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Abstract

Localization is an important problem in robotics that is needed for many naviga-
tion tasks. A popular sensor that usually results in a precise localization is the
2D laser range finder. It is not well suited for global localization though, where
the robot’s pose is unknown at the start. Especially rooms with a symmetric out-
line or rooms without any unique characteristics can cause a global localization
only using a laser range finder to fail. Our approach in these cases is to use Wi-
Fi signal strength to infer an approximate position. In order to realize a Wi-Fi
position estimation we use Gaussian process regression with pre-recorded signal
strength data of the environment. The Wi-Fi position estimation is used to give
an approximate position at the start to a Monte Carlo localization with a 2D laser
range finder. Experiments on a long hallway resulted in a higher success rate for
the global localization when using the Wi-Fi position estimation compared to the
approach only using the laser range finder.

Zusammenfassung

Die Standortbestimmung in der Robotik ist ein wichtiges Problem und wird für
eine Vielzahl von Navigationsaufgaben benötigt wird. Ein beliebter Sensor, der
üblicherweise zu einer präzisen Lokalisation führt, ist der 2D Laserentfernungsmesser.
Er ist jedoch nicht gut für die globale Lokalisation geeignet, wo die Position des
Roboters am Anfang unbekannt ist. Insbesondere Räume mit symmetrischen
Strukturen oder Räume ohne auffallende Eigenschaften führen oftmals zum Mis-
serfolg wenn lediglich ein 2D Laserentfernungsmesser für die globale Lokalisation
verwendet wird. Unser Ansatz ist, in diesen Fällen Wi-Fi Signalstärken zu ver-
wenden, um daraus eine Position zu approximieren. Mit Hilfe von Gaußprozess-
regression setzen wir eine Wi-Fi Positionsschätzung um. Hierfür werden vorher
Signalstärken in der Umgebung aufgenommen. Diese Wi-Fi-Positionsschätzung
wird dann benutzt um einer Monte Carlo Lokalisation, die einen 2D Laserent-
fernungsmesser verwendet, eine grobe Startposition zu geben. Experimente auf
einem langen Flur resultierten in eine höhere Erfolgsrate für die globale Lokalisa-
tion mit der Wi-Fi Positionsschätzung, im Vergleich zum Ansatz der nur den 2D
Laserentfernungsmesser verwendet.
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Glossary

BFGS An optimization algorithm to find minima or maxima of functions. It uses
both first order- and second order-derivative information, while not explicitly
computing the second order-derivative.

Control data The commands given to a robot, so for example its velocity. Al-
ternatively often provided by sensors like odometers. Control data gives us
information about the change of state of a robot.

Environment measurement data Provided by sensors like laser range finders,
cameras or sonars. The environment measurement data gives us information
about the current state of the environment of a robot.

Gaussian process A collection of random variables, any finite number of which
have a joint Gaussian distribution [Rasmussen and Williams, 2005, p. 13].

Global localization Global localization describes localization without any prior
information about the current position.

GPS A global positioning system that is using satellites. It can be used to deter-
mine the current location outdoors with an error of a few meters.

Gradient descent An algorithm that uses first-order derivatives in order to find
a local minimum of a function.

Hyperparameter A hyperparameter is a parameter that can be learned. There
is no need to set it manually.

Kernel When used with Gaussian processes, kernels are also referred to as covari-
ance function. They are used to measure the difference between two inputs.
They can lift the inputs into a higher space, while the computations still
happen in the input space. Thus one can save computation time by apply-
ing kernels. They can be used whenever an operation can be represented by
a dot product.

Kidnapped robot problem Describes the problem when a robot is taken and
brought to a different location while a localization is running. The robot
won’t be able to register that it moved and is thus localized on the wrong
position.
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L-BFGS The limited-memory variant of the BFGS algorithm.

Laser range finder Sensor that uses laser beams to detect the distance of ob-
stacles.

LIDAR Short for “Light Detection and Ranging”. It is a type of sensor, that is
using light in order to measure the distance to obstacles in the environment.
It can be used to create 2D or 3D representations of areas.

Log-likelihood It is the natural logarithm of a likelihood function. In some
cases they are easier to work with than the original likelihood function. The
logarithm is monotonically increasing and has its maximum at the same point
as the likelihood function. Often the partial derivatives of the log-likelihood
function are easier to compute than the partial derivatives of the likelihood
function. Thus it is attractive to use in order to optimize hyperparameters
by searching the maximum of a function.

MAC-address Short for media access control-address. This address is a com-
monly used identifier in networks. So for example a Wi-Fi receiver has its
own MAC-address as does the access point. The MAC-address is unique for
each interface.

Monte Carlo localization Robot self-localization using probability. Its basis is
the recursive state estimation implemented with a particle filter.

Odometer An odometer is a commonly used sensor in order to measure the
distance traveled.

Particle Particles are generally a small part of larger system. Here particles are
used to refer to samples that represent parts of a state belief.

Posterior A posterior is also called posterior probability distribution. It is a
distribution created from the prior distribution after taking further evidence
into account that wasn’t considered when creating the prior.

Prior A prior is also called prior probability distribution. It is a distribution that
was created by making certain assumptions before taking further evidence
into account. When the distribution is transformed by taking that further
evidence into account, it is called posterior, or posterior distribution.

Recursive state estimation Using incoming data a current state is computed
recursively, by using the previous state. The state is represented by a prob-
ability density function.

Regression Inferring the relationship between different variables from available
scalars of said variables. In case of the example of the linear regression the
result is a linear function. In the example of Gaussian process regression the
result is a Gaussian process.

RGB-D sensor A sensor that is able to sense colors and depth.
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Rprop Short for resilient backpropagation. Using first-order derivatives the algo-
rithm can be used to find a local minimum. It only uses the sign of resulting
partial derivatives when searching for the minimum.

SSID Short for service set identifier. It is used by Wi-Fi access points. The
identifier is not unique. It is used to signal different access point that belong
to the same Wi-Fi network.

Training set A set of data that was recorded in order to discover the relationship
between different variables. To discover those relationships regression can
be used.
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Chapter 1

Introduction

1.1 Motivation

Localization is an important problem in robotics. Even simple navigation tasks
in households require a mobile robot to be able to determine its own position in
the environment. It needs to be able to move from point A to point B. Being able
to do this, a robot could for example bring a fresh cup of coffee and return the
used cup back to the kitchen. A localization can help with cleaning tasks [Pinheiro
et al., 2015]. It can also be highly important in industrial environments. Hamburg
has one of the world’s largest and busiest ports. In order to bring the shipping
containers from one place to the other autonomous transport vehicles can be used.
These are just a few of many real world examples, where localization is used.

Another modern example of using localization is the autonomous vehicle. The
Global Positioning System (GPS) [Misra and Enge, 2011] can give us a good idea
about the position of a car. But GPS is too inaccurate for the high demands of
autonomous vehicles. Levinson et al. [2007] for example used Light Detection and
Ranging (LIDAR) [Weitkamp, 2005] in addition to the GPS to vastly improve the
localizations accuracy. The LIDAR is a vision based sensor that is similar to a
radar. Instead of radio waves it uses light beams. It can be used to map out
nearby obstacles. The LIDAR is not well suited to estimate the position on a
large map with no prior information, so the GPS can be used to provide a rough
position estimate. On the other hand as already explained the GPS is inaccurate,
so once a rough position is estimated, the LIDAR can help to narrow the position
down.

