given problem setting. In addition,
it also affects the possible concepts for recombination and mutation that can be
performed. Popular and successfully proven strategies are given by binary, discrete,
real-valued, character, permutation or tree encoding. While the first four methods
are quite intuitive, permutation encoding is typically applied to sorting problems
and tree encoding is used to describe hierarchical structures. The representation of
the genotype is then given by an array of arbitrary length that mostly defines the
dimensionality of the resulting search space. In example, the real-valued encoding
scheme is shown in Fig. 2.4 which is of particular importance for this thesis.�

0.3 | 0.1 | 0.5 | 0.6 | 0.9
	

Figure 2.4: Real-Valued Encoding Scheme

Fitness

The fitness of an individual is usually calculated as a real-valued number which
measures the quality of the phenotype under a predefined objective. It is required
for any kind of selection during evolution but can also be used in order to estimate
the diversity within the population or to define a suitable convergency criteria by
assigning a threshold value.

Fitness Function

In the context of evolutionary systems, the fitness function is a synonymous use
for the mathematical representation of the objective function. Although it is both
possible to either minimize or maximize the fitness function, the former is usually
more efficient since it is bounded to zero. Accordingly, in this thesis the characteri-
zation of fitter individuals is always associated to smaller fitness values. The design
of the fitness function is usually one of the most crucial challenges since it guides
the population through the progress of search space exploration and exploitation.

17

Chapter 2. Fundamental Knowledge

Parent Selection

At the beginning of one evolution cycle, the fittest individuals need to be selected
to become the parents for the next generation. This imitates heredity over many
evolutions in order to keep good genes within the pool of individuals. Exclusive
selection of fittest individuals usually leads to premature convergency which is
highly attracted to suboptimal extrema. Accordingly, a well designed parent se-
lection frequently choses individuals with high fitness to transmit their genes but
also allows weaker individuals to reproduce some of the time. Although parent
selection can be performed purely at random and the evolution can still converge
to same solutions, there are mainly three commonly used selection operators.

• Roulette Wheel – This operator is also known as fitness proportional se-
lection. The probability of an individual to be chosen as parent is simply
calculated as the ratio of its own fitness value to the sum of fitness values
over the whole population denoted by (2.19).

ppiq � fpiq°n
i�1 fpiq

(2.19)

Clearly, this strategy will perform poorly if there is one individual that has a
greatly higher fitness value than all others or if all fitness values are roughly
equal to each other. In those cases, either the fittest individual is chosen too
often or the method resembles a random selection.

• Rank – This operator is very similar to roulette wheel selection, but success-
fully avoids the mentioned drawbacks. Assuming the population is ordered
by fitness values, the probability of an individual to be chosen as parent can
be calculated using 2.20.

ppiq � n� i� 1°n
i�1 i

(2.20)

This method guarantees always to create a probability distribution that con-
tinuously decreases with the quality of an individual in the population and
remains independent from the distribution of fitness values.

• Tournament – Lastly, this method randomly selects a reasonably small
subset of individuals from the population and the one competing best by
its fitness value is chosen as parent. All others are put back into the pool
of individuals and can participate in further tournaments. This selection
operator is very frequently used due to its capability of chosing individuals
of high quality while remaining diversity at the same time. Hence, it does
not require any prior knowledge about the underlying problem and remains
dynamic within a noisy and highly non-linear solution space.

18

2.3. Biologically-Inspired Artificial Intelligence

Recombination

Recombination – often also termed as crossover – simulates the process of sexual
reproduction in which two parent chromosomes are randomly merged into a new
offspring chromosome. It is controlled by a recombination rate parameter that
determines whether this process occurs or not. This rate is usually chosen very
high since it aims to find the fittest subsolution that can be constructed from the
gene pool. Again, three popular recombination operators are presented in more
detail.

• Uniform – This operator creates the new offspring chromosome by chosing
each gene to be equiprobably transmitted from one of both parents. Accord-
ingly, this typically results in an exploration within same dimensions and
therefore obtains solutions within a related neighbourhood.�

0.7 | 1.1 | 0.6 | 0.5 | 0.8
	 �

0.3 | 1.5 | 1.4 | 0.9 | 2.2
	

Ó�
0.3 | 1.1 | 1.4 | 0.5 | 0.8

	
Figure 2.5: Uniform Recombination

• One Point – This operator is very similar to uniform recombination, but
instead randomly chooses a position at which the chromosome is split. The
offspring chromosome is then created from the genes of the parent chromo-
somes that are either left or right to this position. This operator will cause
more diverse solutions by exploration over different dimensions.�

0.7 | 1.1 } 0.6 | 0.5 | 0.8
	 �

0.3 | 1.5 } 1.4 | 0.9 | 2.2
	

Ó�
0.7 | 1.1 | 1.4 | 0.9 | 2.2

	
Figure 2.6: One Point Recombination

• Arithmetic – In some cases, it can be useful to define an arithmetic function
to recombine the parent chromosomes. In this example, each offspring gene
is calculated by the arithmetic mean of its parent genes. Note that this
operator differs in a way that it is able to introduce new genetic material
into the pool of individuals without performing mutation.�

0.7 | 1.1 | 0.6 | 0.5 | 0.8
	 �

0.3 | 1.5 | 1.4 | 0.9 | 2.2
	

Ó�
0.5 | 1.3 | 1.0 | 0.7 | 1.5

	
Figure 2.7: Arithmetic Recombination

19

Chapter 2. Fundamental Knowledge

Mutation

Mutation models natural errors that can occur during the recombination process
of two chromosomes and applies small modificiations to the offspring genotype.
In contrast to recombination, the mutation rate is calculated separately for each
gene and is usually chosen very small or proportional to the dimensionality of
the chromosomes in order to preserve genotypes of high quality. The design of the
mutation operator should allow to escape from suboptimal extrema and to increase
convergency in populated regions where recombination scores no improvements
anymore.

• Bit Flip – This operator can only be applied to binary encoding schemes
and mutates the gene by flipping its bit from one to zero or vice versa.�

1 | 0 | 1 | 1 | 0
	

Ó�
1 | 1 | 0 | 1 | 0

	
Figure 2.8: Bit Flip Mutation

• Add Value – This operator mutates a real-valued gene by adding a small
value that is sampled from a uniform or Gaussian distribution. While the
former will cause a more dynamic and explorative mutation, the latter typ-
ically results in an exploitation which still allows larger jumps within the
solution space. In case of limited domain boundaries, the mutated genes
must be clipped in order to prevent invalid solutions.�

0.5 | 1.3 | 0.2 | 0.7 | 1.1
	

Ó�
0.3 | 1.3 | 0.2 | 0.8 | 1.1

	
Figure 2.9: Add Value Mutation

• Swap Content – While mutation usually operates on a specific gene, this
mutation operator performs mutation by interchanging two genes without af-
fecting their particular values. This technique can be useful for chromosomes
whose genetic encoding represents sequential information.�

0.5 | 1.3 | 0.2 | 0.7 | 1.1
	

Ó�
0.7 | 1.3 | 0.2 | 0.5 | 1.1

	
Figure 2.10: Swap Content Mutation

20

2.3. Biologically-Inspired Artificial Intelligence

Survivor Selection

After recombination and mutation, the survivors must be selected which then con-
stitute the population for the next generation. More particularly, the survivor
selection reduces ψ ancestors and λ offspring to a new population of ψ individuals
where the replacement strategy can crucially affect the evolvability of the pop-
ulation, meaning the number of generations until an optimal solution is found.
Popular strategies rely on the fitness or age of the individuals and are usually
extended by the concept of elitism.

• Fitness – This strategy simply selects the ψ fittest individuals among all
ancestors and offspring as survivors for the next generation. This ensures to
quickly find good solutions since the fittest individuals are never discarded
but therefore lacks in exploration and can lead to premature convergency.

• Age – The age of an individual is given by the number of generations it has
survived. Although there exist various methods to perform a replacement
based on age, the most common method is to produce λ � ψ offspring
where all of them are selected as survivors and all parents are discarded.
Accordingly, each individual exists for exactly one generation. This supports
a highly dynamic search space exploration but can lose good solutions that
have already been discovered.

• Elitism – The concept of elitism implies that a small number κ ψ of the
best solutions from the previous population survive as direct copies without
any changes in their genotype. The remaining ψ � κ individuals are then
selected by age or fitness. Incorporating elitism is usually recommended
especially in noisy search spaces since it allows to keep the fittest solutions
while the remaining individuals can serve a dynamic evolution.

Niching

In optimization problems, the occurence of multiple local extrema is a common
problem and it often remains difficult to efficiently escape from suboptimal re-
gions. Although genetic algorithms can be designed to perform impressively resi-
lent to premature convergency, a population can also accumulate and stop gaining
progress which is typically observed by a low genetic diversity or all fitness val-
ues approximating zero. Niching denotes a technique that aims to prevent such
situations by forcing the population to settle in different regions simultaneously
and is particularly interesting for multi-objective problems. A popular strategy to
achieve such evolutional behaviour is to perform Preselection which removes par-
ents that are worse than their offspring from the genetic pool. Further methods use
Fitness Sharing within densely populated regions that are discovered by Euclidean
distance thresholds. As a result, individuals within those areas will become less
likely to be selected as parents. Lastly, inducing a Crowding Distance into the
population can ensure a uniform spread of the fittest individuals along the Pareto
front and therefore allow to fall into better extrema.

21

Chapter 2. Fundamental Knowledge

Designing a genetic algorithm implies no strict rules and offers many possibil-
ities and decisions to be made in order to create an efficient optimization tech-
nique. Depending on the given problem, a suitable encoding scheme must be
chosen whereby appropriate genetic operators for recombination and mutation are
neccessary. Obviously, this typically requires many parameters to be specified for
which no universally optimal configuration settings are available. While a recombi-
nation rate that is set to one and mutation rate of zero results in a population that
will consist of multiple copies of same individuals, a recombination rate of zero and
mutation rate set to one yields a persistently scattering group of individuals that
will never converge to a common solution. Although the recombination rate should
usually be chosen high while the mutation rate is suggested to remain extremely
low, the whole evolutional strategy can be adjusted and designed to perform suc-
cessfully even under highly non-linear and noisy search spaces. A great benefit
of genetic algorithms to gradient descent approaches is their ability to perform a
guided search for multiple solutions at the same time. This parallel search also
allows to serve multi-objective optimization problems by an efficient exploration of
the resulting Pareto front and to scale well for greatly higher-dimensional search
spaces.

According to the No Free Lunch theorem [94], there is no single approach that
performs best under all kind of problems what is related to the fundamental con-
cepts of overfitting and underfitting. The former is caused by a problem tailored
method that is highly biased and performs perfectly well for what it is supposed
to solve but breaks as soon as anything changes. The latter yields the opposite by
performing convergently equal under all given problems what lastly resembles an
unbiased random search for an optimal solution. In this context, Fig. 2.11 demon-
strates the flexibility of evolutionary algorithms which achieve a proper balancing
between both and thus accomplish a decent algorithmic performance measure over
the infinite range of problems.

Figure 2.11: Algorithmic Performance of Evolutionary Algorithms [25]

22

2.3. Biologically-Inspired Artificial Intelligence

2.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) constitutes an optimization technique that
was developed by J. Kennedy and R. Eberhart [38] and is inspired by the social
behavior of bird flocks and schools of fish. It follows the idea to let complex be-
haviour emerge from a group of simple organisms that collectively solve a specific
problem. The organisms use aggregation that is a form of natural self-organization
which can be observed by the process of gathering food where each organism knows
its own success and tells it to its closest neighbours. Those subsequently can in-
tegrate this available information from all their neighbours and react by turning
closer into the direction where the highest concentration of successfully performing
organisms – and thus also food – can be found. This procedure procreates until
all organisms settle within suitable regions of optimal local extrema. [38, 29]

In particle swarm optimization, a number of organisms – called particles –
form a swarm and perform a search space exploration that can be described as a
continual dynamic motion. Within each optimization step, all particles compute
their magnitude and direction of motion according to a collective behaviour pattern
that typically depends on the performance measure of the other particles and are
updated by moving a small step along this gradient as outlined by Fig. 2.12.

Figure 2.12: General Cycle of Particle Swarm Optimization

Swarm

Each particle within its swarm is mainly characterized by an individual position
and performance value and represents one candidate solution. An additional ve-
locity value is iteratively updated with respect to the motion update pattern.
Equivalent to genetic algorithms, the particles are usually initialized by random
positions in order to cover a large field of possible solutions. Also, the termina-
tion condition is satisfied as soon as a suitable solution is found or by exceeding a
predefined maximum number of iterations or amount of time.

23

Chapter 2. Fundamental Knowledge

Encoding

In contrast to genetic algorithms, the encoding scheme for particles is usually given
by real-valued numbers. This is due to the velocity update that is mainly designed
to be applied to continuous search spaces. The candidate solutions then again are
represented by arrays of arbitrary dimensionality as depicted in Fig. 2.4.

Performance

Similar to the fitness value in genetic algorithms 2.3.1, the performance value
denotes the quality of the candidate solution under a given objective function.

Performance Function

The performance function again is synonymous to the objective function and also
implies the same as for genetic algorithms 2.3.1.

Update

There are various methods to perform the search space exploration in particle
swarm optimization. Since all strategies indicate different values to be stored
within each particle or the definition of arbitrary neighbourhood functions as well
as collective topologies, this section only presents the most common update type
which exclusively incorporates the highest performing solution of the local history
of each particle as well as the global solution that is nearest to the target.

For each particle, a personal best solution is stored in order to remember the
position under which it has been most successful during exploration. In addition,
the whole swarm has information about its global best solution that represents
the particle that has minimum distance to the target and thus scores the highest
performance among all. Accordingly, each particle always knows about its own
current position x and velocity v as well as the best position xp it has yet discov-
ered and can tell which particle xg within the swarm is performing most successful.
The velocity update is then calculated by a simple weighted addition of these three
components denoted by (2.21). This yields the new velocity v1 of the particle that
can be interpreted as the gradient of motion which has high probability to find
an optimal solution within the underlying search space. The weighting is used to
control the overall motion and behaviour of the swarm, meaning how much each
particle should remain on its own velocity defined by w1, stick to its own best
discovered position controlled by w2 and lastly how much it should be attracted
by the most successfully performing particle depending on w3. Also, an additional
use of uniformly distributed random values rp and rg within the range r0.0, 1.0s is
usually suggested with intent to induce natural variations in motion and to prevent
overshooting local extrema.

v1 � w1v � rpw2pxp � xq � rgw3pxg � xq (2.21)

24

2.3. Biologically-Inspired Artificial Intelligence

Note that depending on the selection of the weight parameters, the velocity can
grow arbitrarily high, wherefore this term is usually bounded to an upper limit.
Fig. 2.13 illustrates the gradient of motion calculation for the velocity update
phase.

Figure 2.13: Gradient of Motion for Particles [89]

Ultimately, the updated position x1 for a particle is simply obtained by adding the
computed velocity in (2.21) to its previous position as denoted by (2.22).

x1 � x� v1 (2.22)

While genetic algorithms must pass multiple stages within one iteration cy-
cle which can all be modified differently from each other, particle swarm opti-
mization only requires a single phase to update the candidate solutions. As a
consequence, less parameters are usually required which greatly eases the algo-
rithmic optimization. Although both concepts share many similarities and can
be used to simultaneously search for multiple local extrema, the main distinction
is that optimization in genetic algorithms is primarily controlled by a competi-
tion of the fittest individuals while particle swarm optimization finds a solution
by a collaboration among all particles. Equivalently, the search does not require
the computation of gradients and scales well with growing search space dimen-
sionality. Popular problem-specific improvements define maximum neighbourhood
distance thresholds or use social rather than geographical neighbourhoods which
model subgroups of particles where communication is only allowed within same
groups.

Genetic algorithms and particle swarm optimization have been successfully ap-
plied to various problems ranging from applications in control engineering and neu-
ral network training to behaviour learning in robotics but also to improvements
of artificial intelligence in video games. While they are typically treated indepen-
dently from each other despite of their similarities, this thesis will show that a
combination can obtain much better results without requiring notably higher cost.

25

Chapter 3

State of the Art

”Anyone who has never made a mistake has never tried anything new.”
– Albert Einstein

This chapter presents the current state of the art in solving inverse kinematics
with a focus on the numerical approaches. Each method is presented separately
including various related experimental results in order to show typical performance
measures.

First, section 3.1 introduces popular strategies that rely on calculating the Ja-
cobian which is involved by several different submethods to solve the inverse kine-
matics problem.

Section 3.2 then describes the Cyclic Coordinate Descent which is a very simi-
lar and much simpler method than the Jacobian.

Subsequently, section 3.3 outlines the comparatively novel FABRIK algorithm
which is particularly interesting in terms of realistic motion.

Section 3.4 gives an overview of several results obtained by artificial neural net-
works.

Lastly, sections 3.5 and 3.6 presents related approaches for solving inverse kine-
matics based on genetic algorithms and particle swarm optimization.

27

Chapter 3. State of the Art

3.1 Jacobian Solvers

Calculating the Jacobian (2.17) outlines the most popular and traditional strategy
to numerically solve the inverse kinematics problem. As described in section 2.1.3,
the inverse of the Jacobian multiplied with the error from the end effector to the
target (2.18) with respect to a Cartesian objective then gives rise to the joint vari-
able change (2.11). However, calculating the inverse is not trivial since the matrix
is – depending on the degree of freedom – usually not invertible. In particular, a
pure inverse of the Jacobian can only be derived if the number of joint variables
equals the dimensionality of the error. Accordingly, many manipulators are inten-
tionally designed with exactly six degrees of freedom to provide a pure inverse to
a full pose error containing position and orientation. Nevertheless, alternative so-
lutions are available which are given by simply computing the conjugate transpose
JT [5, 93] or the Moore-Penrose pseudoinverse J� [91, 57] that is defined as (3.1).

J� � JT pJJT q�1 (3.1)

This achieves that the Jacobian becomes invertible in most cases except for con-
figurations that are within a close neighbourhood to singularities and which cause
the matrix to become unstable. In order to avoid such problems, the damped least
squares (DLS) – also known as Levenberg-Marquardt – method is commonly used
and was firstly applied to inverse kinematics in [87, 33]. Instead of computing the
joint variable change Θ directly, it aims to minimize the quantity (3.2) with λ as
a non-zero damping constant.

||JΘ � ~e||2 � λ2||Θ||2 (3.2)

This allows to provide a numerically stable method to calculate Θ but requires a
proper selection of λ for which good suggestions are given in [12, 33, 55, 14]. In
addition, the computation of the pseudoinverse can be further improved by us-
ing singular value decomposition (SVD) which then allows to design a selectively
damped least squares method as presented in [10]. The pseudoinverse of the Jaco-
bian can then be calculated using (3.3) which allows to obtain similar performance
as for the damped least squares method and does not require a damping constant
to be chosen.

J� � V D�UT (3.3)

However, all Jacobian methods share the same downside of running into suboptimal
extrema which is caused by the nature of gradient descent strategies. To overcome
this issue, there exist various suggestions on performing frequent restarts from ran-
dom initial configurations. Recently, in [8] a novel method called TRAC-IK was
presented that is able to obtain promising results and is publicly available under
the ROS framework [31, 7]. It was compared to the pseudoinverse Orocos KDL

28

3.1. Jacobian Solvers

method [40] concerning success rate and average computation time with respect to
the degree of freedom of the manipulator. Selected results are listed in Tbl. 3.1 and
were obtained from 10.000 randomly generated and reachable joint configurations
with respect to a pose objective at 10�5 Cartesian error. From a statistical point of
view, TRAC-IK strikingly outperforms the Orocos KDL inverse kinematics solver
both in terms of success rate as well as computation time. However, it is not clear
how many restarts are carried out which then again might result in disproportion-
ally high joint displacements even for small changes within the target.

Manipulator DoF Orocos KDL TRAC-IK

Baxter Arm 7 61.07% (2.21ms) 99.17% (0.60ms)

Jaco2 6 26.23% (3.79ms) 99.51% (0.58ms)

KUKA LBR
iiwa 14 R820

7 37.71% (3.37ms) 99.63% (0.56ms)

PR2 Arm 7 83.14% (1.37ms) 99.84% (0.59ms)

UR5 6 35.88% (3.30ms) 99.55% (0.42ms)

Table 3.1: Orocos KDL and TRAC-IK Performance on Robot Manipulators [7]

Further, [75] investigated the performance of the transpose and damped least
squares methods in the application of real-time motion capture. The algorithms
were tested both on an unconstrained as well as constrained human skeleton model
with the major goal to simulate realistic motion. In this, the final kinematic pos-
ture implicitly results from solving the inverse kinematics problem independently
for each bone (1-3 DoF) under a Cartesian position objective. Still, errors of
approximately 20cm in average but also up to 47cm were reported and the com-
putation time noticeably increased when including constraints according to Tbl.
3.2.

Method Constraints Computation Time Elbow Error

Transpose Unconstrained [0.17ms – 2.59ms] ∅0.60ms [2cm – 47cm] ∅27cm

DLS Unconstrained [0.17ms – 4.16ms] ∅0.54ms [1cm – 46cm] ∅24cm

Transpose Constrained [0.17ms – 23.21ms] ∅3.69ms [6cm – 31cm] ∅20cm

DLS Constrained [0.17ms – 24.69ms] ∅3.48ms [6cm – 41cm] ∅20cm

Table 3.2: Jacobian Transpose and Damped Least Squares Performance for Real-
Time Motion Capture [75]

29

Chapter 3. State of the Art

The performance among the Jacobian transpose, DLS and also SVD-DLS methods
was examined in [3] when applied to an unconstrained 10-DoF kinematic chain.
Both the averagely required time with respect to a given convergence distance
threshold for the end effector as well as the optimization progress to the number of
iterations were considered. The results are depicted in Fig. 3.1 and show that the
transpose method is clearly outperformed by both other strategies. However, it is
noticeable that the computation time measurements were much higher than those
obtained in [8] and are extremely divergent especially for increasingly accurate
results for which the transpose method performs very poorly.

Figure 3.1: Jacobian Transpose, DLS and SVD-DLS Performance on a 10-DoF
Kinematic Chain [3]

3.2 Cyclic Coordinate Descent

Cyclic Coordinate Descent (CCD) denotes an iterative heuristic optimization tech-
nique that was firstly applied to the inverse kinematics problem in [88]. Since then,
it has gained much acknowledgment and became increasingly popular due to its
simplicity as well as computational efficiency and is not only frequently used in
robotics but also in the computer graphics and video game industry by animat-
ing highly articulated models [39, 58, 75, 48]. In contrast to Jacobian methods,
the joint variables are adjusted successively for each dimension and do not require
a matrix to be inverted. Instead, the optimization is done geometrically and is
numerically stable. While iterating from the end effector to the base, each joint
variable is repeatedly updated until the algorithm has converged to a suitable con-
figuration as depicted in Fig. 3.2. Within each iteration, the offset between the
vectors from the current joint to the end effector as well as to the Cartesian target
give rise to the gradient direction for the joint variable dimension and can heuris-
tically be weighted by an incremental strength in order to prevent oscillations.

30

3.2. Cyclic Coordinate Descent

Figure 3.2: Visual Example for the Cyclic Coordinate Descent Algorithm [59]

However, it is often criticised that this approach tends to produce unrealistic mo-
tion independently from incorporating joint constraints which is mainly caused by
overemphasizing joint variables that are geometrically closer to the end effector
[3, 39, 48]. Also, it shares the same problem of running into suboptimal extrema
and is specifically designed to operate on serial chains.

In [60], a performance study regarding the success rate of the algorithm on a
5-DoF kinematic chain was performed where more than 90% of randomly gener-
ated joint configurations could successfully be approximated. Further, experiments
to those in [75] have also been executed for the Cyclic Coordinate Descent method
for which Tbl. 3.3 extends the results shown in Tbl. 3.2. It was possible to achieve
better results in terms of computation time and slightly smaller errors in average
could be obtained when using constraints although the error spikes increased from
46cm to 54cm (unconstrained) and 31cm to 47cm (constrained) respectively.

Method Constraints Computation Time Elbow Error

CCD Unconstrained [0.16ms – 1.07ms] ∅0.41ms [1cm – 54cm] ∅32cm

CCD Constrained [0.16ms – 5.08ms] ∅1.40ms [4cm – 47cm] ∅18cm

Table 3.3: CCD Performance for Real-Time Motion Capture [75]

Further measurements in [3] on an unconstrained 10-DoF kinematic chain confirm
that the CCD algorithm is clearly able to outperform the Jacobian transpose, DLS
as well as SVD-DLS methods. Instead of requiring multiple seconds to achieve pre-
cise accuracy as shown in Fig. 3.1, computation times of 123ms with 4.69ms per
iteration were possible as indicated in Fig. 3.4 allowing to support interactive
frame rates.

31

Chapter 3. State of the Art

3.3 FABRIK

In contrast to Jacobian approaches 3.1 and CCD 3.2, FABRIK (Forward And
Backward Reaching Inverse Kinematics) [3] outlines a novel approach that solves
the inverse kinematics problem by iteratively applying geometric heuristics. It
has been successfully used in virtual character animation as well as analytical 3D
motion analysis and motion tracking and thus has proven to constitute a valuable
solution in computer graphics simulation [58, 2, 27, 4]. The joint positions are
obtained by locating points on lines while first iterating along the forward and
then along the backward direction of the kinematic chain. Each joint is adjusted
at one time as illustrated in Fig. 3.3. While the forward iteration tends to pull the
root away from its position, the backward iteration compensates this behaviour by
treating the root as the new end effector.

Figure 3.3: Visual Example for the FABRIK Algorithm [3]

Lastly, this allows to simulate elastic movements which therefore usually result in
more realistic animations than those obtained by Jacobian or CCD approaches. A
major benefit of this solution is given by its ability to handle multiple end effectors
simultaneously. However, since the problem is solved exclusively in position space,
problems have been observed when incorporating joint orientation constraints and
it was difficult to satisfy both position and orientation of the end effector [58]
although suggestions in order to improve stability were given in [3, 2]. Also, sev-
eral modifications must be done when using this algorithm with prismatic joints [3]
which have not been supported before in [2], which makes this solution less generic.

Experiments in [3, 2] have particularly shown that FABRIK is able to obtain
strikingly better results than CCD as well as all presented Jacobian methods. Fig.

32

3.3. FABRIK

3.4 extends the results depicted in Fig. 3.1 by which FABRIK seems to show no
efforts in handling increasingly desired accuracy and is able to converge within
fewer iterations than CCD. However, [58] mention that the computation time per
iteration becomes higher and especially when joint constraints are incorporated.

Figure 3.4: FABRIK and CCD Performance on a 10-DoF Kinematic Chain [3]

Fig. 3.5 demonstrates a low rate body tracking using FABRIK where the upper
images (a) show the true and the lower images (b) the estimated body postures
for which average errors of 5.9cm were reported.

Figure 3.5: FABRIK Performance in Body Tracking [3]

33

Chapter 3. State of the Art

3.4 Artificial Neural Networks

While analytical methods for inverse kinematics are computationally fast and ex-
act but not generally available and numerical methods imply the opposite, artifi-
cial neural network (ANN) approaches can be classified as somewhere in between.
Although there is comparatively few utilization in contrast to those methods pre-
sented in the previous sections, multi-layer pereceptron (MLP) architectures have
been used to learn rather than calculate the inverse kinematics function for var-
ious robots [16, 36, 28, 42]. Once this function is obtained, a fast and straight-
forward computation of the joint variable configuration can be performed. Given
a set of training data, a MLP can approximate the underlying function by learn-
ing the weights between the interconnected neurons of each layer using the back-
propagation algorithm. However, a major problem is given by designing a proper
training phase which can result in a very slow process especially for increasingly
complex geometry and dimensionality. The choice of training samples remains dif-
ficult and might not be good enough to obtain sufficiently low error rates. In more
detail, a low error rate during the training phase does not neccessarily give rise
to a good performance when arbitrary data is used. Accordingly, those methods
are typically considered unsuitable for robotic applications in which high precision
rates are desired. Nevertheless, several successful strategies were presented for
solving the problem of continuous trajectory planning.

In [36], a MLP was trained on the SCARA manipulator to learn the inverse kine-
matics function that maps from a Cartesian position to a 4-DoF joint configuration.
Although only a Cartesian position objective was considered, the resulting MSE
in joint configuration resolution remained at 10�3 in average.

Further, in [16] a neural network architecture consisting of multiple MLP sub-
networks was proposed to solve the inverse kinematics problem and was tested
to reach Cartesian positions for a planar 2-DoF revolute manipulator. However,
comparable results as in [36] were obtained.

Lastly, in [28] the trajectory planning problem was investigated on the PUMA
560 manipulator using an extreme learning machine (ELM) which was shown not
only to be impressively faster for training the network but also allowed to obtain
surprisingly small errors. It was learned to map from a Cartesian input position
and orientation to a 6-DoF joint configuration for which the final Cartesian error
for each track point along the trajectory was about 10�9 in average.

Although ANN solutions can directly be used both for prismatic as well as rev-
olute joints, the learning is mostly very limited to a comparatively low degree of
freedom and difficulties are already observed even when exclusively a target po-
sition without consideration of orientation is requested. In addition, the inverse
kinematics functions must be learned in advance which usually causes them to be
impracticable for interactive applications.

34

3.5. Genetic Algorithms

3.5 Genetic Algorithms

Over many decades, genetic algorithms (GA) have been researched for their ap-
plicability in robotics where first relevant work adressing the inverse kinematics
problem was presented in [63]. It was shown that target positions for redundant
robots can robustly be matched without requiring artificial joint constraints as
those are handled directly. Later, the utilization of niching methods has been in-
vestigated in order to find multiple solutions for desired end effector poses and it
was possible to obtain extremely small errors of approximately zero both for posi-
tion and orientation [76, 77]. Opportunities for computational efficiency were also
proposed in [1] since the whole evolutionary process offers to be highly parallelized.