The 2D laser range finder is a specific kind of LIDAR, that is often used for
localization. With the laser range finder the robot is able to detect the distance
of obstacles near itself. There are many situations where a robot can not rely
on GPS. In many buildings its signal is obstructed. Localizing without any prior
information about the robot’s position is called global localization. There are
existing approaches to do this with just a vision-based sensor like the LIDAR or
a 2D laser range finder. In order to localize a robot we use a map of the robot’s
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Chapter 1. Introduction

environment that was created beforehand. Usually only a small part of the map is
taken into account, because we have a rough idea about the position. At the start
of the global localization using a laser range finder the whole map has to be taken
into account, until a possible position was determined after some time. But the
downside of this method is, that it is often unreliable and often leads to localization
failures, that are hard to recover from. This is especially true for environments
that don’t have many unique characteristics. When localizing with a laser range
finder one usually creates a map with the existing obstacles and the outline of the
room. Often many parts of these maps look very similar. The fewer distinctive
features the map has, the more likely it is that the global localization with a laser
range finder fails. Many places indoors can cause these problems. Many rooms are
symmetric, so it can be hard to differentiate between the walls. Many buildings
have rooms with the same outline, for example many office-environments. Office
environments can also be quite large, and the larger the space that has to be taken
into account the more likely it is, that a global localization only using a laser range
finder will fail. Similar problems occur in household environments.

In most buildings there are a lot of different Wi-Fi [IEEE, 2012] networks. A
network’s MAC-address provides a unique identifier for each signal. The signal
strength can be a good indicator about how far the wireless access point is away.
While one signal alone wouldn’t be enough to infer the position, multiple signals
from different access points can be used to do just that.

This could be used to enhance the localization with laser scanners. When at the
start no position estimation is given, it could be computed using the Wi-Fi data.
Also in case of a localization failure the Wi-Fi signals could be used to infer the
correct position.

This combines the strengths of both the position estimation with Wi-Fi signals and
the localization with a laser scanner. The Wi-Fi signals have a unique identifier
and will only be observed in a certain range on a map. The outline of a wall
could be nearly identical in different places, but overall the localization with a
laser scanner is very accurate once the true position was determined.

1.2 Related Work

One of the most popular methods for localization is the Monte Carlo localization.
We are going to use this method, both for localization via a 2D range finder and
parts of it also to estimate the position via Wi-Fi. Thrun et al. [2005] give an
extensive overview over the Monte Carlo localization.

In order for the Monte Carlo localization to work, one needs a measurement model
for the sensor that is used. Thrun et al. [2005] provide models that can be used
for a 2D range finder. In order to estimate the position with a Wi-Fi receiver, one
needs to implement a different measurement model.

2



Chapter 1. Introduction

There have been different approaches to solving the localization problem with
Wi-Fi signals. Serrano et al. [2004] used a propagation model to estimate the
signal strength at any given point on the map. The advantage of this technique
is that only the positions of the access points have to be known, but it is a lot
more inaccurate than other approaches. The Wi-Fi signal being obstructed by
obstacles like walls or furniture inside of buildings can pose a problem for the
propagation model. This makes the propagation model very inaccurate and thus
leads to inaccurate position estimations.

A different approach to the problem uses a map that was created beforehand.
Biswas and Veloso [2010] recorded Wi-Fi signals in a grid-like fashion, repeatedly
in a certain interval. In order to interpolate the Wi-Fi signal from the recordings,
linear interpolation was used. The drawback here is that the Wi-Fi signals have
to be recorded at certain positions on the map. This makes the process of creating
the map more complicated and time consuming.

In order to create something akin to a map from recorded Wi-Fi data, using re-
gression proved to be useful. As it turns out Gaussian processes are well suited for
this kind of problem. Rasmussen and Williams [2005] give an extensive overview
of how they can be used in machine learning.

Ferris et al. [2006] use Gaussian processes for localization and building the map.
This means the signal strength can be recorded at random places. Thus the needed
data for creating the map can be recorded while the robot drives around or even
does other tasks. In our approach we want to determine whether such a method can
be used for global localization in a household and office environment with a 2D laser
range finder and a wheeled robot. There are already existing investigations into a
global localization with Wi-Fi data, but in different contexts. Duvallet and Tews
[2008] used it in an industrial environment to enhance the previously developed
laser beacon localization [Tews et al., 2007]. The most striking difference here
is the environment, which is large and spacious compared to the often cramped
spaces used as offices. Also the number of Wi-Fi signals that can be observed
in office spaces is usually a lot higher than in industrial environments. Ito et al.
[2014] used Wi-Fi for global localization for an iPhone 4 with an additional RGB-D
sensor, a sensor that is able to produce color- and depth-images. For the RGB-D
sensor they used a map created from the floor-plan, that is less accurate then the
maps usually used. An obvious disparity to our test environment is the platform
used here. While the phone is used in conjunction with an RGB-D sensor, which
is comparable to a 2D laser range finder, the phone does not have any wheels that
can provide odometry. Here they resort to an alternative for the odometry method
using the RGB-D sensor.

1.3 Outline of the Thesis

In Chapter 2 we will explain the basics of probability based localization, with the so
called Monte Carlo localization [Dellaert et al., 1999] as an example. Furthermore

3



Chapter 1. Introduction

we will explore how a Wi-Fi receiver can be used with the Monte Carlo localization
and explain how Gaussian process regression [Rasmussen and Williams, 2005] can
be used for this purpose. Chapter 3 details the implementation of a Wi-Fi position
estimation using the knowledge from Chapter 2 about Monte Carlo localization
and Gaussian process regression. In Chapter 4 experiments and results regarding
the usage of the Wi-Fi position estimation will be discussed. In chapter 5 we will
reflect the results and come to a conclusion. Lastly chapter 6 provides an outlook
for future applications and possibilities.
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Chapter 2

Basics

This chapter summarizes the basics of robot self-localization. At first in section
2.1 we will give an example of data produced by a laser range finder. Next we will
show how uncertainty can complicate the task of localization and how probability
can be helpful to approach this problem. We will introduce the recursive state
estimation and building on this move on to an implementation of it using a particle
filter. Afterwards we will show how said particle filter can be used for robot self-
localization with the Monte Carlo localization. In the next section we will explain
the problem of global localization and then introduce the kidnapped robot problem
and a possible solution.

In section 2.2 we will look into the aspects of Wi-Fi that are important for the
Wi-Fi position estimation.

Section 2.3 will revolve around the Wi-Fi sensor model, that can be used with the
Monte Carlo localization. We will define what a Gaussian process is and derive it
from a Bayesian treatment of the linear regression.

2.1 Localization

2.1.1 Localization with a Laser Range Finder

The goal of localization is that a mobile robot is able to determine its own position.
For this purpose we use a map of the environment of the robot. In our case the
robot used is a TurtleBot 2 (http://www.turtlebot.com, accessed on 02.11.2016)
shown in figure 2.1. This particular robot uses wheels to move around and a
Kinect camera [Andersen et al., 2015] and a Hokuyo UTM-30LX 2D laser range
finder [Hokuyo Inc. Ltd., 2012] in order get information about the state of its
environment. The robot also has sensors that provide us with information about
its movement. An odometer is used to measure the distance traveled and a gyro to
measure the angular velocity. Now using the information provided by the various
sensors the objective is to infer the location of the robot.
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Chapter 2. Basics

Figure 2.1: The TurtleBot used for testing the software and carrying out the
experiments in chapter 4.

The 2D laser range finder is a popular choice for this task. It gives us the distance
to obstructions in the robot’s environment and produces reliable data. The prices
for these kind of sensors are reasonable. A 2D laser range finder is able to determine
the distance to obstacles by using laser beams. The beams get reflected back to
the laser range finder by the surfaces of nearby obstructions. The time it takes
for the beams to arrive at the laser range finder is used to infer the distance. The
further an object is away, the longer it takes for a beam to be reflected back. This
kind of data is easy to interpret and easy to process, compared to data produced
by similar sensors like cameras. In order to infer useful information from camera
pictures we would need to filter them.