Lately, the capabilities of genetic algorithms for inverse kinematics and also in
the application of continuous trajectory planning were extensively researched in
[84]. Since related approaches often encountered difficulties with comparatively low
convergency rates and long computation times, a memetic variant of genetic algo-
rithms was presented which was shown to be able to obtain higher accuracy within
less generations on serial robot manipulators and anthropomorphic robot hands.
Various experiments were performed including a planar as well as the PUMA 560
and the PA10-7C robot manipulators. The measurements were recorded under
full Cartesian pose targets within the reachable workspace space of the end effec-
tor. The results and are shown in Tbl. 3.4 in which GEN denotes the number of
evolved generations and EP and EO are the position and orientation errors and t is
the elapsed computation time. Also, experiments for the Shadow Dexterous Hand
C6M (20-DoF) were conducted for which comparable results could be obtained re-
garding its higher degree of freedom. Although the required computation time to
reach those highly accurate end effector poses was quite high, it was also possible
to achieve reasonable solutions within far shorter time frames. In addition, a pa-
rameter trade-off was mentioned for which faster convergency rates increased the
probability to get stuck in suboptimal extrema and lowered the success rate since
no suitable solution could then be obtained. Alltogether, memetic GA solutions
were found to be a highly flexible and generic solution to the inverse kinematics
problem of robot manipulators.

Model DoF GEN EP in mm EO in deg t in s

Planar 3 46.85 � 8.03 1.47e�3�6.33e�3 3.04e�4�8.28e�4 0.0425

PUMA 560 6 117.55�21.83 2.18e�2�4.22e�1 7.83e�2�9.50e�1 0.2992

PA10-7C 7 121.59�54.21 8.06e�2 � 1.33e0 5.32e�3�1.41e�1 0.5493

Table 3.4: Memetic GA Performance on Planar, PUMA 560 and PA10-7C Robot
Manipulators [84]

35

Chapter 3. State of the Art

3.6 Particle Swarm Optimization

Regarding all previously introduced methods in this chapter, particle swarm op-
timization (PSO) is a comparatively new optimization technique for which never-
theless a lot work has yet been proposed concerning inverse kinematics. Similar
benefits as for genetic algorithms were consistently reported due to their generic
and adaptive optimization strategy for which no special conditions are required.
In [24], PSO was applied to a 6-DoF robot manipulator under a Cartesian position
objective for which very small errors within few milliseconds could be obtained.
Further, in [74, 73] a swing leg motion generation for bipedal walking on a simple
robot was realized and it was statistically shown to be a valuable technique for
path planning and trajectory optimization under given target positions. A hybrid
method combining GA and PSO was presented in [90] and found to be more effi-
cient than the individual approaches. Another method that also successfully avoids
obstacles within the environment was proposed in [72] where success rates of 100%
could be achieved. Recently, the dimensional scalability of PSO for inverse kine-
matics of hyper-redundant manipulators – such as depicted in Fig. 3.6 – has been
investigated in [15]. The performance results are listed in 3.5 and demonstrate
the capabilities of PSO to achieve reasonably small error rates in average both
for position EP and orientation EO of the end effector even under greatly higher-
dimensional degree of freedom where I denotes the number of required iterations.
Although the required computation time t was relatively high, many traditional
methods might have failed to obtain any solution of such dimensionality at all.

Figure 3.6: Hyper-Redundant Manipulators [15]

DoF ∅I ∅EP in m ∅EO in deg ∅t in s

30 275.84 0.00046 0.00314 1.57

90 533.055 0.00036 0.00210 7.46

180 947.255 0.00032 0.00237 37.03

Table 3.5: PSO Performance on Hyper-Redundant Manipulators [15]

36

Chapter 4

Algorithmic Approach

”Many of the things that seem impossible now will become realities tomorrow.”
– Walt Disney

Constructing on the fundamental knowledge provided in chapter 2 as well as on
the insights into the current state of the art in chapter 3, this chapter presents the
Hybrid Genetic Swarm Algorithm that was developed during this thesis.

First, section 4.1 gives a problem statement that highlights the particular chal-
lenges that were observed within related work and which are relevant to define
specific requirements and performance measures that are to be fulfilled.

Section 4.2 continues with an overview and motivation of the complete algorith-
mic approach in order to ease the comprehensibility within the subsequent sections.

Section 4.3 then presents the essential aspects of this thesis. In this, the complete
algorithmic design is discussed in detail and introduces several improvements and
modifications to the traditional approaches which are collectively able to achieve
high accuracy, fast convergence speed and significant robustness for solving the
inverse kinematics problem efficiently.

Lastly, section 4.4 concludes with a short discussion on the algorithmic approach
which also summarizes the remaining parameters that are important for the sub-
sequent experimental analysis in chapter 5.

37

Chapter 4. Algorithmic Approach

4.1 Problem Statement

Previous researches and discussions pointed out that there is no single solution
to the inverse kinematic problem that performs impressively well under any per-
formance aspects. A common goal typically is to achieve a high pose accuracy
within a given short computation time. Although this can easily be obtained for
kinematic models of simple geometry and lower-dimensional degree of freedom
under which analytical solutions can be derived, this strategy is not generic and
shows high difficulties for increasing kinematic complexity. Accordingly, numeri-
cal approaches are mainly dominating the state of the art among which Jacobian
solutions as well as the Cyclic Coordinate Descent method offer great capabili-
ties. However, those have been observed to perform less convincing for highly
constrained geometry under which the occurrence of suboptimal extrema and sin-
gular configurations increases. As a consequence, several issues such as unrealistic
motion or comparatively low success rates and only few dimensional scalability for
higher degree of freedom have been reported. While FABRIK was able to over-
come some of these problems and could obtain solutions involving multiple end
effectors simultaneously, it is primarily designed for revolute joints and problems
were observed in matching the orientation of the desired end effector pose. Fur-
ther, artificial neural networks alltogether showed least performance in efficiently
obtaining solutions on arbitrary kinematic models. This can not only be observed
by several related attempts that already struggle in achieving high accuracy for
an exclusive position objective but also since there are no solutions available that
consider a higher-dimensional degree of freedom. In contrast to this, both genetic
algorithms as well as particle swarm optimization showed no difficulties with in-
creasing kinematic dimensionaity and different joint types for which constraints
can directly be incorporated. Also, similar computation times could be achieved
for comparable kinematic complexity. Nevertheless, a proper parameter selection
is required and the performance heavily depends on the specific algorithmic design.

In summary, there are five decisive criteria that can be defined to measure the
performance of an inverse kinematics approach.

• Success – A solution that is existent can also be found.

• Accuracy – The solution shall be as precise as required.

• Time – The solution shall be found as fast as possible.

• Displacement – The distance between consecutive solutions shall be as
minimal as possible.

• Flexibility – The algorithm maintains high robustness, scalability and fast
convergence for greatly varying kinematic and environmental requirements.

Since this thesis primarily focuses on interactive applications, a reasonably suffi-
cient accuracy in real-time must be obtained in order to support interactive frame
rates and also a high flexibility under arbitrary kinematic models is required.

38

4.2. Complete Overview

4.2 Complete Overview

The aim of this thesis is to solve to problem of inverse kinematics as universal
as possible. In this context, genetic algorithms constitute a very flexible as well
as highly customizable optimization strategy and thus offer great opportunities to
serve as the basis for the algorithmic approach. The concept of particle swarm
optimization is very similar and provides collective dynamics that can easily be
integrated into the evolutionary process. Such collective behaviour can be imag-
ined in form of adoption by offspring to their ancestors which is conducted over
lifetime and implicitly part of any natural evolution. The integration of both ap-
proaches results in a symbiotic and biologically plausible combination for which
recombination and mutation define the genetic material and adoption allows to
let individual behaviour emerge to guide the evolution. Further, a niching tech-
nique between offspring and parents is used in order to encourage exploration for
multiple local extrema simultaneously and what particularly improves robustness
for multi-objective optimization. An efficient heuristic exploitation is then per-
formed on the fittest individuals among the population with intent to increase
convergency and accuracy for potentially good solutions. Lastly, a heuristic wipe
of the whole population can occur if all niches are detected to be stuck in dead-end
paths. Intuitively, the developed algorithm combines the individual strengths of
genetic algorithms and particle swarm optimization and incorporates the benefits
of local search strategies. This allows to achieve a dynamic and adaptive balancing
of exploration and exploitation. The single stages of the algorithmic approach are
illustrated in Fig. 4.1 and will be discussed in detail within the following section.
All decisions on the algorithmic design are conducted with the intent to require as
few parameters as possible and to let the algorithm adaptively react to arbitrary
kinematic models.

Figure 4.1: Hybrid Genetic Swarm Algorithm

39

Chapter 4. Algorithmic Approach

4.3 Hybrid Genetic Swarm Algorithm

This section describes the algorithmic design of the Hybrid Genetic Swarm Algo-
rithm (HGSA). First, the genetic encoding scheme (4.3.1) of the individuals and
the fitness function (4.3.2) are introduced. Those are fundamental for the realiza-
tion of the succeeding general phases in genetic algorithms covering the selection of
parents (4.3.3) and survivors (4.3.8), recombination (4.3.4) and mutation (4.3.5).
These also involve the phase of adoption (4.3.6) that is inspired by particle swarm
optimization and the ingeration of a niching technique (4.3.7) as well as an ex-
ploitation method (4.3.9) to perform a local search. Lastly, the initialization phase
(4.3.10), termination condition (4.3.11) and wipe criterion (4.3.12) are described.
All successively introduced mathematical symbols and definitions are consistently
used during this chapter and are summarized in Tbl. 4.1.

θ Joint variable configuration
Φ Evolutionary solution
EtP,Ou Errors in position and orientation
Y Evolutionary target
Ψ Population of size ψ with Ψ1,...,ψ

K Elites of size κ with K1,...,κ

Γ Mating pool of size γ with Γ1,...,γ

P Parents of size 2 with Pt1,2u
Λ Offspring of size λ with Λ1,...,λ

X Phenotype
f Phenotype function
x Genotype
n Dimensionality of the Genotype
g Evolutionary gradient
ξ Extinction factor
π Fitness
Ω Fitness function

t�utPt1,2u,�,:u Property of a parent, fittest or worst individual
Ξ Clipping function
E Exploitation function
S SP : Parent selection operator

SS : Survivor selection operator
R Recombination operator

Rr: Rate
M Mutation operator

Mr: Rate Mα: Factor Mβ Strength
A Adoption operator
N Niching operator

Table 4.1: Mathematical Symbols

40

4.3. Hybrid Genetic Swarm Algorithm

4.3.1 Encoding

In the application of inverse kinematics, the encoding scheme for the individuals
can be chosen relatively straightforward. Let x define the genotype of an indi-
vidual, so each gene xi can be assigned a real-valued number that is related to a
corresponding joint variable at the i-th index within the kinematic chain consisting
of n degrees of freedom. Hence, every genotype (4.1) implicitly represents a certain
n-dimensional consecutive joint variable configuration θ as introduced in section
2.1.

x �
�
x1 | x2 | x3 | ... | xn�1 | xn

	
(4.1)

Obviously, this encoding scheme easily allows to incorporate constraints where
genes are clipped if they exceed their domain-specific limits. Those are denoted
as nimin and nimax respectively. More particularly, the use of constraints is even
advantageous since it allows to restrict the complexity of the underlying search
space. Also, algebraic vector calculations can be directly performed interpreting
each genotype as a n-dimensional vector in Euclidean space.

4.3.2 Fitness Function

Given a genotype x, its emerging phenotype X (4.2) relates to a Cartesian con-
figuration and can be obtained by the function f which computes the forward
kinematics identically to (2.7) as discussed in section 2.1.2.

X � fpxq (4.2)

The fitness π (4.3) of an individual with respect to the evolutionary target Y is
then calculated by the fitness function Ω that is a function of the phenotype X of
the individual which implicitly relates to a Cartesian configuration.

π � ΩpX q Ω :

$'&
'%
dtpX ,Yq Position

drpX ,Yq Orientation

wd̂tpX ,Yq � p1 � wqdrpX ,Yq Pose

(4.3)

The fitness function for the evolutionary optimimzation is designed to converge
for an end effector pose as well as exclusively for either position or orientation
by being minimized. In case of position, the fitness calculation is pretty much
straightforward by just computing the raw translational or rotational distances dt
(2.13) or dr (2.14) respectively. In case of an end effector pose, the translational
distance is rebalanced to d̂t (2.15). Further a simple but very neat trick is applied
which introduces a uniformly distributed randomized weight w between r0.0, 1.0s
to control the positional and rotational weights wp � w and wr � p1 � wq of the
initial pose distance function (2.16).

41

Chapter 4. Algorithmic Approach

At first glance, this strategy might give rise to doubts about its success. Solving
the inverse kinematics problem for an end effector pose can be considered as a
multi-objective optimization problem where first is the position and second the
orientation. In those, the occurrence of local extrema dramatically increases and
challenges remain in approximating the Pareto front what requires to design a
suitable objective function that reliably allows to escape from suboptimal extrema
in order to ensure a dynamic search space exploration. In the context of genetic
algorithms, this randomization is biologically plausible and directly supports Dar-
win’s statement to the fittest individuals, namely those that are “most responsive
to change”. Indeed, the fittest individual is the one who performs best regard-
less of the chosen weights and thus maintains a fitness value of zero computed by
Ω. Accordingly, a randomized weighting of partial objectives within each fitness
evaluation will cause individuals that previously performed well to be sorted out
if they do not succeed when facing different criteria. Combining both discussions,
randomized weights literally simulate a dynamically changing environment with
varying conditions to survive as it is present in natural evolution.

4.3.3 Parent Selection

The strategy to select the parents for new offspring is chosen to depend on their
rank where the intrinsic selection probabilities are calculated as denoted by (2.20).
Accordingly, the parent selection operator SP can be formulated as (4.4) where
the probabilities are normalized within the range r0.0, 1.0s and alltogether sum up
to 1.0. The first i accumulated ordered probability values that become greater or
equal to a uniformly distributed random value between r0.0, 1.0s can then deter-
mine the corresponding individual Γi within the mating pool Γ to be selected as
parent Pt1,2u for the subsequent recombination phase. Note that this mating pool
is initially equivalent to the population Ψ which is of particular importance for
sections 4.3.7 and 4.3.8 in which the niching and survivor selection is discussed.

SP : Pt1,2u Ð ppΓiq � γ � i� 1°γ
i�1 i

(4.4)

Assuming a roulette wheel selection, this performs well if the optimization problem
involves a convex search space what is typically not the case for inverse kinematics
on arbitrary geometry. More particularly, the occurence of multiple local extrema
is usually present. In consequence, the evolution would frequently run into a
premature convergence within suboptimal regions since the fittest individual might
almost exclusively be selected. A tournament selection would successfully overcome
this problem but constantly result in a slower convergency and might frequently
cause high joint displacements since it is less sensitive to local extrema. Also, a
proper choice of the tournament size parameter would be neccessary. In contrast,
a rank selection strategy serves all these issues in a good balance, scales well with
arbitrary population size and remains independent to the distribution of fitness
values.

42

4.3. Hybrid Genetic Swarm Algorithm

4.3.4 Recombination

The genetic recombination operator R is designed to produce a weighted arith-
metic mean of both parent genotypes xPt1,2u for each gene xi that is further af-
fected by their evolutionary gradients gPt1,2u and can be formulated as (4.5). In
this, wi denotes a uniformly distributed random weight within the range r0.0, 1.0s
that is evaluated independently for each dimension. Intuitively, first a dynamic
recombination of genotypes is obtained where each gene represents a randomized
interpolation between the genes of its parents. Subsequently, the evolutionary gra-
dients are added with each independently evaluated uniformly distributed random
values rPt1,2u

that are also within the range r0.0, 1.0s. Those partially simulate the
constant motion dynamics of particle swarm optimization. The major idea is to
let offspring dive a little deeper into the direction that caused improvement within
their parents, as will be discussed in more detail in sections 4.3.6 and 4.3.9. The
recombination is assigned a constant rate Rr of 1.0. Hence, within each evolution
the whole population must completely reproduce itself what has been particularly
chosen with respect to the mutation phase that is described in section 4.3.5.

R : xi � wix
P1
i � p1 � wiqxP2

i � rP1g
P1
i � rP2g

P2
i Rr � 1.0 (4.5)

This recombination operator is very similar to the uniform but additionally al-
lows to perform a simultaneous guided exploitation and separately introduces new
genetic material into the population. In this context, a constant equal weight
w � 0.5 would predominantly cause the genetic pool to rapidly converge to al-
most identical solutions which is likely to get stuck in suboptimal extrema and
especially in multi-objective optimization. In contrast, randomized weights obtain
many different subsolutions while continuously settling in potentially good regions.

4.3.5 Mutation

Mutation aims to steadily apply small changes to the genotype for which the cor-
responding mutation rate is typically chosen reasonably small. However, since the
number of dimensions can highly vary when applied to arbitrary kinematic models,
a constant value might result in either too frequent or infrequent changes. Accord-
ingly, the mutation rate Mr for the mutation operator M denoted by (4.6) is
primarily chosen inverse to the number of genes 1

n
. This can be interpreted as nor-

malization of probability and is further controlled by a weightMα. The mutation
of a gene is then simply performed by adding a small valueMβ that is weighted by
a uniformly distributed weight wi within r�1.0, 1.0s. Note that the genes are not
yet clipped to their specific domain limits since further modifications are applied
during the adoption phase in section 4.3.6. The parametersMα andMβ are both
designed to ensure an adaptive variation in mutating individuals where the former
represents an increase for the mutation rate and the latter a mutation strength.

M : xi Ð xi � wiMβ Mr �Mα
1

n
(4.6)

43

Chapter 4. Algorithmic Approach

In order to compute Mα and Mβ, an additional extinction factor ξ is calculated
for each individual Ψi at the end of an evolution cycle according to (4.7). In this,
the individuals again are assumed to be ordered by their fitness values where πmin
relates to the best and πmax to the worst individual. Hence, the extinction fac-
tor is a normalized value between r0.0, 1.0s where the best individual is assigned
ξ� � 0 and the worst ξ: � 1 and implicitly measures how well it has performed
with respect to all other individuals within the population.

ξΨi � πi � πminp i�1
ψ�1

� 1q
πmax

(4.7)

In more detail, this factor is designed in a way such that parents whose average
extinction ξP∅ (4.8) is high will cause an overall stronger mutation within their
offspring by transmitting less substantial genetic material and vice versa.

ξP∅ � ξP0 � ξP1

2
(4.8)

The mutation rate factorMα that adaptively controls the probability of mutation
for each gene is then obtained by (4.9) and lastly normalizes the mutation rateMr

between r 1
n
, 1.0s. Ultimately, this results in a dynamic exploitation and exploration

and passively encourages jumping out of local extrema in highly populated regions.

Mα � ξP∅pn� 1q � 1 (4.9)

The computation of the mutation strength Mβ is then performed very similar
as denoted by 4.10. In this, the average extinction defines the range within the
dimensional domain of the i-th gene ∆ni that can be reached by mutation. Ac-
cordingly, a higher extinction value allows an exploration over the whole search
space dimension while a lower value adaptively results in an exploitation.

Mβ � ξP∅∆ni ∆ni � nimax � nimin (4.10)

Note that for both operators it is possible that a single individual is picked twice
as parent. In case of the fittest whose extinction factor is ξ� � 0, this would result
in no mutation at all. This lastly resembles a recombination rate that is slightly
lower than 1.0 as indicated within the previous section 4.3.4.

This genetic mutation operator was empirically observed to perform well by nei-
ther over- nor underfitting when applied to arbitrary kinematic models. Further,
the extinction factor becomes arbitrarily small for a small group of individuals
that are close to local extrema while assigning larger values to other individuals
in order to maintain a mutation diversity. This greatly overcomes the problem of
assuming mutation parameters which might only fit well for a specific task.

44

4.3. Hybrid Genetic Swarm Algorithm

4.3.6 Adoption

The adoption phase is primarily inspired by the collective behaviour of individ-
uals who during their lifetime adopt the characteristics of their parents and aim
to imitate the properties of the most successful performing prototypes within the
population. This technique is very similarly used by particle swarm optimization
as discussed in section 3.6 but where instead of adopting to parents, a particle relies
on its own success. However, such behaviour is not exclusively present in collective
systems but also takes part in natural evolution of living organisms. In mathe-
matical terms, the adoption for each gene xi of an offspring can mainly be realized
by computing the averaged gradient to its parent genotypes xPt1,2u as well as the
gradient to the genotype of the fittest individual x� within the population. Both
gradients are further scaled by independently evaluated uniformly distributed ran-
dom values rP and r� between r0.0, 1.0s. Ultimately, a similar randomized weight
wi as for the recombination operator (4.5) is used independently for each dimen-
sion in order to maintain a dynamic balancing within adoption. The calculation
of the resulting adoption operator A is given by (4.11).

A : xi Ð xi � wirPpx
P1
i � xP2

i

2
� xiq � p1 � wiqr�px�i � xiq (4.11)

This strategy can be imagined to perform a search space exploration that dy-
namically moves from multiple random positions that are close to good solutions
towards a local extrema. Assuming a mutation that pushed the individual far
away from its parents into random directions, the adoption phase can pull it back
while also incorporating information of the fittest individual. This lastly allows to
realize some sort of a guided random rotation around the initial position and thus
is likely to improve convergence and also robustness.

Adoption is the last phase within a whole evolution cycle by which an offspring
can change its characteristics and after which it has completely evolved. In or-
der not to violate joint constraints of the inverse kinematics, all genes xi must be
clipped to their domain limits nimin and nimax by a function Ξ as denoted by (4.12).

xi Ð Ξpxiq Ξ :

$'&
'%
xi nimin ¤ xi ¤ nimax
nimax xi ¡ nimax
nimin xi nimin

(4.12)

Finally, the evolutionary gradient values gi are calculated what can semantically
be described by (4.13) which implies the remaining genetic change within each
clipped gene xi that has been caused during mutation and adoption. This change
will then be transmitted to the offspring of the next generation for which it gives
rise to a convergent direction to local extrema as indicated in section 4.3.4.

gi � ΞAMRpxiq �Rpxiq (4.13)

45

Chapter 4. Algorithmic Approach

4.3.7 Niching

The niching phase is immediately performed after a new offspring Λi was created
by its parents Pt1,2u. In this, a preselection strategy is applied that removes any
parent from the mating pool Γ who has worse fitness than its offspring. In conse-
quence, an individual who once had success in propagating its genes is not allowed
to reproduce again what passively prevents rapid accumulation of similar individ-
uals. The corresponding niching operator N can be formulated as (4.14).

N : Γ Ð

$'''&
'''%

Γ πΛi ¥ πP1 ^ πΛi ¥ πP2

ΓzP1 πΛi ¤ πP1 ^ πΛi ¥ πP2

ΓzP2 πΛi ¥ πP1 ^ πΛi ¤ πP2

ΓztP1,P2u πΛi ¤ πP1 ^ πΛi ¤ πP2

(4.14)

Clearly, this strategy might cause the mating pool to die out before all offspring
were produced. In this case, a new offspring is created with a genotype where each
gene is initialized by a uniformly distributed random value within the domain
limits of its search space dimension. The niching technique is very beneficial for
the robustness and the resulting convergency of the algorithm and also profits
by the adaptive mutation operator that was presented in section (4.3.5). Lastly,
it offers great opportunities for the exploitation phase which allows an efficient
parallel search within local extrema and will be discussed in section 4.3.9.

4.3.8 Survivor Selection

As soon as all offspring Λ have evolved, the survivor selection phase is very straight-
forward again by using the concepts of elitism and age-based selection that were
discussed in section 2.3.1. In this context, the number of offspring λ that are
produced within one evolution is chosen to be λ � ψ � κ where ψ is the size of
the population and κ is the number of elitist individuals. The elites are simply
the first κ individuals within the population Ψ which is ordered by fitness values.
Hence, the survivor selection operator SS (4.15) is given by the union of the sets
of all offspring Λ and all elites K which then become the new population Ψ1 where
ψ1 � λ� κ holds.

SS : Ψ1 Ð Λ YK K � Ψ1,...,κ (4.15)

The concept of elitism becomes particularly interesting when applied to a pose ob-
jective for which the fitness function (4.3) uses a randomized weight to control the
balance of position and orientation within the evolutionary target. As discussed
in section 4.3.2, this randomization forces individuals to prove their performance
under simulated continuously changing environments in order to ensure a dynamic
search space exploration. The same also holds for the surviving elite individuals
whose fitness values are recalculated with newly evaluated weights. As a direct

46

4.3. Hybrid Genetic Swarm Algorithm

consequence, these elites are also frequently replaced if they do not perform highly
adaptive to these changing conditions and can not maintain good fitness values.

Since the algorithm is designed for interactive inverse kinematics applications such
as real-time animation and video games, a precomputation until a suitable config-
uration is found is mostly not desired. Instead, the so far fittest evolved individual
should be applied to the kinematic model at the end of a frame. Accordingly, the
fittest solution that has been found within history under the current evolutionary
target must be remembered. In order to do so, it is neccessary to define a balanced
fitness function sΩ which behaves similar to Ω except for a pose objective where a
constant equal weighting of w � 0.5 is used as formulated by (4.16).

sπ � sΩpX q sΩ :

$'&
'%
dtpX ,Yq Position

drpX ,Yq Orientation
1
2
pd̂tpX ,Yq � drpX ,Yqq Balanced Pose

(4.16)

The obtained balanced fitness value sπ can then be used by (4.17) where Φ denotes
the fittest evolutionary solution and x� is the best individual of the current popu-
lation. The joint variable configuration θ is then assigned by Φ at the end of each
frame or if the termination condition that is described in section 4.3.11 is fulfilled.

Φ Ð
#

Φ sΩpfpx�qq ¥ sΩpfpΦqq
x� sΩpfpx�qq sΩpfpΦqq (4.17)

This aims to avoid fluctuations within the end effector when approaching, following
or holding its target and the evolution underneath can continue optimization if the
termination condition is not yet met.

4.3.9 Exploitation

Although it is discussed after all other evolutionary phases of the algorithm, the
exploitation phase is actually the first that takes place within one evolution cy-
cle. However, it implicitly depends on the generation that was evolved during a
previous iteration since it directly operates on the elite individuals. They idea
is to perform a more costly local search for the best individuals of the current
population with intent to significantly increase convergency and accuracy and to
guide the population. The exploitation phase is completely finished before any
new offspring are created.

More particularly, an exploitation is performed on the κ fittest individuals of the
population – namely all elites – by iteratively updating each gene at one time. At
each iteration, a fitness value πi is initially computed for the current genotype x
by using Ω (4.3). Then, two independently evaluated uniformly distributed ran-
dom values r� and r� between r0,�πis are added to the i-th gene xi of x where

47

Chapter 4. Algorithmic Approach

r� ¥ dimin�xi and r� ¤ dimax�xi in order not to violate joint constraints. Accord-
ingly, two genotypes x� and x� are repeatedly obtained that are slightly modified
into both domain directions at exactly one gene and equivalently give rise to π�

and π�. In this, the use of the fitness value as the maximum offset is reasonable
since it implicitly represents a heuristic information about the change that must
be applied to any joint variable in order to reach the target by the end effector.
Note that for all fitness value evaluations the dynamic fitness function (4.3) with
randomized weights for a pose objective is used. The update of an individual is
then performed by the exploitation function E as formulated by (4.18). Intuitively,
this strategy iteratively updates the genotype and evolutionary gradient of an indi-
vidual by following the direction into which a small random heuristic offset scored
a better fitness value.

E : xi, gi,πi Ð

$'&
'%
xi, gi,πi π� ¥ πi ^ π� ¥ πi

xi � r�, gi � r�,π� π� πi ^ π� ¤ π�

xi � r�, gi � r�,π� π� πi ^ π� ¤ π�
(4.18)

Lastly, the fitness value is averaged over the best results that were obtained for
each dimension as denoted by (4.19). Such strategies are commonly used in evo-
lutionary and collective systems since it allows to assign a more reliable stabilized
fitness value to an individual that was tested under various conditions.

π �
°n
i�1 πi

n
(4.19)

Obviously, in this context the elite individuals are assigned a more significant rele-
vance since they do not only control the stability but also a heuristic exploitation of
the best solutions. Together with the niching technique discussed in section 4.3.7,
this allows to perform in a dynamic parallel search for multiple local extrema.

4.3.10 Initialization

The initialization phase greatly influences the performance of the algorithm in
terms of displacement between consecutively found solutions. Mainly, the popu-
lation is initialized with individuals where all genes are computed independently
for each organism by uniformly distributed random values r1, ..., rn with respect to
the domain boundaries nimin and nimax of the corresponding search space dimen-
sions. However, an exclusively random initialization would permanently result in
completely new solutions whenever the algorithm is restarted. Such restarts can
occur if solutions are only required infrequently or if the algorithm is detected to be
completely stuck in dead-end paths what will be discussed in more detail in section
4.3.12. Accordingly, exactly one individual is defined by the joint variable config-
uration θ that is currently assigned to the kinematic model as formulated by (4.20).

xΨ1 �
�
θ1 | θ2 | θ3 | ... | θn

	
xΨ2,...,ψ �

�
r1 | r2 | r3 | ... | rn

	
(4.20)

48

4.3. Hybrid Genetic Swarm Algorithm

Hence, the algorithm uses a biased initialization in order to prevent high joint
variable fluctuations while niching and exploitation allows to discover new and
better solutions as well as to improve the current solution simultaneously.

4.3.11 Termination

The termination condition is defined separately by the desired Cartesian accuracy
in position and orientation of the end effector to its target. Let EY

tP,Ou denote
the maximum translational and rotational errors for termination and EtP,Ou the
current errors obtained from the solution Φ to the evolutionary target Y using dt
(2.13) and dr (2.14), so the termination condition can be formulated as (4.21).

EP � dtpfpΦq,Yq EO � drpfpΦq,Yq
EP ¤ EY

P Position

EO ¤ EY
O Orientation

EP ¤ EY
P ^ EO ¤ EY

O Pose

(4.21)

This arbitrary choice of accuracy is greatly beneficial for interactive applications
in which precise solutions are less important than fast computation times. In this
context, it ensures to stop the evolution from further unneccessary optimization
and to continue only when required.