Figure 2.2 shows the kind of data a laser range finder produces. Here the black
circle is the robot. The red squares show us the distance to obstacles in the robot’s
environment. The position of the robot on the map mirrors its position in the real
world. This map is an obstacle map, so it shows where we would expect obstacles
in the environment. The map is also divided into small grid cells, that can be
either occupied, free or unknown. Here black represents occupied areas, light gray
represents free areas and dark gray represents unknown areas. As one can see the
laser range finder data mostly matches our expectations. The obstacles found by
the laser range finder match the obstacles shown on the map, so it is likely that
the robot is located on the correct position on the map. So sensors like the laser
range finder can be used to check if the robot is localized in the correct position
by comparing the produced data with the expectations based on the map. Sensors
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Chapter 2. Basics

Figure 2.2: Example of localization with a laser range finder. The black circle
(upper right) is the robot. The robot is on an obstacle map that was created
beforehand, so the other black lines signify obstacles. The red squares are the
laser range finder data. As we can see the red squares mostly fit to the obstacles.

like odometers and gyros can be used to move the robot accordingly on the map.
So when the robot drives a few meters forward, the same should happen on the
map.

As laid out the robot has different kinds of sensors that provide us with infor-
mation. Using that data and a map of the environment our goal is to infer the
position of the robot. But for a variety of reasons we can not be 100% certain
about the data sensors produce.

2.1.2 Uncertainty

Uncertainty plays a big role in robotics. By dealing with the real world this
inherently introduces unpredictability. The robot’s environment is dynamic and
can change constantly. Even the robot itself changes its own environment by acting
in it. See for example figure 2.3. It is similar to figure 2.2, but here measurements
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Figure 2.3: This is an example of how uncertainty plays a role in localization.
The figure is very similar to figure 2.2, but signified by the blue circle there are
measurements created by the laser range finder that do not fit to the map. The
reason in this case was simply that a person was standing there. The green
circles show doors that were opened when the map was created, but are now
either closed or in a different position.

appear that don’t fit the expectation we would have given the map the robot is
located on. The robot is still located on the right position that mirrors its position
in the real world. What changed is the environment. Someone was standing in the
room and the data produced by the laser range finder mirrors that circumstance.
A similar example would be when furniture is moved to a different place. Suddenly
the data will not match in a particular place. But it does not even have to be a
permanent change. In the green circles in figure 2.3 two doorways are highlighted.
When the map was created the doors stood open, but now the one on the lower
right is closed and the one in the upper left is in a different position. It would be
impractical to create a new map whenever there are changes in the environment.

Robots usually have a variety of sensors, they use to get information about the
state of their environment. The sensors used in robotics have certain limitations.
They can only provide an inexact interpretation of the world around them and this
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is something we need to keep in mind. When an odometer tracks a robots path
it will never be exact. When a laser scanner measures the distance to an obstacle
we have to expect that there will be an error margin. The sensors have to deal
with physical limitations when trying to capture the state of their environment.
Often they are subject to noise. In localization 2D maps are used very often. They
are a model of the real world. But once again it is only an approximate model
that strips away a lot of information from the real world and thus introduces more
uncertainty [Thrun et al., 2005, p. 3-4].

Probability can be a helpful tool to circumvent this problem. When localizing
instead of trying to find the pose of the robot directly we test how likely it is
that the robot is in different hypothesized poses. So, using all the information
we get from the sensors we compute which poses are the most likely ones [Thrun
et al., 2005, p. 5]. In the following section we will show an algorithm that uses
probability to deal with the uncertainty in our sensor data.

2.1.3 Recursive State Estimation

Thrun et al. [2005] divide the data usually collected by robots into two different
categories:

1. Environment measurement data, denoted zt1:t2 for data from time t1 to time
t2

2. Control data, denoted ut1:t2 for data from time t1 to time t2

The first one gives us information about the current state of the environment,
provided by sensors like cameras, laser range scanners or Wi-Fi receivers. The
second kind of data gives us information about the change of state. These are
values that are given to the robot to execute some action, for example a velocity.
Sensors like odometers, a sensor that measures the distance traveled, could be
classified as producing environment measurement data, but in practice this kind
of data is often used as control data [Thrun et al., 2005, p. 22-23].

The current time step is denoted as t, so the current state is denoted xt. At this
point we will rely on probability for the reasons already explained. The probability
of state xt is the following: p(xt|x0:t−1, z1:t−1, u1:t). Here all control data up to
time step t is taken into account and all environment measurement data up to the
previous time step t − 1 is taken into account. But if we assume that state xt is
a sufficient summary of everything that happened before time step t, then we can
omit most data:

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) (2.1)

The probability that a certain measurement was observed can be described by
p(zt|x0:t, z1:t−1, u1:t). Once again we can omit most data:

p(zt|x0:t, z1:t−1, u1:t) = p(zt|xt) (2.2)
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Chapter 2. Basics

Equation 2.1 is known as the state transition probability and equation 2.2 is known
as the measurement probability. The state transition probability takes the control
data into account. As we will see, for localization this means it is used to model
the movement of the robot. The measurement probability on the other hand takes
the measurement data into account. For localization this means it is used to reflect
the information the robot has about its environment at the moment [Thrun et al.,
2005, p. 24-25].

The state of a robot is represented by so called belief distributions.

bel(xt) = p(xt|z1:t−1, u1:t) (2.3)

Equation 2.3 is often referred to as prediction. It doesn’t take the last environment
measurement into account.

bel(xt) = p(xt|z1:t, u1:t) (2.4)

The posterior from equation 2.4 on the other hand does take the last measurement
into account [Thrun et al., 2005, p. 25-26]. So bel(xt) can be seen as the prior,
that is computed with incomplete information and bel(xt) as the corresponding
posterior, that is created by including the last measurement data. As can be seen
in algorithm 1 the posterior from equation 2.4 is computed by using the prediction
from equation 2.3.

Once again, we don’t want to take all past data from all time steps into account. So
we are going to simplify both equations for our purposes. bel(xt) can be simplified
by using Bayes’ rule and equation 2.2.

p(xt|z1:t, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
= ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

bel(xt) = ηp(zt|xt)bel(xt)

(2.5)

Here η is a normalizer, stemming from the fact that p(zt|z1:t−1, u1:t) is independent
of the state xt and so no matter what value xt takes on in p(xt|z1:t, u1:t), it does
not influence η.

bel(xt) can be simplified for our purposes, using the theorem of total probability
and equation 2.1 [Thrun et al., 2005, p. 31-33].

p(xt|z1:t−1, u1:t) =

∫
p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

=

∫
p(xt|ut, xt−1)p(xt−1|z1:t−1, u1:t−1)dxt−1

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

(2.6)
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In the second step of equation 2.6 we make use of the fact that ut is not needed
to infer the probability of state xt−1 and therefore simply omit it. 2.6 and 2.5 are
used in the Bayes filter algorithm.

Algorithm 1 Bayes filter [Thrun et al., 2005, p. 27]

1: procedure Bayes filter(bel(xt−1), ut, zt)
2: for all xt do
3: bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

4: bel(xt) = ηp(zt|xt)bel(xt)
5: end for
6: return bel(xt)
7: end procedure

The inputs of the algorithm are the distribution of belief bel(xt−1) from the last
time step, the new environment data zt and control data ut from this time step
t. In line 3 the belief gets updated with the control data, to make sure that the
change of state gets reflected in the distribution before we apply our knowledge
from the environment data. In line 4 the belief gets updated with the measurement
data too. Now all available data was used to create the new belief distribution.
The belief distribution can be used to infer the state xt.

Figure 2.4 shows a simple example how the algorithm could be used for localization.
It shows a robot that is able to detect whether it is standing in front of a door.
It reflects the nature of the control data and measurement data. Whenever the
robot has moved and the control data is used to update the belief, the belief still
spikes in the correct position, but the spike becomes weaker. We have to take
into account that the odometer could give us imprecise measurements. This is
the reason why we use the measurement data as well. Even if we had the correct
position in the beginning, when we only used control data, after driving around
for some time the localization will be off by a huge margin. The measurement
data is there to correct this. If we look at both control data and measurement
data in a certain time interval the uncertainty induced by moving around is small
enough that we can compensate for it by using the measurement data.