4.3.12 Wipe

Although the algorithmic design allows a very robust and dynamic search space
exploration, situations can occur in which all elites and most other individuals
have settled within numerically good suboptimal extrema. In those, it is usually
neccessary to perform a large instantaneous mutation in order to discover new local
extrema and to escape from the current. However, the discovered genotype would
be required to immediately score a lower fitness value than any other within the
currently known suboptimal regions. As a consequence, the probability to directly
mutate into a better region becomes increasingly low and causes the population
to be stuck in exploiting dead-end paths. In order to avoid such situations and
thus to significantly increase robustness, the wipe criterion (4.22) at the end of one
evolution cycle heuristically determines whether a new initialization of the whole
population is required. The heuristic first checks whether the last evolved gener-
ation can score progress on the current solution Φ by comparing it to the fittest
individual x� with respect to the balanced fitness function sΩ (4.16). Second, if no
exploitation (4.18) for any gene of x� was successful, the population is wiped and
reinitialized according to (4.20). The initialization phase then takes care of false
positive wipes by integrating the current solution into the population.

sΩpfpΦqq sΩpfpx�q ^ Ei : sΩpfpEipx�qqq sΩpfpx�qq (4.22)

49

Chapter 4. Algorithmic Approach

4.4 Résumé

The algorithmic approach was developed to be applicable to arbitrary kinematic
models where the evolution adaptively reacts to the current optimization progress
and internal state of the population. More particularly, the intent in the designed
operators, modifications and extensions is to prevent overfitting and to remain ef-
ficient with respect to the performance measures that were defined in section 4.1.

While related approaches usually require many parameters, only the size of the
population ψ and the number of elites κ need to be specified. However, these
are quite straightforward since there should always hold the relation κ ! ψ. The
challenge remains in finding a good balance in the synergy of the raw evolutionary
optimization and the comparatively costly exploitation.

Further, both the rate and strength parameters of the mutation operator are not
controlled by any predefined values but instead are determined adaptively. In this,
the introduced extinction factor allows to remain sensitive to local extrema since
it can grow arbitrarily small. Simultaneously, it encourages genetic diversity by
performing a stronger and more frequent mutation in offspring of less successful
parents and thus prevents the emergence of highly overpopulated regions.

The objective function uses biologically plausible random weights and hence avoids
to be tuned individually for various kinematic models. In addition, it ensures a
dynamic search space exploration that improves convergency and also allows to
escape from suboptimal extrema since fitter individuals must repeatedly prove
successful under various conditions. Also, it remains scale-independent in case of
a pose objective due to a rebalanced translational distance function.

The dynamic exploitation of the fittest individuals further allows an efficient refine-
ment of potentially good solutions. This technique also profits from the integrated
niching strategy and positively affects the whole evolutionary optimization. In
more detail, the exploitation can search within multiple local extrema simulta-
neously and thus improves the convergency, robustness and flexibility in finding
inverse kinematics solutions.

The computation of evolutionary gradients heuristically aims to transmit genetic
improvements within parents to their offspring during recombination. The further
biologically plausible adoption phase then results in a continuous omnidirectional
exploitation around local extrema.

A great advantage in contrast to pure gradient search strategies lastly comes with
the wipe heuristic. While those in case of random restarts typically require to
start from scratch and result in completely new solutions, the presented algorithm
can keep track of the current and simultaneously discover new and better solutions.

50

4.4. Résumé

All together, the pseudocode of the complete algorithm is depicted in Fig. 4.2 and
gives a detailed description for implementation. In addition, a maximum amount
of time is specified that implicitly controls the number of generations that can be
performed within one frame. This is important in order to meet the requirements
for interactive applications where constant high frame rates must be maintained.

1 Parameters: ψ, κ;
2 Initialize population;
3 yy Evaluate fitness of all individuals;
4 yy Sort population by fitness;
5 yy Calculate extinction factors;
6 while termination condition not satisfied do
7 Exploit κ fittest individuals;
8 Assign whole population to the mating pool;
9 for ψ � κ do

10 if mating pool is not empty then
11 Select two individuals from mating pool as parents;
12 Create individual by Recombination, Mutation and

Adoption and perform Clipping;
13 Calculate evolutionary gradient;
14 Evaluate fitness;
15 Remove worse parents from mating pool;

16 else
17 Create random individual;
18 Evaluate fitness;

19 Add individual to offspring;

20 Select κ elites and all offspring to constitute the new population;
21 Sort population by fitness;
22 Calculate extinction factors;
23 Update evolutionary solution;
24 if wipe criterion fulfilled then
25 Reinitialize population;

26 if frame time limit exceeded then
27 Assign joint variable configuration;
28 Wait for next frame;

29 Assign joint variable configuration;

Figure 4.2: Pseudocode of the Hybrid Genetic Swarm Algorithm

51

Chapter 5

Experimental Analysis

”No amount of experimentation can ever prove me right; a single experiment can
prove me wrong.” – Albert Einstein

This chapter examines the capabilities of the Hybrid Genetic Swarm Algorithm
that was presented in detail in section 3.

Initially, section 5.1 describes the environmental setup for the experiments and
section 5.2 introduces the primarily used kinematic models.

The experimental analysis is then mainly subdivided into four parts where each
evaluates different aspects of the algorithmic solution.

First, section 5.3 performs a parameter study in order to demonstrate the effects
of the individual parameters as well as to determine a reasonable parameter choice
which obtains a good algorithm efficiency.

Second, a selective study with respect to the introduced algorithmic improvements
and modifications is conducted within section 5.4 and especially demonstrates the
improvement ratio over simple genetic algorithms.

Section 5.5 follows with a performance study to show the efficiency of the complete
algorithmic solution for various kinematic models regarding the introduced perfor-
mance criteria that involve success, accuracy, time, displacement and flexibility.

Lastly, section 5.6 performs a comparative study to other related methods that
were published very recently and aims to highlight resulting opportunities and
limitations of the algorithm.

53

Chapter 5. Experimental Analysis

5.1 Environmental Setup

The evaluation setup (Fig. 5.1) of the presented algorithm was implemented in
C# and Unity (Version 5.3.1f1 Personal) [81] using an ASUS G751JY-T7159H
notebook. The implementation runs on a single processor core with up to 3.4GHz.
A URDF (Unified Robot Description Format) parser was implemented in order
to import common robot models and to load their specific kinematic geometry.
Following the modular software design architecture of Unity, two script components
were implemented. The first models a kinematic joint and the second solves the
inverse kinematics problem on an arbitrary hierarchical kinematic chain.

Figure 5.1: Implementation Setup in Unity

The kinematic joint editor component is illustrated in Fig. 5.2 and allows to
specifiy the either translational or rotational movement where each motion axis
can independently be adjusted by lower and upper limits as well as a maximum
velocity and acceleration in order to achieve realistic motions. Note that zero
values for velocity and acceleration are interpreted to immediately teleport the
connected links at the desired joint values.

Figure 5.2: Kinematic Joint Editor Component

54

5.2. Kinematic Models

The inverse kinematic solver editor component shown in Fig. 5.3 is then added
to the end effector and automatically determines the hierarchical composition of
kinematic joints and builds a kinematic model to obtain the forward kinematics.
The target is given by a Transform of an arbitrary GameObject and is tracked
by the inverse kinematics algorithm. In order to ensure interactive frame rates, a
maximum frame time is specified to implicitly constrain the maximum number of
generations between two consecutive frames. Further, the Cartesian objective, the
maximum allowed errors for termination and also the algorithm parameters can be
set. Lastly, the implementation allows to ignore specific joints if some movements
shall be explicitely restricted or in case of multple end effectors where identical
joints are contained in several kinematic chains but shall only be used by a certain
end effector.

Figure 5.3: IK Solver Editor Component

5.2 Kinematic Models

For the experiments, several kinematic models with different geometry and with
varying degree of freedom from 6 up to 25 were used. Details are shown in Fig.
5.4 and Tbl. 5.1. The models were either loaded using the implemented URDF
importer for which the kinematic specifications were directly applied or were im-
ported and specified manually (Kyle & Dragon). The chosen models originate from
different areas of application such as industrial manufacturing as well as humanoid
and service robots and also video game characters. The kinematic chain for eval-
uation is illustrated by the consecutive set of joint axes where each independently
defines one axis of motion.

55

Chapter 5. Experimental Analysis

Figure 5.4: Kinematic Models

Model
Kyle

(Pelvis+Arm)
[47]

Dragon
(Pelvis+Neck)

[22]

PR2
(Arm)
[66]

UR5
[82]

NICU
(Arm)

[83]

LBR IIWA
14 R820

[68]

KR120
R2500 PRO

[67]

Baxter
(Arm)

[6]

DoF 10 25 7 6 6 7 6 7

Table 5.1: Degree of Freedom of Kinematic Models

56

5.3. Parameter Study

5.3 Parameter Study

As mentioned in chapter 4, the only parameters of the algorithm that are required
to control the evolutionary optimization are given by the population size and the
number of elite individuals. Usually, the population size in genetic algorithms is
chosen relatively high in contrast to the amount of elites within the population.
Recalling that the algorithm shall be able to run at high frame rates where each
evolutionary cycle requires comparatively few computation time, a small popula-
tion size is preferred. The challenge then becomes to achieve a fast and robust
convergence within a short time window.

In this context, a parameter study was conducted on the UR5 manipulator
where Fig. 5.5 and Fig. 5.6 demonstrate the influence of both parameters with
respect to the averaged gain in fitness improvement and computation time increase
over a fixed amount of 100 generations. Obviously, treating all individuals as elites
– and thus performing local searches on the whole population as described in section
4.3.9 – will yield fitter individuals within same generations. However, using a few
more elites also causes a much higher gain in computation time than for increasing
the population size. This is due to the exploitation requiring many more fitness
evaluations than a newly created offspring where only one calculation is needed. In

Figure 5.5: Fitness Gain of Parameters

order to achieve an efficient optimization, a reasonable balancing of the population
size and the number of elites is required. Accordingly, Fig. 5.7 demonstrates the
normalized parameter efficiency that is obatined by incorporating information of
the combined optimum of both derivatives in fitness and computation time gain.
The analysis suggests to choose the population size two to three times as high as the

57

Chapter 5. Experimental Analysis

Figure 5.6: Computation Time Gain of Parameters

number of elites. This could be confirmed by empirical results which further also
showed similar performance for same parameter selections under various kinematic
models. Hence, the parameter selection that is used during the next sections is
chosen to be ψ � 12 and κ � 4. Although the population size could also have been
chosen appropriately smaller, a larger amount of individuals has shown to provide
a higher robustness as well as smaller standard deviation in convergency.

Figure 5.7: Parameter Efficiency

58

5.4. Selective Study

5.4 Selective Study

This section aims to specifically demonstrate the improvements that could be ob-
tained by the introduced algorithmic extensions and modifications. The exper-
iments are conducted using the kinematic model of the UR5 robot arm. First,
section 5.4.1 shows the overall improvement in convergency of the complete Hy-
brid Genetic Swarm Algorithm compared to simple genetic algorithms. Section
5.4.2 then confirms the intended effects of the designed extinction factor in main-
taining genetic diversity as well as sensitivity to local extrema. The following
sections 5.4.3 - 5.4.6 then individually show the loss in efficiency that would occur
if either multi-objective weight randomization, adoption, exploitation or the wipe
criterion were removed from the complete algorithm. All experiments except those
in section 5.4.2 are conducted within a limited time frame of 1

30
s over 10.000 ran-

domly generated reachable poses derived from valid joint variable configurations.
In those, the obtained curves show the mean as well as standard deviation values
of the currently evolved solution over all samples at each discrete time step. The
optimization is always started from the default posture of the kinematic model.

5.4.1 HGSA versus SGA

The most representative criteria to measure the efficiency of the algorithm can
be defined by a continual convergency to an optimal solution. Accordingly, Fig.
5.8 shows the fitness convergency of HGSA over SGA where the results indicate
that HGSA is able to significantly outperform SGA both in terms of mean and
standard deviation measurements. More particularly, SGA struggles in scoring

Figure 5.8: Fitness Convergency of HGSA over SGA

59

Chapter 5. Experimental Analysis

further progress by reaching the specified time limit although a rapid initial im-
provement of the solution as for HGSA could be achieved. The fitness convergency
is explicitely measured relative to the elapsed time than to the number of evolved
generations since the computation time for one evolutionary cycle obviously de-
pends on the algorithmic design. In more detail, one generation for SGA is much
cheaper than for HGSA since fewer fitness evaluations and heuristic calculations
are required where relying on the amount of generations would not give qualitative
results for measuring the algorithmic efficiency. Further, Fig. 5.9 illustrates the
improvement ratio of HGSA over SGA that can be derived from Fig. 5.8 and which
can be observed to maintain a steadily growing increase in efficiency.

Figure 5.9: Improvement Ratio of HGSA over SGA

5.4.2 Extinction Factor

As described in section 4.3.5, the extinction factor was designed to let the pop-
ulation itself determine the required amount of exploitation and exploration in
mutation since fixed values for mutation rate and strength would not be suitable
for arbitrary kinematic models of varying geometric complexity. The evolution of
the extinction factors over 100 generations within a population of 12 individuals
is visualized by Fig. 5.10. Considering the fitness convergency over generations,
it can be observed that the individual extinction factors dynamically adapt to the
current evolutionary progress. More particularly, the extinction factor of the best
individual within the population constantly remains zero and – if chosen as parent
– will try to maintain the characteristics within its offspring. In contrast to this,
the worst individual will tend towards a complete mutation of the whole genotype

60

5.4. Selective Study

within its offspring. All individuals in between adaptively react by maintaining
explorative diversity and ensuring sensitivity to local extrema. With effect of the
parent selection operator as described in section 4.3.3, the outcome is a reasonable
and dynamic mutation rate with respect to the degree of freedom as well as a
suitable mutation strength that can grow arbitrarily small in order to scale with
the desired solution accuracy.

Figure 5.10: Evolution of Extinction Factors over 100 Generations

5.4.3 Multi-Objective Weight Randomization

The idea of using randomized weights for the multi-objective optimization prob-
lem to satisfy a pose objective of individually weighted position and orientation
distances was introduced in section 4.3.2 and was inspired by Darwin’s statement
on the fittest individuals which are “most responsive to change”. Obviously, using
randomized instead of specifically tuned weights is from an algorithmic perspective
much simpler and at the same time induces a significant increase in convergency
and especially robustness as depicted in Fig. 5.11. While equal weights seem
to get stuck in suboptimal extrema by suddenly slowing down convergency and
stop scoring any further progress, randomized weights show a slightly less greedy
behaviour by initial improvements but are able to maintain a continual fitness con-
vergency after very few milliseconds. From a computational perspective, this is a
very strong result since randomized weights require no considerable additional cost
but create a highly dynamic and beneficial search space exploration for a math-
ematically complex problem. Fig 5.12 shows the related improvement ratio that
can be obtained by using multi-objective weight randomization.

61

Chapter 5. Experimental Analysis

Figure 5.11: Effect of Multi-Objective Weight Randomization in Fitness Conver-
gency

Figure 5.12: Improvement Ratio by Multi-Objective Weight Randomization

62

5.4. Selective Study

5.4.4 Adoption

The adoption phase was described in section 4.3.6 and imitates the collective be-
haviour of organisms as observed in natural phenomena and aims to let offspring
adopt the characteristics of their parents and the most successfully performing in-
dividual among the current population. More particularly, the motivation was to
create constant system dynamics similarly to swarm intelligence and to increase
convergency as well as to encourage exploitation around local extrema. In this
sense, Fig. 5.13 confirms the intended effects in efficiency where adoption accom-
plishes a continuously faster fitness convergency within same time frames as if no
adoption was applied. The resulting improvement ratio for the algorithmic ap-

Figure 5.13: Effect of Adoption in Fitness Convergency

proach is depicted in Fig. 5.14 and shows a slightly sublinear increase with respect
to the elapsed time. Considering the factorial efficiency gain of this improvement
under the presence of all other introduced and involved algorithmic extensions,
the adoption phase can contribute to a highly beneficial speedup during the whole
evolutionary optimization. This is particularly interesting from an algorithmic per-
spective in terms of biologically-inspired optimization strategies where the results
suggest that a combination of genetic algorithms and particle swarm optimization
can robustly achieve an increase in computational efficiency by a set of simple
heuristics. The combination of these two optimization strategies is a very modular
and generic hybridization which reinforces the hypothesis that biologically plau-
sible concepts are able to realize more efficient and sophisticated computational
methods.

63

Chapter 5. Experimental Analysis

Figure 5.14: Improvement Ratio by Adoption

5.4.5 Exploitation

The exploitation technique was introduced in section 4.3.9 and aims to explicitely
search for improvements within the genetic material of elite individuals. The in-
tent of this extension was to achieve a significant increase in convergency especially
for already precise solutions and to implicitly guide the search space exploration
of the whole population. Accordingly, Fig. 5.15 shows the noteable improvement
in fitness convergency when performing an exploitation on the fittest individuals
among the population. The observable progress by the mean and standard devia-
tion values behaves very similar as for the effects of adoption and contributes to a
continual improvement during the whole evolutionary optimization. However, the
gain of the algorithmic improvement ratio rises much faster and shows an approxi-
mately linear increase with respect to the elapsed time in optimization as depicted
in Fig. 5.16. Obviously, the exploitation phase together with the multi-objective
weight randomization contribute the largest impact in fitness convergency within
the specified time frame, but jointly accomplish an even more significant and steady
speedup over simple genetic algorithms in correlation with the adoption phase. In
more detail, the exploitation technique and adoption phase are especially relevant
for a rapid initial improvement of the solution what can be observed by examining
the effects within the first five milliseconds in Fig. 5.12, Fig. 5.14 and Fig. 5.16.
Equivalently with respect to very precise solutions at further runtimes, a huge
improvement is scored by the interaction of multi-objective weight randomization
and the exploitation of elites.

64

5.4. Selective Study

Figure 5.15: Effect of Exploitation in Fitness Convergency

Figure 5.16: Improvement Ratio by Exploitation

65

Chapter 5. Experimental Analysis

5.4.6 Wipe Criterion

The wipe criterion in section 4.3.12 was especially designed for kinematic models
with a high amount of local extrema within search space and where situations
might occur in which the whole population has entirely settled within suboptimal
extrema configurations. In those, a simple restart of the algorithm might be more
efficient than to continue evolution until the population can successfully escape
from dead-end paths. However, the challenge remains in a reliable detection of
such situations and thus not to unneccesarily slow down the whole optimization
progress. As depicted in Fig. 5.17, the algorithm can successfully avoid getting
stuck in suboptimal extrema what can be observed if no wipe of the population is
allowed. At the same time, the fitness convergency does not seem to be slowed down
during the initial improvement of the solution within the first few milliseconds.
This clearly indicates the reliable detection of an exclusive suboptimal extrema
exploitation and what can be confirmed by Fig. 5.18 which visualizes the related
improvement ratio that is achieved by the wipe criterion. In this, the wipe criterion

Figure 5.17: Effect of the Wipe Criterion in Fitness Convergency

immediately scores significant improvement after five milliseconds which coincides
with the timestamp where the algorithm starts slowing down in fitness convergency
if no wipe is allowed. Overall, a huge increase within the improvement ratio can
be observed what is particularly caused by a higher probability of falling into
the global search space optimum by partially reinitializing the optimization where
further progress in accuracy can be scored.

66

5.5. Performance Study

Figure 5.18: Improvement Ratio by the Wipe Criterion

5.5 Performance Study

This section examines the overall efficiency that can be achieved by the Hybrid
Genetic Swarm Algorithm regarding the previously introduced performance cri-
teria in section 4.1. First, section 5.5.1 demonstrates the success rate in finding
suitable inverse kinematics solutions. Sections 5.5.2 and 5.5.3 then study the re-
lated tradeoff in the desired accuracy of position and orientation with respect to
the required computation time. The attainable displacement between consecutive
solutions is then examined in section 5.5.4. Lastly, section 5.5.5 shows the algo-
rithmic performance in flexibility regarding a greatly increasing degree of freedom
as well as varying joint types. All experiments in this section are conducted on
reachable target configurations of either 10.000 randomly generated samples (if no
further specified) or continuous trajectories. The search queries on independent
targets are started from the default posture of the kinematic models while tracking
experiments continued approximation from the previously evolved solution.

5.5.1 Success

The success rate in finding a theoretically existent solution is one of the most im-
portant properties in optimization algorithms. Obviously, the measured success
implicitly depends on the desired solution accuracy for which the maximum errors
in position and orientation were chosen reasonably small with 0.001m and 0.01rad.
More particularly, a reasonably high accuracy typically indicates to have found the
global optimum where further progress only depends on the available computation

67

Chapter 5. Experimental Analysis

time. Fig. 5.19 visualizes the satisfied target poses over 1000 random samples for
three different kinematic models of highly varying kinematic geometry and com-
plexity. In this, all solutions could successfully be evolved. Equivalent results can
be observed by Fig. 5.20 for 8000 uniformly distributed samples under a position
objective.

Figure 5.19: Successfully satisfied Target Poses over 1000 Random Samples

Figure 5.20: Successfully satisfied Target Positions over 8000 Uniform Samples

68

5.5. Performance Study

In order to demonstrate the success rate of the proposed algorithm, similar ex-
periments on 10.000 randomly generated target poses were conducted for various
kinematic models. The results are depicted in Fig. 5.21 and show that a success
rate of 100% could be obtained for each kinematic model by a certain number of
generations. From an algorithmic perspective, this experimental result particu-
larly shows the performance capabilities in search space exploration and conver-
gency regardless of the underlying computational power. It can be observed that
the average number of generations until any solution is found is typically located
somewhere around 102 depending on the complexity of the kinematic model.

Figure 5.21: Success Rate under a Pose Objective over 10.000 Random Samples

In this context, further experiments regarding the related mean and standard devi-
ation values in the expected number of generations to evolve a solution under a pose
objective were performed. The results for the specific kinematic models are shown
in Fig. 5.22. Interestingly, although the models Kyle and Dragon have a compar-
atively high degree of freedom, the results in the required amount of generations
both in mean and standard deviation are surprisingly low. In further observations,
although the degree of freedom among the remaining models is almost identical,
the variation in generations shows significant differences. Implicitly, this allows to
make assumptions about the complexity of the kinematic model and its underly-
ing search space and thus the amount of suboptimal extrema configurations and
singularities that must be surmounted by the evolutionary optimization.

69

Chapter 5. Experimental Analysis

Figure 5.22: Number of Generations to evolve a Solution under a Pose Objective

5.5.2 Accuracy

The attainable accuracy of the algorithm was evaluated both for random target
poses as well as by following a continual trajectory of consecutive and directly
neighbouring Cartesian configurations. The former experiment was conducted on
multiple kinematic models for which the results are shown in Fig. 5.23 where
a maximum time frame of 1

30
s was specified. It can be observed that the mean

Figure 5.23: Accuracy in Position and Orientation after 1
30

s

70

5.5. Performance Study

error in position can be optimized to very few millimeters while the mean error
in orientation shows a slighty higher variation but can reliably achieve errors far
below one degree. Obviously, the position error also implicitly depends on the size
of the model and the length of its controlled kinematic chain. Again, the best
performance in accuracy could be obtained by the Kyle model despite of its com-
paratively high degree of freedom. However, it is also of particular interest how
efficient the algorithm performs in tracking a Cartesian target after a reasonably
accurate solution has been found. In this context, Fig. 5.24 demonstrates the pose
tracking accuracy while ensuring a constant frame rate of 60Hz. The experiment

Figure 5.24: Accuracy in Pose Tracking at 60Hz Frame Rate

71

Chapter 5. Experimental Analysis

was conducted using the UR5 robot model where the upper image visualizes the
remaining Cartesian error of the end effector with respect to the Cartesian target
displacement shown in the lower image. Note that the Cartesian error is calculated
as the sum of errors in position and orientation. The noise in the target displace-
ment origins from spikes within the delta time between two consecutive frames
which is particularly used in order to create a visually smooth target movement.
The results show that it is possible maintain Cartesian errors of 10�6 to 10�7 for
the end effector in average while following a trajectory at interactive frame rates.

5.5.3 Time

A similar study as for the performance in accuracy was also conducted regarding
the required computation time. Accordingly, Fig. 5.25 depicts the computation
that was neccessary in order to achieve an accuracy of 0.001m and 0.01rad under
a pose, position or orientation objective respectively. Clearly, satisfying a pose
objective is from a mathematical perspective much more complex than solving an
exclusive position or orientation objective and hence requires a higher computa-
tional effort. However, the requested solutions for the desired accuracy could still
be found within a few milliseconds. Regarding the required amount of generations
as previously shown in Fig. 5.22, the computation time strongly correlates to the
inherent degree of freedom of the kinematic model. This can particularly be ob-
served by the Dragon model for which only very few generations were needed to
converge. Still, those result in a relatively high computation time due to the cal-
culation of the forward kinematics. Further, Fig. 5.26 demonstrates the required
computation time during pose tracking at the specified accuracy using the UR5
robot model. In this, the maximum frame rate was unlimited and the results in

Figure 5.25: Computation Time for Objectives at predefined Accuracy

72

5.5. Performance Study

the upper image show that the algorithm is capable of accurately tracking the
given Cartesian target displacement that is depicted within the lower image at an
average frame rate of 1000-2000Hz. This is very beneficial since it shows that the
algorithm allows to solve multiple inverse kinematics queries simultaneously while
still ensuring interactive frame rates. Lastly, Fig. 5.27 illustrates the correlation

Figure 5.26: Computation Time for Pose Tracking at predefined Accuracy

between the required computation time given a desired pose accuracy regarding
different kinematic models. The results suggest an exponential increase in compu-
tation time with respect to a logarithmic scale in accuracy. Hence, the performance
efficiency between accuracy and time seems to scale linearly with each other.

73

Chapter 5. Experimental Analysis

Figure 5.27: Increase in Computation Time with respect to the desired Accuracy

5.5.4 Displacement

An important performance criteria that is especially required for efficient path
generation but also to simulate realistic motions in character animation is given
by the displacement in joint space relative to Cartesian space. The conducted
experiments are conducted on continual trajectories where the end effector is im-
mediately teleported by the joint variable configuration. First, Fig. 5.28 visualizes

Figure 5.28: Displacement Visualization by following a Cartesian Trajectory

74

5.5. Performance Study

the generated trajectory of the end effector while interactively following a manu-
ally displaced target. In this, a very smooth movement can be observed both for
a position (left and middle image) as well as for a pose (right image) objective. In
more detail, Fig. 5.29 shows the joint displacement measured by the sum of the
individual joint value changes along the whole kinematic chain in the upper image
relative to a Cartesian target displacement within the lower image. The results
reveal a very responsive and shape-resembling joint value change that is even able
to accurately react to the noise that is caused by occasional frame spikes which
affects the continual target displacement.

Figure 5.29: Joint Displacement in Pose Tracking at 60Hz Frame Rate

75

Chapter 5. Experimental Analysis

5.5.5 Flexibility

Although the flexibility of the algorithm has already been demonstrated within
the previous experiments, this section specifically aims to show the scalability for
greatly higher-dimensional degree of freedom, the applicability of different joint
types and the robustness if the target can not be reached by any joint variable
configuration. Considering the dimensional scalability, Fig. 5.30 depicts three
hyper-redundant models with 30, 90 and 180 degrees of freedom that were created
by consecutively connected spherical joints. Further, Fig. 5.31 shows the related

Figure 5.30: Hyper-Redundant Kinematic Models

performance in computation time regarding a rising degree of freedom with respect
to a pose objective with 0.001m and 0.01rad accuracy. It can be observed that all
solutions were successfully evolved within less than 1s what is especially surprising
considering an extremely high degree of freedom. More particularly, many algorith-
mic approaches which rely on solving the inverse kinematics problem mathemati-
cally by deriving an error gradient would usually not be able to obtain a suitable or
any solution at all. In terms of the Hybrid Genetic Swarm Algoritm, the increase
in computation time seems to mainly depend on the accumulating calculation of
the forward kinematics. Regarding the flexibility on different joint types, the corre-
sponding results under equivalent objective specifications are depicted in Fig. 5.32.
The results primarily show that the algorithm can efficiently handle a combina-

76

5.5. Performance Study

Figure 5.31: Flexibility with rising Degree of Freedom

tion of different joint types where prismatic joints particularly contribute to lower
computation times. This can be reasoned regarding that translational movement
does not affect the orientation of the end effector and thus implicitly decreases
the geometric complexity while rotational movement affects both the position and
orientation. Both experiments together clearly demonstrate the universal appli-
cability of the designed algorithm on arbitrary kinematic models. Ultimately, the

Figure 5.32: Flexibility with different Joint Types

77

Chapter 5. Experimental Analysis

experiment on the depicted models in Fig. 5.33 specifically demonstrates the ro-
bustness of the algorithm in case of an unreachable Cartesian target configuration.
This particularly shows the advantage in numerical over analytical approaches for
inverse kinematics where the latter would not be able to obtain any solution to
the given problem.

Figure 5.33: Flexibility with unreachable Targets

78

5.6. Comparative Study

5.6 Comparative Study

Inverse kinematics is a problem for which many algorithms have been developed
that are all tuned for the specific requirements of their applications. Accordingly,
it remains difficult to conduct a qualitative comparison that jointly involves all
performance aspects. This section mainly aims to provide an approximate classi-
fication of the Hybrid Genetic Swarm Algorithm among related approaches.

In this context, Tbl. 5.2 gives a comparison to the widely used Orocos KDL
[40] as well as the novel TRAC-IK [7, 8] algorithms which are explicitely designed
for robotics and shows the average success rate and computation time on different
robot models. While both Orocos KDL and TRAC-IK achieve remarkably low
computation times despite of significant differences within their success rates, the
HGSA can convince by a constant success rate of 100%. However, the required
computation time is considerably higher but still sufficient for many applications.

Manipulator DoF Orocos KDL TRAC-IK HGSA

Baxter Arm 7 61.07% (2.21ms) 99.17% (0.60ms) 100% (22.75ms)

KUKA LBR
iiwa 14 R820

7 37.71% (3.37ms) 99.63% (0.56ms) 100% (23.39ms)

PR2 Arm 7 83.14% (1.37ms) 99.84% (0.59ms) 100% (27.88ms)

UR5 6 35.88% (3.30ms) 99.55% (0.42ms) 100% (53.33ms)

Table 5.2: Comparison between Orocos KDL, TRAC-IK and HGSA

A further comparison in terms of scalability between PASO [15] and HGSA
is listed in Tbl. 5.3 and shows the algorithmic efficiency in computation time
on hyper-redundant models. In this, HGSA is clearly able to outperform PASO
by one or two orders of magnitude under similar kinematic geometry and accuracy.