The figure also provides a good example as to why we use probabilities. In figure
2.4 (b) the robot senses a door. There are three different doors, but the robot
can’t be sure which door it is, so it simply applies the same probabilities to all
three doors instead of randomly choosing one. Then it also can’t be sure about
the exact position in front of these doors because the data could be imprecise. So
in front of each door the distribution has bell-shaped spikes to reflect this.

Another good example why probabilities work so well can be observed in (c). The
robot moved and of course the control data is also imprecise. So the spikes move
according to the control data, but they get weaker and more spread out.

Now (d) shows a nice example how the data from the previous time steps get
taken into account. The spikes move according to the control data. Now the
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Figure 1.1 The basic idea of Markov localization: A mobile robot during global local-
ization. Markov localization techniques will be investigated in Chapters ?? and ??.

Figure 2.4: A simple example to explain how the Bayes filter works. In (a)
the belief is evenly distributed. In (b) the robot observes the door and the
measurement data reflects this and updates bel(x) accordingly. In (c) the robot
moves to the right and the beliefs structure shifts to the right as well, but the
peaks become lower, because the control data could be imprecise. In (d) the
robot takes the new measurement data into account. The belief clearly spikes
at the correct position. In (e) the robot moved again. The spike is still in the
correct position, but it is lower [Thrun et al., 2005, p. 6].

12



Chapter 2. Basics

robot observes a door once again, just like in (b). But because the belief has only
a spike in front of the correct door, the new belief has a high and distinct spike in
front of the correct door after taking the measurement data into account.

2.1.4 Particle Filter

The particle filter is a non-parametric solution to implement the Bayes filter. Here
the posterior distribution bel(xt) is represented by finitely many samples [Thrun
et al., 2005, p. 85].

Specifically it is represented by a set of particles that is denoted as:

Xt = x
[1]
t , x

[2]
t , ..., x

[M ]
t (2.7)

Each particle represents a possible state hypothesis at time t. M is the number of
particles [Thrun et al., 2005, p. 96-97].

Algorithm 2 Particle filter [Thrun et al., 2005, p. 98]

1: procedure Particle filter(Xt−1, ut, zt)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut, x[m]

t−1)

5: w
[m]
t = p(zt|x[m]

t )

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

13: end procedure

The belief bel(xt) is approximated by particle set Xt. The probability for a state
hypothesis to be included is ideally proportional to its Bayes filter posterior bel(xt)
[Thrun et al., 2005, p. 98].

x
[m]
t ∼ p(xt|z1:t, u1:t) (2.8)

Just like in the Bayes filter the posterior Xt is computed recursively from the set
Xt−1.

On line 4 of algorithm 2 the equivalent to bel(xt) is computed. The state x
[m]
t is

generated based on particle x
[m]
t−1 and control data ut. Based on p(xt|ut, x[m]

t−1) new
particles are sampled. This is done for every particle in the set Xt−1. In this step
the most recent information from the control data gets added.
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Line 5 is then the equivalent to computing bel(xt). For the set of particles Xt

we compute the corresponding weights. Here w
[m]
t is the weight of particle m at

time t. The higher the weight the more likely it is that the state of the particle is
representative of the real state.

On line 9 new particles get drawn. This happens according to the weights wt. The
higher the weight, the higher the chance of the particle to be drawn. The particles
that were unlikely to represent the real state won’t get drawn and only the ones
that have a high weight survive.

2.1.5 Monte Carlo Localization

The particle filter can be used for localization [Thrun et al., 2005, p. 252]. Figure
2.5 shows a simple example. This figure is similar to figure 2.4. But here the
particles and their weights are used to represent the belief distribution. In (a), (c)
and (e) only the distribution of the particles is shown, but not their weights. It
shows how after some iterations the particles are clustered around the positions
that are most likely the real position. But this also involves the disadvantage that
after some iterations the particles will only be clustered around one spot, so we
only observe this particular part of the whole belief. This is both an advantage
and a disadvantage. It means we save computing power, because we only compute
a small part of the whole belief distribution. But it also means that after some
iterations we will only observe one particular point of the belief and disregard
the rest. In certain situations this can lead to localization failures, which can’t
be resolved unless we tweak the algorithm. How this happens and how those
situations can be salvaged will be explained in the following section 2.1.7.

There is control data that is usually provided by an odometer. The measurement
data is usually provided by sensors like laser range finders. In our specific case the
Wi-Fi receiver will be another source of measurement data.

A sample motion model and a measurement model are needed for the Monte
Carlo localization to work. The sample motion model takes ut and x

[m]
t−1 as input.

It takes the odometer’s data into account and samples new particles based on that.
In simpler terms this just means that the particles are moved according to what
we can infer from the control data available. If a robot drove a few meters to the
right the particles should move to the right as well. This step does not take the
measurement data into account yet.

That happens in the next step. The measurement model takes the newly sampled
particle x

[m]
t and measurement data zt and computes a weight. The higher the

weight, the more likely is it according to the model that the particle is represen-
tative of the real pose.

These models are different for different kinds of sensors. Later on we will show
the used measurement model for the Wi-Fi receiver in-depth.
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-
ization.

Figure 2.5: This is a simple example of the localization realized with a particle
filter. It is similar to figure 2.4, but this time the belief is not a curve but instead
represented by the distribution of particles [Thrun et al., 2005, p. 251].
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Algorithm 3 Monte Carlo Localization [Thrun et al., 2005, p. 252]

1: procedure Monte Carlo Localization(Xt−1, ut, zt,m)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x

[m]
t = sample motion model(ut, x

[m]
t−1)

5: w
[m]
t = measurement model(zt, x

[m]
t−1,m)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

13: end procedure

Algorithm 3 is the Monte Carlo localization. Note how similar it is to the particle
filter from algorithm 2. The only difference is how the new set of particles is
sampled in line 4 and how the weights are computed in line 5. This happens
according to the sample motion model and the measurement model.

2.1.6 Global Localization

There is local localization and there is global localization. In the local localization
problem the position at the beginning is already known. The particles are already
clustered around the correct position at the beginning. Afterwards the only task
is to track the position from there on out. In the global localization problem we
have no information about the robot’s location at the start.

A common approach to solve this problem is to spread the particles over the entire
map at the start. After some iterations of weighing and sampling the particles they
are supposed to be clustered around the real state. Sometimes this approach does
not localize the robot in the right position. There are a number of circumstances
that can increase the likelihood of such a global localization failure.

Many buildings have multiple rooms with similar structures. This can lead to
the creation of multiple clusters and the pose being ambiguous. Many rooms are
symmetric. This too can lead to clusters on multiple locations.

2.1.7 Kidnapped Robot Problem

The kidnapped robot problem occurs when, while performing localization, the
robot is taken and placed at a different location. It won’t be able to register where
it went in most cases. Wheeled robots usually use odometers for the control data
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Figure 2.6: Example of global localization in our laboratory. The black circle
represents the robot. The green arrows represent the position and orientation
of the particles. In the upper left pictures the particles are spread over the
entire state space. In the subsequent pictures the robot rotates to observe its
environment. Slowly the particles converge to the correct location on the map
and thus it is possible to infer the correct position of the robot.

and once the robot is taken up and not on the ground they won’t register anything
anymore.

This leads to problems when the particles are already clustered around one pose.
When sampling new particles this cluster will persist and there will not be any
particles on the rest of the map. To recover from such failures one can introduce
a certain number of random particles into the set [Thrun et al., 2005, p. 256].

We could introduce a certain number of random particles in every iteration. But
we can also use the measurement model and the generated weights as an indicator
how likely the current pose is. For this purpose we calculate the average weight
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of the current iteration [Thrun et al., 2005, p. 257].

1

M

M∑
m=1

w
[m]
t ≈ p(zt|z1:t−1, u1:t,m) (2.9)

This already gives us a good idea, but we don’t want to rely on only a single
iteration to decide the induction of random particles. There could be an unusually
high amount of noise or other reasons for inaccurate measurements. So we take
the average over multiple iterations into account. We keep track of two different
values:

wslow = wslow + αslow(wavg − wslow)

wfast = wfast + αfast(wavg − wfast)
(2.10)

αslow and αfast are decay rates and constants that have to be set beforehand. wslow

is the long term measurement probability and wfast is the short term probability.
This means that past weighting averages have a higher influence on wslow than
they do on wfast.

During the resampling process random particles are drawn with probability:

max{0.0, 1.0− wfast/wslow} (2.11)

The higher the long term probability wslow is compared to wfast the more likely it
is that random particles get introduced. That means the lower the recent weights
are compared to the older ones, the higher the probability that random particles
are drawn [Thrun et al., 2005, p. 258-259].

2.2 Wi-Fi

A Wi-Fi signal is spread from a base station known as access point. Each signal
carries a unique identifier called media access control (MAC) address, which can
be used to set the different signals apart. The Service Set Identifier (SSID) on
the other hand isn’t unique and there are often multiple access points distributing
Wi-Fi signals under the same SSID. This makes the MAC-address relevant and
the SSID irrelevant for the Wi-Fi position estimation [IEEE, 2012].

The Wi-Fi signal strength is measured in dBm. This is a logarithmic unit of
measurement that is based on order of magnitude, rather than a linear scale. The
reason for this is that the signal strengths deteriorate very quickly.

According to our own experience the range of the signal is between about -90 dBm
up to -40 dBm. The higher the number the better the signal. For our purposes
the stability of the data transfer via the Wi-Fi connections is unimportant. We
are only interested the received signal strength.
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Wi-Fi signals are spread on different frequency ranges. The ranges usually used
are 2.4 GHz and 5 GHz. These frequency bands are then further divided into
channels. So each Wi-Fi signal is spread on a specific channel. The more Wi-Fi
signals in a close range send on the same channel, the more they interfere with
each other.

Our goal is to fetch the MAC-address and the corresponding signal strength from
every available Wi-Fi network, not only the one the robot is connected to. This
can be achieved by actively scanning the different Wi-Fi channels. In order to
receive the data a probe request is sent to the available access points. Each access
point answers. This has to be done on each supported channel. Sending out the
request, waiting for the answer and repeating that procedure for each channel
means that it can take a few seconds to complete a whole scan.

2.3 Wi-Fi Sensor Model

2.3.1 Overview

As discussed earlier, in order for the Monte Carlo localization to work with a
certain type of sensor, we need to provide a measurement model for it. Our goal
is to create one for a Wi-Fi receiver. For this purpose we chose to create a map of
the Wi-Fi signal strengths. Doing this for Wi-Fi signals is different from creating
a map of obstacles for example. For an obstacle map a point on the map can only
have 3 different states: free, occupied and unknown. But Wi-Fi signals change
constantly from position to position. This makes it more complicated to create
an accurate map. It isn’t feasible to record the Wi-Fi signal strengths on every
single point of the map. Like we discussed the scanning process alone will take
a few seconds. Thus we choose to record a fair amount of data points and use
regression to interpolate a likely value for the Wi-Fi signal strengths at every point
on the map. Wi-Fi signals can be unpredictable in the way they spread. With
no obstacles between robot and access point it is reasonable to expect the signal
to constantly get weaker the further we go away. But in buildings there are walls
and other obstacles that can obstruct and deflect the signal.

Gaussian processes are a very flexible solution for this kind of problem. They are
non-parametric and using hyperparameter optimization it is possible to fit them
to the Wi-Fi signals. As we will show with a Gaussian process it is possible to
compute a Gaussian distribution for every coordinate on the map. So given a
coordinate x and y we can compute a Gaussian distribution with a mean and
variance. The resulting Gaussian distribution is a model of the probability of the
occurrence of a signal strength at that coordinate. This property makes it very
well suited to use it as measurement model. We are not interested in the most
likely signal strength observed at a certain point on the map, but in the probability
that a given signal strength is observed. This is needed in order to compute the
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weights for particles of the Monte Carlo localization, so a Gaussian process is very
well suited for this task.

In the further subsections we will explain how Gaussian processes work and how
we can use them to create the Wi-Fi map and a measurement model.

2.3.2 Gaussian Processes

We have a dataset D of n observations of the form D = {(xi, yi)|i = 1, ..., n}.
In our example the xi is a coordinate on the map and yi is the associated Wi-Fi
signal strength. Now in regression we want to infer the function values for new
inputs. So we want to get a function f from the dataset D. But how do we infer
function f? We need to make previous assumptions about the function because
otherwise all functions that cross all training inputs and the corresponding values
would be equally valid. The two common methods to achieve this are [Rasmussen
and Williams, 2005, p. 2]:

1. Restrict function f to certain classes of functions.

2. Put prior probabilities on all possible functions.

When using the first solution depending on what classes are chosen, they can be
a bad fit. For example one can imagine that linear functions would be a bad fit
for Wi-Fi data. They are not flexible enough. On the other hand it can happen
that the classes chosen lead to overfitting when they are too flexible [Rasmussen
and Williams, 2005, p. 2].

In the second solution we would need to put a prior on all possible functions. The
possible functions are infinitely many, so this seems like a difficult task. This is
where the Gaussian process can help us.

A stochastic process is a generalization of the probability distribution. While
the probability distribution concerns scalars and vectors, the process concerns
functions [Rasmussen and Williams, 2005, p. 2]. Here we will focus on processes
that are Gaussian. The reason for that is that is that it makes the computations
required a lot easier.

One can think of a function f(x) as a vector, where each entry specifies a value
for a specific input x. These vectors would be infinitely large. When we want to
infer a function value from a Gaussian process at finitely many points it is as if
we had taken the infinitely many other points taken into account, even though we
ignore them [Rasmussen and Williams, 2005, p. 2].

To give a better intuition on how inferring the function f from the dataset D
works we will give an example in form of figure 2.7. As one can see in (a) the
functions are drawn without any observations. In (b) two observations were made.
The functions go through the observed values. The thick line signifies the mean
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Figure 2.7: An example of how the prior distribution of functions works. In
(a) functions were drawn from the prior. As one can see they have similar
characteristics. In (b) the posterior is shown. Two points were observed. The
solid line is the mean prediction. The shaded region is twice the standard
deviation at each input value x [Rasmussen and Williams, 2005, p. 3]

.

prediction. But this method also gives us a variance at each input value. The closer
the input value is to an observation, the lower the standard deviation indicated
by the gray shadows. The obvious reason is that we are more certain about the
true function value the closer we are to the observations we made.

When using Gaussian processes the form of the drawn functions is determined
by a covariance function [Rasmussen and Williams, 2005, p. 4]. This function
determines the functions that are considered for inference. So a different covariance
function would have created a different mean and variance and the functions drawn
from the prior in (a) would have looked different. This makes choosing a fitting
covariance function important. A better fit produces a more accurate result. But
covariance functions usually aren’t static. There are parameters. But these can
be learned, that is why they are called hyperparameters. So while we still have to
choose a fitting covariance function for the Gaussian process they can be fit to the
data by determining the right hyperparameters. How to do this will be discussed
later in this section. In the following section we will define what a Gaussian process
is and how it can be used for regression.

Regression
Regression is a method to determine a relationship between a number of variables,
using data that was recorded beforehand. So in our example we want to know
the relationship between the Wi-Fi signal strength and the coordinates on the
map. We are going to use Gaussian process regression to predict the likelihood of
Wi-Fi signals at certain coordinates based on the Wi-Fi signals that we observed
beforehand. To explain how we do this with Gaussian processes we are going to
start with a simpler regression and go on from there.
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We are going to look at the linear model from a Bayesian perspective.