DoF PASO HGSA

30 1.57s 0.066s

90 7.46s 0.233s

180 37.03s 0.717s

Table 5.3: Comparison between PASO and HGSA

79

Chapter 5. Experimental Analysis

Ultimately, Tbl. 5.4 proposes a general overview on the algorithmic efficiency
and performance including the numerical approaches for inverse kinematics that
were discussed in chapter 3. The values are chosen regarding a full Cartesian
pose objective. While the Jacobian and CCD methods were able to achieve the
best rates in accuracy and computation time since they always follow the gradient
of the steepest functional descent, they typically lack in terms of robustness and
scalability and thus work best on certain kinematic geometry. Similar observa-
tions in efficiency could be made for the FABRIK approach which uses heuristic
geometric computations that do not directly operate in joint space but what is of
particular importance for many applications in robotics. Although the algorithm
showed good performance in terms of scalability by handling multiple end effectors
simultaneously, problems were reported in robustness considering joint constraints
as well as different types. In contrast to those, GA and PSO usually resulted in
a lower accuracy and required much more computation time that is reasoned by
the nature of probabilistic optimization. However, they revealed great capabilities
both in robustness and scalability and thus provide a higher flexibility to greatly
varying kinematic geometry. ANN approaches that tackle the problem by learning
the inverse kinematics function showed highest difficulties in all aspects. Lastly,
experiments on the developed HGSA were able to maintain the advantages of GA
and PSO in robustness and scalability and showed same accuracy rates but further
obtained comparable results in terms of computation time as the Jacobian, CCD
and FABRIK methods. This implies that a heuristic hybridization of GA and PSO
can achieve a significantly higher efficiency than the single approaches and remains
as a generic and universal solution for solving the inverse kinematics problem.

Jacobian CCD FABRIK GA PSO ANN HGSA

Accuracy
(m | rad)

0.00001 0.00001 0.0001 0.001 0.001 0.01 0.001

Time (ms) 1�10 1 � 100 10 � 50 50� 500 30� 600 - 10 � 60

Robustness Medium Medium Low High Medium Low High

Scalability – – – + + ++ – – ++

Table 5.4: Algorithmic Comparison on the reported Efficiency and Performance

80

Chapter 6

Conclusion

”I am among those who think that science has great beauty. A scientist in his labo-
ratory is not only a technician: he is also a child placed before natural phenomena
which impress him like a fairy tale.” – Marie Curie

This final chapter concludes the work and summarizes results that were attained
by this thesis.

First, section 6.1 provides a summary on the content within the previous chapters
where particular focus is laid on the algorithmic approach presented in chapter 4
as well as the experimental analysis in chapter 5.

Section 6.2 then gives a list of contributions which evolve from the implementation
of the biologically-inspired Hybrid Genetic Swarm Algorithm and its algorithmic
improvements and modifications.

Ultimately, section 6.3 finishes this thesis with several suggestions on future work
both from a computational as well as scientific perspective.

81

Chapter 6. Conclusion

6.1 Summary

This thesis presented the developed Hybrid Genetic Swarm Algorithm that solves
the inverse kinematics problem by means of biologically-inspired optimization tech-
niques and proposes a universal solution that can be applied on arbitrary joint
chains.

The work within this thesis was primarily motivated by two different objec-
tives. First, a generic inverse kinematics solution should be designed that achieves
reasonably high accuracy while providing real-time capability in order to ensure
interactive frame rates. Second, the intent was in creating novel algorithmic and
biologically plausible concepts which achieve a higher adaptivity in exploitation
and exploration and are applicable to various problems that can be solved by op-
timization strategies.

Initially, a broad overview on the fundamental knowledge covering the fields of
robotics and kinematics was given in chapter 2. This further involved a discussion
on the algorithmic methodology regarding analytical and numerical approaches
followed by an insight into the area of biologically-inspired artificial intelligence.

Chapter 3 then highlighted the current state of the art with focus on the nu-
merical solutions. Those involved the traditional Jacobian and Cyclic Coordi-
nate Descent methods which iteratively follow the gradient and have shown to be
comparatively fast and accurate but lastly suffered from suboptimal extrema and
showed only few scalability. The geometric FABRIK approach was specifically
designed for character animation and motion tracking and could obtain realistic
motion while handling multiple end effectors but provides no direct information
about the joint variable configuration since it operates in Cartesian space. The
results of artificial neural networks by learning the inverse kinematics function
showed least performance where difficulties could be observed in satisfying pose
objectives or a higher degree of freedom. Lastly, a critical comparison to genetic
algorithms and particle swarm optimization revealed that those typically require
a consiberably higher computational cost but offer great opportunities in terms of
robustness and dimensional scalability.

The algorithmic approach was then presented in detail within chapter 4. Con-
structing on the given problem statement and the initial overview on the complete
algorithm, the single evolutionary phases and operators were described involving
explicit mathematical formalizations. The chosen genetic encoding scheme allows
independency to the joint types and to directly incorporate constraints. The design
of the fitness function was inspired by natural evolution using randomized weights
for multi-objective optimization to model a dynamically changing environment.
During recombination of parent chromosomes that are selected according to their
rank, the idea was to let offspring dive a little deeper into the direction that
heuristically caused improvement within their parents which was denoted as the

82

6.1. Summary

evolutionary gradient. The mutation operator was designed to let the population
itself determines the required amount of exploitation and exploration in mutation
rate and strength by a calculated extinction factor that adaptively reacts to the
problem dimensionality and both maintains diversity as well as sensitivity to lo-
cal extrema. Inspired by the collective swarm dynamics as observed in natural
phenomena, the adoption phase aims to let offspring adopt the characteristics of
parents and the most successfully performing individual within the population.
This concept further allows a dynamic search space exploration and supports the
inherent behaviour of organisms that is conducted over lifetime. The niching was
then described by immediately removing any parent from the mating pool whose
offspring scores a higher fitness value what encourages the population to keep
track of multiple local extrema simultaneously and avoid premature convergency.
The selection of survivors was chosen to merge all offspring with the elites of the
previous generation in order not to lose the current evolutionary progress. More
particularly, an additional heuristic exploitation was designed and applied to the
elites with intent to significantly increase convergeny. Lastly, a wipe of the whole
population was allowed if the population was detected to be entirely stuck where
passing the current solution into the reinitialized population allowed to directly
continue scoring progress in optimization.

Consequently, an extensive experimental analysis on the algorithm was con-
ducted in chapter 5 regarding its parameters, the individual improvements and
modifications, the overall performance as well as a comparison to related ap-
proaches. For the required parameters that are given by the population size and
the number of elites, the results suggested to choose the former two or three times
higher than the latter. The selective study on the algorithmic design showed that
the Hybrid Genetic Swarm Algorithm can achieve an efficiency gain by two or
three orders of magnitude over simple genetic algorithms. Further experiments on
each of the single improvements and modifications showed that removing any of
them results in a significant loss in efficiency. The algorithm was then evaluated
using various kinematic models of different geometry and regarding five distinct
performance criteria in success, accuracy, time, displacement and flexibility. In
particular, a constant success rate of 100% on all models over 10.000 randomly
generated reachable targets could be obtained. In this, the efficiency in accu-
racy and computation time was approximately about 0.001m and 0.01rad within
10-60ms. In further observations, tracking a continuously displaced target along a
reachable trajectory could maintain a very high accuracy at interactive frame rates
with up to 1000-2000Hz. Also, the related joint displacement was very responsive
and minimal with respect to the change within the Cartesian target. Experiments
on the algorithmic flexibility under a degree of freedom of up 180 and different
joint types still reliably obtained solutions and even converged to a numerically
optimal configuration if the target was not reachable. Lastly, the comparative
study showed that a heuristic hybridization of evolutionary algorithms and collec-
tive systems as implemented in the developed Hybrid Genetic Swarm Algorithm
can successfully compete with the current state of the art in inverse kinematics.

83

Chapter 6. Conclusion

6.2 Contributions

This thesis provides several contributions both from a scientific as well as technical
perspective where this section lists the ones found most relevant.

First, a novel biologically-inspired evolutionary approach for solving the inverse
kinematics problem on arbitrary joint chains with high performance in success,
accuracy, time, displacement and flexibility was designed.

Second, a hybridization of genetic algorithms with particle swarm optimization
was shown to be capable of achieving notably better results than the single ap-
proaches.

Third, an extinction factor was introduced with intent to adaptively control the
mutation phase in genetic algorithms.

Fourth, an additional integration of a local search technique into biologically-
inspired optimization revealed significant efficiency improvements.

Fifth, it was demonstrated how randomization can successfully be applied to the
complex mathematical problem of multi-objective optimization.

Sixth, a URDF importer as well as implementations for kinematic joints and inverse
kinematics with intuitive and easily adjustable editor components were developed
for Unity.

84

6.3. Future Work

6.3 Future Work

This thesis offers several interesting aspects for further investigations and improve-
ments which reach from purely computational to algorithmic and scientific perspec-
tives.

First, a study on the extinction factor might be considered where particular in-
terest is in the caused loss by the adaptively controlled mutation in contrast to
model-specific optimized parameters.

Further, it was observed that ¡95% of the computation time for optimization
was required for solving the forward kinematics equations for fitness calculations.
Accordingly, a reimplementation of the algorithm in C++/Python with an efficient
parallel GPU or multi-core processing might achieve a significant computational
speedup.

Currently, only serial kinematic chains are supported by the algorithmic solution
where further work could extend the algorithm to handle multiple end effectors
simultaneously.

The evolutionary optimization is primarily driven by the design of the fitness
function. In this context, a weighting of joints with respect to their preference
and relevance within the kinematic chain is particularly interesting in terms of
realistic motion.

A common problem that is especially important in robotics and which directly
constructs on the obtained solutions by inverse kinematics is given by path plan-
ning where several future work can be done.

Equivalently, the current implementation does not consider self-collision handling
for the evolved joint variable configurations for but what is of crucial importance
in real world applications.

A further interesting study from a scientific perspective can be performed by inte-
grating a neural learning of previously evolved solutions. Although artificial neural
networks showed poor performance for solving the inverse kinematics problem as
a whole, improvements can be imagined by feeding learned approximate configu-
rations as guiding individuals into the evolutionary optimization.

Ultimately, the challenge remains in designing more sophisticated solutions that
use generically applicable concepts to solve complex problems what will be essential
within the next generation of artificial intelligence.

85

Bibliography

[1] Omar Alejandro Aguilar and Joel Carlos Huegel. Inverse Kinematics Solution
for Robotic Manipulators Using a CUDA-Based Parallel Genetic Algorithm,
volume 7094, pages 490–503. Springer Berlin Heidelberg – Lecture Notes in
Computer Science, 2011.

[2] Andreas Aristidou and Joan Lasenby. Inverse Kinematics: a review of exist-
ing techniques and introduction of a new fast iterative solver. University of
Cambridge, 2009.

[3] Andreas Aristidou and Joan Lasenby. FABRIK: A fast, iterative solver for the
Inverse Kinematics problem, volume 73, pages 243–260. Graphical Models,
2011.

[4] Andreas Aristidou and Joan Lasenby. Real-time marker prediction and CoR
estimation in optical motion capture, volume 29, pages 7–26. The Visual
Computer, 2013.

[5] A. Balestrino, G. De Maria, and L. Sciavicco. Robust control of robotic
manipulators. In Proceedings of the 9th IFAC World Congress, volume 5,
pages 2435–2440, 1984.

[6] Model: Baxter.
https://github.com/RethinkRobotics/baxter_common.
Accessed: 26-06-2016.

[7] TRAC-IK.
https://bitbucket.org/traclabs/trac_ik.git.
Accessed: 26-06-2016.

[8] Patrick Beeson and Barrett Ames. TRAC-IK: An open-source library for
improved solving of generic inverse kinematics. In Proceedings of the IEEE
RAS Humanoids Conference, Seoul, Korea, November 2015.

[9] Richard Bellman. Adaptive Control Processes. Princeton University Press,
1961.

[10] S. R. Buss and J. S. Kim. Selectively damped least squares for inverse kine-
matics, volume 10, pages 37–49. Journal of Graphics Tools, 2005.

87

https://github.com/RethinkRobotics/baxter_common
https://bitbucket.org/traclabs/trac_ik.git

Bibliography

[11] Samuel R. Buss. Introduction to Inverse Kinematics with Jacobian Trans-
pose, Pseudoinverse and Damped Least Squares methods. Survey, University
of California, 2004.

[12] S. K. Chan and P. D. Lawrence. General inverse kinematics with the error
damped pseudoinverse, pages 834-839. Proceedings of the IEEE International
Conference on Robotics and Automation, 1988.

[13] Darryl Charles, Colin Fyfe, and Daniel Livingstone. Biologically Inspired
Artificial Intelligence for Computer Games. IGI Publishing, 1st Edition, 2007.

[14] S. Chiaverini, B. Siciliano, and O. Egeland. Review of damped least-squares
inverse kinematics with experiments on an industrial robot manipulator, vol-
ume 2, pages 123-134. IEEE Transactions on Control Systems Technology,
1994.

[15] Thomas Collins and Wei-Min Shen. PASO: An Integrated, Scalable PSO-based
Optimization Framework for Hyper-Redundant Manipulator Path Planning
and Inverse Kinematics. Information Sciences Institute, Technical Report,
2016.

[16] Bassam Daya, Shadi Khawandi, and Mohamed Akoum. Applying Neural
Network Architecture for Inverse Kinematics Problem in Robotics, volume 3,
pages 230–239. Journal of Software Engineering and Applications, 2010.

[17] Jacques Denavit and Richard Scheunemann Hartenberg. A kinematic nota-
tion for lower-pair mechanisms based on matrices, volume 23, pages 215–221.
Transactions in ASME – Journal of Applied Mechanics, 1955.

[18] Jacques Denavit and Richard Scheunemann Hartenberg. Kinematic synthesis
of linkages. McGraw-Hill Series in Mechanical Engineering, 1965.

[19] Rosen Diankov. Automated Construction of Robotic Manipulation Programs.
Doctoral Thesis, The Robotics Institute, Carnegie Mellon University, 2010.

[20] Rosen Diankov, Kenji Sato, Hiroaki Yaguchi, Kei Okada, and Masayuki In-
aba. Manipulation Planning for the JSK Kitchen Assistant Robot Using Open-
RAVE. University of Tokyo, 2011.

[21] P. S. Donelan. Kinematic Singularities of Robot Manipulators, pages 401–416.
Advances in Robot Manipulator, In-Tech, 2010.

[22] Model: Dragon.
http://tf3dm.com/3d-model/black-dragon-rigged-and-game-ready-92023.

html.
Accessed: 26-06-2016.

[23] Fletcher Dunn and Ian Parberry. 3D Math Primer For Graphics And Game
Development. Jones & Bartlett Learning, 2002.

88

http://tf3dm.com/3d-model/black-dragon-rigged-and-game-ready-92023.html
http://tf3dm.com/3d-model/black-dragon-rigged-and-game-ready-92023.html

Bibliography

[24] B. Durmus, H. Temurtas, and A. Gün. An Inverse Kinematics Solution using
Particle Swarm Optimization, pages 193–197. 6th International Advanced
Technologies Symposium, 2011.

[25] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag Berlin-Heidelberg – Natural Computing Series, 2003.