Once again we have a training set D of n observations in the form of D =
{(xi, yi)|i = 1, ..., n}. To make things easier we are going to introduce vector
X and y to form D = (X , y).

Now the standard linear regression model with Gaussian noise has the following
form:

f(x) = xTw

y = f(x) + ε
(2.12)

Here f(x) is the function value. w is a vector of weights, which act as the param-
eters of the linear function. y are the observed function values. Because the real
values won’t be exactly on the graph of f(x) the noise term ε is added [Rasmussen
and Williams, 2005, p. 8].

The noise term is of the form of a Gaussian distribution with zero mean and
variance σ2

n.
ε ∼ N (0, σ2

n) (2.13)

From this we infer the likelihood p(y|X,w), so the probability density of the
observations y given the weights w and the training inputs X [Rasmussen and
Williams, 2005, p. 9].

p(y|X,w) =
n∏

i=1

p(yi|xi,w) =
n∏

i=1

1√
2πσn

exp
(
−(yi − xi

Tw)2

2σ2
n

)
=

1

(2πσn)n/2
exp

(
− 1

2σ2
n

|y −XTw|2
)

= N (XTw, σ2
nI)

(2.14)

Here I is the identity matrix. We can form the likelihood to a Gaussian distribution
with mean XTw, which is f(x), and a variance of σ2

nI, which resembles the noise
term ε.

Because we use the Bayesian formalism we need to specify a prior over the weights.
This prior expresses what we believe their nature is like before we look at the
observations. For this we use another Gaussian distribution. It will have a mean
of zero and the variance is the covariance matrix Σp [Rasmussen and Williams,
2005, p. 9].

w ∼ N (0,Σp) (2.15)

To be able to predict new values, we need to know the weights. This means we
want to infer the value of the weights from the training set. This is called the
posterior and has the form p(w|X,y). We can use Bayes’ theorem in order to
achieve this.

posterior =
likelihood · prior

marginal likelihood

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)

(2.16)
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p(y|X) is independent of the weights and therefore it is just a normalizing constant.
Using the theorem of total probability it takes on the following form:

p(y|X) =

∫
p(y|x,w)p(w)dw (2.17)

Now leaving out the normalizing constant and only concentrating on the likelihood
and prior we are able to form the posterior into a normal distribution, by using
equations 2.14 and 2.15.

p(w|X,y) ∝ exp
(
− 1

2σ2
n

(y −XTw)T (y −XTw)
)

exp
(
− 1

2
wTΣ−1p w

)
∝ exp

(
− 1

2
(w − w̄)T (

1

σ2
n

XXT + Σ−1p )(w − w̄)
) (2.18)

Here w̄ = σ−2n (σ−2n XXT + Σ−1p )−1Xy. Now the resulting Gaussian distribution is
the following:

p(w|X,y) ∼ N (w̄ =
1

σ2
n

A−1Xy, A−1) (2.19)

with A = σ−2n XXT + Σ−1p [Rasmussen and Williams, 2005, p. 9].

Now we want to predict new values. We have a new input x∗ with the function
value f∗ , f(x∗). In order to achieve this we use the posterior distribution and
average over all possible parameter values [Rasmussen and Williams, 2005, p. 11].

p(f∗|x∗,X,y) =

∫
p(f∗|x∗,w)p(w|X,y)dw

= N (
1

σ2
n

x∗
TA−1Xy,x∗

TA−1x∗)
(2.20)

This is called the predictive distribution. With this distribution one can predict
the function values for new inputs x∗. But of course this solution is still very
limited. It still only considers linear functions and won’t be flexible enough for
the Wi-Fi data.

But there is a trick we can apply in order to fix this flaw. We can simply project
the inputs into high dimensional space by using a set of basis functions and apply
the linear regression model in that space. A simple example would be φ(x) =
(1, x, x2, x3, ...). As long as the function is independent of w one can still apply
the linear regression to it [Rasmussen and Williams, 2005, p. 11].

We will look closer at the basis function at a later point, for now it is given by φ(x).
This changes the model for linear regression as follows [Rasmussen and Williams,
2005, p. 12].

f(x) = φ(x)Tw (2.21)
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Now applying the basis function to predictive distribution from equation 2.20 can
easily be done, by just applying the basis function to the inputs.

f∗|x∗,X,y ∼ N (
1

σ2
n

φ(x∗)
TA−1Φy, φ(x∗)

TA−1φ(x∗)) (2.22)

Here Φ = Φ(X) and A = σ−2n ΦΦT + Σ−1p .

One drawback here is A−1. We would have to invert A which is a N × N ma-
trix, where N is the size of the feature space. But we can rewrite the formula
[Rasmussen and Williams, 2005, p. 12].

f∗|x∗,X,y ∼ N (φT
∗ΣpΦ(K + σ2

nI)−1y, φ∗Σpφ∗ − φT
∗ΣpΦ(K + σ2

nI)−1ΦTΣpφ∗)
(2.23)

Here φ(x∗) = φ∗ and K = ΦTΣpΦ.

Now we will introduce function k(xp,xq) which is called the covariance or kernel
function.

k(xp,xq) = φ(xp)TΣpφ(xq)

= ψ(xp) · ψ(xq)
(2.24)

The fact that we can rewrite this function as a dot product makes it possible to
apply the so called kernel trick [Rasmussen and Williams, 2005, p. 12]. We can
define a function k(xp,xq) and then replace all occurrences by it. The kernel
trick is used to lift the inputs into a higher dimensional space, while still making
all computations in the input space. This saves a lot of computation time and
memory. So we are going to place the kernel function where we can in equation
2.23.

f∗|x∗,X,y ∼ N (k∗
T (K + σ2

nI)−1y, k(x∗,x∗)− k∗
T (K + σ2

nI)−1k∗) (2.25)

With k∗ denoting a vector of covariances between the test point and the training
points, and K being the covariance matrix of all training points, so K = k(X,X).

Equation 2.25 now enables us, given the training data X and y, to compute
a Gaussian distribution for a new data point x∗. If X are previously recorded
coordinates and y the corresponding signal strengths, then given some coordinate
x∗, we would be able to compute a Gaussian distribution. This distribution can be
used to infer how likely it is that a signal strength was observed at that coordinate
x∗. This is exactly what we need to compute the weights for the Monte Carlo
localization from section 2.1.5.

Now we have everything we need to fully define the Gaussian process and then
predict values from it.

According to Rasmussen and Williams [2005, p. 13] a Gaussian process is fully
defined as follows:

GP(m(x), k(x,x′)) (2.26)

The mean function m(x) is usually defined as 0.
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The kernel function k(x,x′), also called covariance function, is an important aspect
of the Gaussian process. There are many possibilities to choose from for kernel
functions. The functions considered as kernel functions have to be symmetric and
positive semi-definite.

But while there are many functions that could be used as kernel, we are going to
focus on one of the most popular ones. The radial basis function kernel. (RBF
kernel). Ferris et al. [2006] showed that this kernel is very well suited for the usage
with Wi-Fi signal strengths.

k(xp, xq) = σ2
f exp(− 1

2l2
(xp − xq)2) + σ2

nδpq (2.27)

Here δpq is the Kronecker delta, that is 1 whenever p = q and 0 else. This par-
ticular kernel function results in a very smooth graph. There are three so called
hyperparameters. These are variables, but they don’t have to be set manually, but
can actually be learned. How will be discussed in the next section. The hyperpa-
rameters here are the lengthscale l, the signal variance σ2

f and the noise variance
σ2
n.

Hyperparameter Optimization
The Gaussian process regression is a parameterless regression method. But we
have to deal with so called hyperparameters. The advantage here is that we can
use optimization algorithms in order to find values that are working well. In order
to find those values we take the log-likelihood and maximize it. The log-likelihood
function gives us an indication how well the Gaussian process fits the data. The
higher the value of the log-likelihood function the closer the Gaussian process
resembles the given data.

The log-likelihood is defined by the following function [Rasmussen and Williams,
2005, p. 113].

log p(y|X, θ) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (2.28)

Here θ are the hyperparameters l, σ2
n and σ2

f . In order to use optimization al-
gorithms we also need the partial derivatives of the function [Rasmussen and
Williams, 2005, p. 114].

∂

∂θj
log p(y|X, θ) =

1

2
tr

(
(K−1y)(K−1y)T

∂K

∂θj

)
(2.29)

So, we need a method that uses the information from the log-likelihood function
and its gradient, and maximizes the value by adjusting the hyperparameter values.
Some examples of algorithms that are suitable to optimize the hyperparameters are
the gradient descent [Shewchuk, 1994], BFGS or L-BFGS [Liu and Nocedal, 1989].
Blum and Riedmiller [2013] propose to use resilient backpropagation (Rprop) to
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solve this problem. They show that the algorithm has a similar performance as
L-BFGS, but it has the advantage over L-BFGS and similar methods that it is
easier to implement.

Like most methods the algorithm requires not only the function itself, but also
the gradient. However it doesn’t use the second order derivatives or an approxi-
mation thereof, which leads to shorter computation times per iteration [Blum and
Riedmiller, 2013].

In every iteration the hyperparameters θ are updated depending on the sign of the
derivative:

θ
(t+1)
i = θ

(t)
i − sign

(
∂J (t)

∂θi

)
∆

(t)
i (2.30)

∆i is the update-value. Depending on the change of the sign the hyperparameter,
∆i is either increased by a factor of η+ > 1 or decreased by a factor 0 < η− < 1.

∆
(t)
i =


η+ ·∆(t−1)

i , if
∂J

∂θi

(t−1)
· ∂J
∂θi

(t)

> 0

η− ·∆(t−1)
i , if

∂J

∂θi

(t−1)
· ∂J
∂θi

(t)

< 0

∆
(t−1)
i , else

(2.31)

The initial update value is set to ∆0 and is bounded by ∆min and ∆max. The
parameters have to be specified, but there are values that work for most cases
[Blum and Riedmiller, 2013].

So in order to get good values for the hyperparameters we need to apply the algo-
rithm to the partial derivatives as specified in equation 2.29. Like most optimiza-
tion algorithms it tries to minimize the function value, but we need to maximize it.
The higher the log-likelihood is the better the fit. So we simply use the negative
log-likelihood and its negative partial derivatives.

The algorithm will run for a set number of iterations or until every partial deriva-
tive is 0. At every iteration we check the negative log-likelihood and compare it
with the best result we found yet. If the new result is smaller we save the current
hyperparameters. At the end of this process the Gaussian process will fit well to
the training data [Blum and Riedmiller, 2013].

At the beginning of this chapter we explained the basics of localization. We moved
from the uncertainty involved in robotics to the recursive state estimation to its
implementation with a particle filter. At the end of section 2.1 we showed the
Monte Carlo localization that uses particle filters. For the Monte Carlo localization
to actually work we need sensor models. For a Wi-Fi receiver Gaussian processes
are well suited. So, in the second half of this chapter we determined what a
Gaussian process is and showed how it can be used for regression by deriving
it from the linear regression. Even though the Gaussian process regression is a
parameterless method, there are hyperparameters that have to be optimized. We
explained how this can be done using Rprop.
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In the next chapter we will use this knowledge to explain our implementation of
the Wi-Fi position estimation, by using Gaussian processes and the Monte Carlo
localization.
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Implementation

This chapter discusses the implementation of the parts needed for a functioning
Wi-Fi position estimation. In section 3.1 we will introduce the Robot Operating
System(ROS) and explain its basic components. In section 3.2 we will explain
how the required Wi-Fi data gets fetched and published for other parts of the
program. Section 3.3 gives a short overview about the used implementation of the
Monte Carlo localization for the 2D laser range finder. In section 3.4 we will show
how the published Wi-Fi and position data from the robot is collected and stored
for further use with the Wi-Fi position estimation. The section 3.5 details the
implementation of the Gaussian process for the Wi-Fi position estimation. And
at last section 3.6 will tie the previous chapters together and explain the Wi-Fi
position estimation as a whole.

3.1 ROS

The Wi-Fi position estimation was implemented with the ROS-Framework and
run on a TurtleBot 2 (http://www.turtlebot.com/, accessed on 02.11.2016). ROS
[Fernandez et al., 2015] [Quigley et al., 2009] is short for Robot Operating System.
It supports a wide variety of robots and was designed so that different robots and
environments have a common basis to make it easier to share.

The software in ROS is divided into packages. So each package usually has a
different functionality or purpose. An example used in this project is the adap-
tive Monte Carlo localization (AMCL) package and the created package for the
Wi-Fi position estimation. These packages contain nodes. The nodes are pro-
cesses. Before the nodes can be executed a master has to be started. On this
master the nodes are registered, so that different nodes can see each other and can
communicate with each other.

Another important part of the ROS-framework for basic functionality is the param-
eter server. It can be used in order to supply a node with manually set parameters
when the node is started. This makes it easier to customize the nodes.
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Figure 3.1: Relationship of the basic parts of the ROS environment.

For the purpose of communication between the nodes there are topics and services.
Topics can either be published or subscribed to. For example, there is the AMCL
node, that publishes a pose estimation and a Wi-Fi publisher node, that publishes
the Wi-Fi signal strengths. The Wi-Fi data recorder is subscribed to these nodes
so it can save the signal strengths and the corresponding position on the map.
A service can be offered or called by a node. For example AMCL offers global
localization via service. Services are only performed, whenever they are called,
while the data published on topics usually gets published constantly.

The ROS framework offers a wide variety of packages for a wide variety of robots.
The advantages of this are that we don’t have to build everything from the ground
up. There is already existing software that is maintained by a large community.
Different packages can be re-used for different robots, as long as these robots run
ROS.

There are some other ROS packages and nodes that were used in this project. The
rosbag package (http://wiki.ros.org/rosbag, accessed on 31.10.2016) can be used
to record data and store it to play it back later. For the nodes there is no difference
if the robot is actually producing them right now or if they are just played back
from a rosbag. One of its uses was in carrying out experiments to apply different
algorithms to the same set of data.

Another package we used is RViz (http://wiki.ros.org/rviz, accessed on 31.10.2016).
It was used to visualize the Wi-Fi data and the Gaussian process for various figures
in this thesis.

Starting these nodes can be done via the command line. The typical way to do this
is the command “rosrun package name node name”. Another option is creating a
launch file and starting it with the roslaunch-package (http://wiki.ros.org/roslaunch,
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accessed on 01.11.2016). These files are written in the XML-format. They can con-
tain parameters that are used by the node launched. A launch file can be started
using the terminal command “roslaunch package name launch file.launch”.

3.2 Wi-Fi Data Publisher

The first step to realize the position estimation is to actually get the Wi-Fi data.
For this purpose we use an active Wi-Fi scan. We wait for the result and handle
the data. Then the SSIDs, MAC-addresses and signal strengths are published.
This procedure gets repeated until the node is stopped. As already discussed the
scan can take up to a few seconds. Of course this means that the rate at which
the node publishes new Wi-Fi data is limited by the time the scan takes as well.

The node publishes a topic called “/wifi state”. It contains the Wi-Fi signal
strength in dBm, the MAC-addresses and the SSIDs.

In order to get this data the following terminal command is used:

$ sudo iw dev wlan0 scan

Here wlan0 is the used network interface. This value can be different on other
systems. This command starts a scan to find all Wi-Fi networks that can be
found. It provides a lot of information about every network and among them is
the signal strength, the MAC-address and the frequency.