[26] Unreal Engine.
https://www.unrealengine.com.
Accessed: 26-06-2016.

[27] Unreal Engine - FABRIK.
https://docs.unrealengine.com/latest/INT/Engine/Animation/

NodeReference/Fabrik/.
Accessed: 26-06-2016.

[28] Yin Feng, Wang Yao-nan, and Yang Yi-min. Inverse Kinematics Solution
for Robot Manipulator based on Neural Network under Joint Subspace, vol-
ume 7, pages 459–472. International Journal of Computers Communications
and Control, 2012.

[29] Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence –
Theories, Methods, and Technologies. MIT Press, 2008.

[30] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, 1966.

[31] ROS Framework.
http://www.ros.org.
Accessed: 26-06-2016.

[32] John Q. Gan, Eimei Oyama, Eric M. Rosales, and Huosheng Hu. A complete
analytical solution to the inverse kinematics of the Pioneer 2 robotic arm,
volume 23, pages 123–129. Robotica, 2005.

[33] H. Hanafusa and Y. Nakamura. Inverse kinematics solutions with singularity
robustness for robot manipulator control. In Journal of Dynamic Systems,
Measurement, and Control, volume 108, pages 163–171, 1986.

[34] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling
in Speech Recognition, volume 29, pages 82–97. Signal Processing Magazine,
2012.

[35] John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

89

https://www.unrealengine.com
https://docs.unrealengine.com/latest/INT/Engine/Animation/NodeReference/Fabrik/
https://docs.unrealengine.com/latest/INT/Engine/Animation/NodeReference/Fabrik/
http://www.ros.org

Bibliography

[36] Panchanand Jha and BB Biswal. A Neural Network Approach for Inverse
Kinematic of a SCARA Manipulator, volume 3, pages 52–61. International
Journal of Robotics and Automation, 2014.

[37] D. Karger and C. Stein. A new approach to the minimum cut problem, vol-
ume 43. Journal of the ACM, 1996.

[38] J. Kennedy and R. Eberhart. Particle Swarm Optimization, volume 4, pages
1942–1948. Proceedings of the IEEE International Conference on Neural Net-
works, 1995.

[39] Ben Kenwright. Inverse Kinematics - Cyclic Coordinate Descent (CCD), vol-
ume 16, pages 177-217. Journal of Graphics Tools, 2012.

[40] Orocos Kinematics and Dynamics.
http://www.orocos.org.
Accessed: 26-06-2016.

[41] Donald E. Knuth. The Art of Computer Programming, Volumes 1-4, 3rd
Edition. Addison Wesley, 2011.

[42] Rasit Köker. A genetic algorithm approach to a neural-network-based inverse
kinematics solution of robotic manipulators based on error minimization, vol-
ume 222, pages 528–543. Information Sciences – New Trends in Ambient
Intelligence and Bio-inspired Systems, 2013.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. The fantastic com-
binations of John Conways new solitaire game ”life”, volume 223, pages 120–
123. Scientific American, 1970.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. On cellular au-
tomata, self-reproduction, the Garden of Eden and the game ”life”, volume
224, pages 112–117. Scientific American, 1971.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks, volume 25, pages 1106–1114.
Advances in Neural Information Processing Systems, 2012.

[46] Serdar Kucuk and Zafer Bingul. Industrial Robotics: Theory, Modelling and
Control. pro literatur Verlag, 2007.

[47] Model: Space Robot Kyle.
https://www.assetstore.unity3d.com/en/#!/content/4696.
Accessed: 26-06-2016.

[48] Jeff Lander. Making kine more flexible, volume 5, pages 15-22. Game Devel-
oper, 1998.

90

http://www.orocos.org
https://www.assetstore.unity3d.com/en/#!/content/4696

Bibliography

[49] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back. Face Recognition:
A Convolutional Neural-Network Approach, volume 8, pages 98–113. Signal
Processing Magazine, 1997.

[50] Jeffery J. Leader. Numerical Analysis and Scientific Computation, 1st Edition.
Pearson, 2004.

[51] Eric Lengyel. Mathematics for 3D Game Programming and Computer Graph-
ics, 3rd Edition. Cengage Learning PTR, 2011.

[52] D. G. Lowe and M. Muja. Fast Approximate Nearest Neighbors with Automatic
Algorithm Configuration, pages 331–340. INSTICC Press, 2009.

[53] Unity3D Inverse Kinematics Manual.
http://docs.unity3d.com/Manual/InverseKinematics.html.
Accessed: 26-06-2016.

[54] Unreal Engine Inverse Kinematics Manual.
https://docs.unrealengine.com/latest/INT/Engine/Animation/

IKSetups/.
Accessed: 26-06-2016.

[55] R. V. Mayorga, A. K. C. Wong, and N. Milano. A fast procedure for manipu-
lator inverse kinematics evaluation and pseudoinverse robustness, volume 22,
pages 790–798. IEEE Transactions on Systems, Man, and Cybernetics, 1992.

[56] J. M. McCarthy and G. S. Soh. Geometric Design of Linkages, 2nd Edition.
Springer, 2010.

[57] Michael Meredith and Steve Maddock. Real-Time Inverse Kinematics: The
Return of the Jacobian. Department of Computer Science, University of
Sheffield, Technical Report, 2004.

[58] Root Motion.
http://root-motion.com.
Accessed: 26-06-2016.

[59] Ramakrishnan Mukunda. Advanced Methods in Computer Graphics. Springer-
Verlag London, 2012.

[60] R. Müller-Cajar and R. Mukundan. Triangulation: A new algorithm for In-
verse Kinematics, pages 181–186. Proceedings of Image and Vision Computing
New Zealand, 2007.

[61] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994.

[62] Wolfgang Notling. Klassische Mechanik – Grundkurs Theoretische Physik 1.
Springer-Verlag Berlin Heidelberg, 2013.

91

http://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unrealengine.com/latest/INT/Engine/Animation/IKSetups/
https://docs.unrealengine.com/latest/INT/Engine/Animation/IKSetups/
http://root-motion.com

Bibliography

[63] J. K. Parker, A. R. Khoogar, and D. E. Goldberg. Inverse kinematics of
redundant robots using genetic algorithms, volume 1, pages 271–276. IEEE
International Conference on Robotics and Automation, 1989.

[64] E. Pennestri, M. Cavacece, and L. Vita. On the Computation of Degrees-of-
Freedom: A Didactic Perspective. Proceedings of the International Design
Engineering Technical Conference, 2005.

[65] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-Organization, Embodi-
ment, and Biologically Inspired Robotics, volume 318, pages 1088–1093. Sci-
ence, 2007.

[66] Model: PR2.
http://wiki.ros.org/pr2_description.
Accessed: 26-06-2016.

[67] Model: KR120 R2500 PRO.
https://github.com/ros-industrial/kuka_experimental/tree/

indigo-devel/kuka_kr120_support.
Accessed: 26-06-2016.

[68] Model: LBR IIWA 14 R820.
https://github.com/ros-industrial/kuka_experimental/tree/

indigo-devel/kuka_lbr_iiwa_support.
Accessed: 26-06-2016.

[69] M. O. Rabin. Probabilistic Algorithms in Algorithms and Complexity, pages
21–39. Academic Press, 1976.

[70] I. Rechenberg. Cybernetic Solution Path of an Experimental Problem. Royal
Aircraft Establishment. Royal Aircraft Establishment, Ministry of Aviation,
Farnborough Hants, UK, 1965.

[71] A. Chennakesava Reddy. Difference Between Denavit-Hartenberg (D-H) Clas-
sical and Modified Conventions for Forward Kinematics of Robots with Case
Study. International Conference on Advanced Materials and Manufacturing
Technologies, 2014.

[72] Claudio Melchiorri Riccardo Falconi, Raffaele Grandi. Inverse Kinematics
of Serial Manipulators in Cluttered Environments using a new Paradigm of
Particle Swarm Optimization, volume 19, pages 8475–8480. The International
Federation of Automatic Control, 2014.

[73] Nizar Rokbani and Adel M. Alimi. IK-PSO, PSO Inverse Kinematics Solver
with Application to Biped Gait Generation, volume 58, pages 33–39. Interna-
tional Journal of Computer Applications, 2012.

92

http://wiki.ros.org/pr2_description
https://github.com/ros-industrial/kuka_experimental/tree/indigo-devel/kuka_kr120_support
https://github.com/ros-industrial/kuka_experimental/tree/indigo-devel/kuka_kr120_support
https://github.com/ros-industrial/kuka_experimental/tree/indigo-devel/kuka_lbr_iiwa_support
https://github.com/ros-industrial/kuka_experimental/tree/indigo-devel/kuka_lbr_iiwa_support

Bibliography

[74] Nizar Rokbani and Adel M. Alimi. Inverse Kinematics Using Particle Swarm
Optimization, A Statistical Analysis, volume 64, pages 1602–1611. Interna-
tional Conference on Design and Manufacturing, 2013.

[75] Joanna Svantesson and Jonas Bornold. A Real-Time Adaptation of Inverse
Kinematics for Motion Capture. Master Thesis, University of Gothenburg,
2015.

[76] Saleh Tabandeh, Christopher M. Clark, and William W. Melek. A Genetic
Algorithm Approach to solve for Multiple Solutions of Inverse Kinematics us-
ing Adaptive Niching and Clustering, pages 1815–1822. IEEE Congress on
Evolutionary Computation, 2006.

[77] Saleh Tabandeh, Christopher M. Clark, and William W. Melek. An adap-
tive niching genetic algorithm approach for generating multiple solutions of
serial manipulator inverse kinematics with applications to modular robots, vol-
ume 28, pages 493–507. Robotica, 2010.

[78] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellart. Robust
Monte Carlo Localization for Mobile Robots, volume 128, pages 99–141. Arti-
ficial Intelligence, 2001.

[79] Deepak Tolani, Ambarish Goswami, and Norman I. Badler. Real-Time Inverse
Kinematics Techniques for Anthropomorphic Limbs, volume 62, pages 353–
388. Graphical Models, 2000.

[80] A. M. Turing. Computing Machinery and Intelligence, volume 59, pages 433–
460. Mind, 1950.

[81] Unity3D.
http://www.unity3d.com.
Accessed: 26-06-2016.

[82] Model: UR5.
http://wiki.ros.org/ur5_description.
Accessed: 26-06-2016.

[83] Model: UR5. Provided by WTM Group, University of Hamburg.

[84] Carla Elena González Uzcátegui. A Memetic Approach to the Inverse Kine-
matics Problem for Robotic Applications. Doctoral Thesis, Carlos III Univer-
sity of Madrid, 2014.

[85] John v. Neumann. The General and Logical Theory of Automata, volume 5,
pages 288–328. Pergamon Press, 1951.

[86] Nikolaus Vahrenkamp, Tamin Asfour, and Rüdiger Dillmann. Efficient inverse
kinematics computation based on reachability analysis. International Journal
of Humanoid Robotics, 9:2, 2012.

93

http://www.unity3d.com
http://wiki.ros.org/ur5_description

Bibliography

[87] C. W. Wampler. Manipulator inverse kinematic solutions based on vector
formulations and damped least squares methods, volume 16, pages 93–101.
IEEE Transactions on Systems, Man, and Cybernetics, 1986.

[88] Li-Chun Tommy Wang and Chih Cheng Chen. A combined optimization
method for solving the inverse kinematics problems of mechanical manipu-
lators, volume 7, pages 489–499. IEEE Transactions on Robotics and Au-
tomation, 1991.

[89] Tiago Oliveira Weber and Wilhelmus A. M. Van Noije. Design of Analog In-
tegrated Circuits Using Simulated Annealing/Quenching with Crossovers and
Particle Swarm Optimization. InTech, 2012.

[90] Xiulan Wen, Danghong Sheng, and Jiacai Huang. A Hybrid Particle Swarm
Optimization for Manipulator Inverse Kinematics Control, volume 5226,
pages 784–791. International Conference on Intelligent Computing, 2008.

[91] D. E. Whitney. Resolved motion rate control of manipulators and human
prostheses, volume 10, pages 47–53. IEEE Transactions on Man-Machine
Systems, 1969.

[92] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

[93] W. A. Wolovich and H. Ellio. A computational technique for inverse kine-
matics. In Proceedings of the 23rd IEEE Conference on Decision and Control,
pages 1359–1363, 1984.

[94] David H. Wolpert and William G. Macready. No Free Lunch Theorems for
Optimization, volume 1, pages 67–82. IEEE Transactions on Evolutionary
Computation, 1997.

94

Erklärung der Urheberschaft

Ich versichere an Eides statt, dass ich die vorliegende Master Thesis im Studiengang
Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmit-
tel benutzt habe. Insbesondere wurden dabei keine nicht im Quellenverzeichnis
benannten Internet-Quellen verwendet. Alle Stellen, die wörtlich oder sinngemäß
aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich
versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsver-
fahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem elek-
tronischen Speichermedium entspricht.

Ort, Datum Unterschrift

95

Erklärung zur Veröffentlichung

Ich erkläre hiermit mein Einverständnis zur Einstellung dieser Master Thesis in
den Bestand der Bibliothek.

Ort, Datum Unterschrift

97

	1 Introduction
	1.1 Motivation
	1.2 Research Question
	1.3 Outline

	2 Fundamental Knowledge
	2.1 Robot Kinematics
	2.1.1 Coordinate Transformations
	2.1.2 Forward Kinematics
	2.1.3 Inverse Kinematics
	2.1.4 Degree of Freedom
	2.1.5 Joint Types and Constraints
	2.1.6 Singularities

	2.2 Algorithmic Methodology
	2.2.1 Analytical
	2.2.2 Numerical
	2.2.3 Randomization

	2.3 Biologically-Inspired Artificial Intelligence
	2.3.1 Genetic Algorithms
	2.3.2 Particle Swarm Optimization

	3 State of the Art
	3.1 Jacobian Solvers
	3.2 Cyclic Coordinate Descent
	3.3 FABRIK
	3.4 Artificial Neural Networks
	3.5 Genetic Algorithms
	3.6 Particle Swarm Optimization

	4 Algorithmic Approach
	4.1 Problem Statement
	4.2 Complete Overview
	4.3 Hybrid Genetic Swarm Algorithm
	4.3.1 Encoding
	4.3.2 Fitness Function
	4.3.3 Parent Selection
	4.3.4 Recombination
	4.3.5 Mutation
	4.3.6 Adoption
	4.3.7 Niching
	4.3.8 Survivor Selection
	4.3.9 Exploitation
	4.3.10 Initialization
	4.3.11 Termination
	4.3.12 Wipe

	4.4 Résumé

	5 Experimental Analysis
	5.1 Environmental Setup
	5.2 Kinematic Models
	5.3 Parameter Study
	5.4 Selective Study
	5.4.1 HGSA versus SGA
	5.4.2 Extinction Factor
	5.4.3 Multi-Objective Weight Randomization
	5.4.4 Adoption
	5.4.5 Exploitation
	5.4.6 Wipe Criterion

	5.5 Performance Study
	5.5.1 Success
	5.5.2 Accuracy
	5.5.3 Time
	5.5.4 Displacement
	5.5.5 Flexibility

	5.6 Comparative Study

	6 Conclusion
	6.1 Summary
	6.2 Contributions
	6.3 Future Work

	Bibliography