Without further specification the command will scan all channels, but it is also
possible to specify a frequency that corresponds to a Wi-Fi channel. This will
limit the Wi-Fi networks that can be found, but it is also a lot faster. Here is a
simple example:

$ sudo iw dev wlan0 scan f r e q 2412

Different frequencies correspond to different Wi-Fi channels. 2412 MHz for exam-
ple is the frequency of channel 1.

In our experience the complete scan takes about 3-5 seconds, depending on the
Wi-Fi receiver used. The scan using a specified frequency only takes a fracture of
a second. A short test resulted in approximately 20 scans per second, but once
again this depends on the Wi-Fi receiver used. Since we want the data from all
available Wi-Fi access points only the complete scan was used.

3.3 AMCL

We use the Adaptive Monte Carlo Localization (AMCL) package
(http://wiki.ros.org/amcl, accessed on 25.10.2016) for the localization with
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the 2D range finder. The package contains an implementation of the Monte Carlo
localization and furthermore provides the needed measurement model for the
laser range finder. The package implements the following specific algorithms from
Thrun et al. [2005]:

• sample motion model odometry: A sample motion model using the odome-
try.

• beam range finder model: A measurement model using the laser range finder
or Kinect.

• likelihood field range finder model: A measurement model using the laser
range finder or Kinect.

• Augmented MCL: The Monte Carlo Localization with the method from sec-
tion 2.1.7

• KLD Sampling MCL: The Monte Carlo Localization with a mechanism that
varies the number of particles depending on how certain the Monte Carlo
Localization is about the localization.

The AMCL node needs a map of the environment the robot is supposed to be
localized in. The map is created beforehand by using a package like gmapping
(http://wiki.ros.org/gmapping, accessed on 01.11.2016) for example. The map
can be provided to AMCL by using the map server package
(http://wiki.ros.org/map server, accessed on 01.11.2016). So a map server node
loading the correct map has to be started before starting the AMCL node. When
started, AMCL publishes the pose of the robot determined by the localization.
This pose contains the x and y coordinate and the orientation as a quaternion on
the given map. The poses also contain a covariance matrix, that represents the
spread of the particles around the determined position.

It should be noted that no matter how the robot is moved, AMCL will continue
to localize the robot as long as the wheels are used to move it. So only when the
robot is picked up and moved, AMCL is not able to track the position.

The package has multiple use cases in this project. For one it is used for data
collection, so that we know where on the map the data was recorded. It is also
used in conjunction with the Wi-Fi position estimation, to test how well it works
as an aid for the global localization.

The last use case is to use the Wi-Fi position estimation in case of a localization
failure. We can use the method discussed in section 2.1.7 as an indicator if there is
a localization failure. Using the value from equation 2.11 we can infer the quality
of the localization. Usually AMCL does compute this value, but does not publish
it so that other nodes can use it. AMCL was slightly modified, so that it publishes
that value under the identifier “/amcl failure probability”. Here the higher the
given value, the more likely it is that there is a localization failure.
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3.4 Data Collection

amcl

wifi_state

wifi_data_collector/amcl
/amcl_failure_probability

/amcl_pose

/wifi_state /wifi_state

/wifi_data_collector

CSV-files

Figure 3.2: Overview over the topics the Wi-Fi data collector subscribed to
and the related nodes. The /amcl pose and /wifi state topics are publishing the
data that is supposed to be stored. The /amcl failure probability topic gives us
an indication if there is a localization failure and in that case when a certain
threshold is exceeded it stops recording the data. The data is then stored in a
number of CSV files.

In order to collect the data, the aforementioned Wi-Fi data publisher is used in
combination with AMCL. We need to know the position of the robot on the map,
if we want to use the data later to build a map of the signal strengths. AMCL
publishes the estimated pose of the robot and the Wi-Fi data publisher publishes
the MAC-addresses and the measured signal strengths. Whenever new Wi-Fi
data is published the data collection node stores that data together with the last
published pose in comma separated value (CSV) files. For each MAC-address
there is a separate file.

There are some options to customize the data collector. One can choose if the
robot is supposed to collect the data constantly or only in case it stands still.
Another option is to load existing CSV files, so that the data collector can add
new data points to them.

In order to collect the data, the mobile robot needs to move around. In or-
der to do this the move base package (http://wiki.ros.org/move base, accessed
on 03.11.2016) can be used. One can provide a goal consisting of coordi-
nates from the used map and an orientation, then the robot will move to this
location. Another way to move the robot is the “turtlebot teleop” package
(http://wiki.ros.org/turtlebot teleop, accessed on 03.11.2016). Here one has to
control the movement of the robot with peripherals like keyboards or joysticks.
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Figure 3.3: Both pictures represent Wi-Fi data from one access point, recorded
on the hallway of the TAMS research group at the University of Hamburg.
Above each dot is a certain recording at the position on the map. Beneath
we interpolated the data, to highlight the behavior of the signal strength. The
colors from strong to weak signal strength: yellow, light blue, red, purple, blue.
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3.5 Gaussian Process

The model from section 2.3 was used to implement the Gaussian process. A change
was made to the formula for the kernel. The reason for this is that we want to
prevent the hyperparameters from taking on negative values. This means we either
have to apply an optimization algorithm that works for constrained problems, or
make sure the parameters can’t take on negative values. The first solution would
mean we would have to use a more complicated algorithm, therefore we decided
to take the second approach.

The covariance function from equation 2.27 is changed to the following form:

cov(yp, yq) = σf exp

(
− |xp − xq|

2

l

)
+ σnδpq (3.1)

In order to make sure that the hyperparameters can only take on positive values
they are substituted by the following terms:

σf = exp(2θ1)

l = exp(θ2)

σn = exp(θ3)

(3.2)

This leads to changes for the gradient too:

∂cov

∂θ1
= 2σfexp

(
− |xp − xq|

2

l

)
∂cov

∂θ2
= −σfexp

(
− |xp − xq|

2

l

)(
− |xp − xq|

2

l

)
∂cov

∂θ3
= σnδpq

(3.3)

Now the optimization algorithm is applied to θ1, θ2 and θ3. When these become
negative, σf , l and σn will stay positive.

The Gaussian process is not a node, but a simple class. In order to create a
Gaussian process usually a path to a folder with CSV-files is provided. These files
contain training data, that is, the positions and corresponding signal strengths.
Each MAC-address usually has its own CSV-file named after itself, so that the
Gaussian process can distinguish them.

The implementation of the Gaussian process was done with the Eigen-library
(http://eigen.tuxfamily.org/, accessed on 28.10.2016). There are many matrix-
and vector-operations needed and the Eigen-library is well suited for these kind
of problems, as it provides matrix- and vector-classes with a number of useful
algorithms for them.
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Figure 3.4: The picture above represents the mean of a Gaussian process that
was trained for the data from figure 3.3. The colors from high to low: red,
yellow, green, light blue, dark blue, purple. Below is the corresponding variance
of the same process. As one can see the variance is very low close to the region
where the data was recorded. This happens because we are more confident
about the signal strengths in these regions. The further away we go, the higher
the variance.
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For the optimization of the hyperparameters the Rprop-algorithm detailed in sec-
tion 2.3.2 was implemented in a separate class. So once a Gaussian process was
created, the Rprop-class can be used in order to train the Gaussian process, so
that it fits the training data.

Another aspect to consider is the nature of the Wi-Fi signal strength data and
how it affects the Gaussian process. We are using a constant mean function of 0.
In practice that means that when moving away from any training data, the mean
of the Gaussian process will converge to 0.

We decided to normalize the data to a range from 0 to 1. In order to do this
we decided to use a maximum of 0 dBm and a minimum of -100 dBm. In our
experience these values are not reached in real world scenarios. This is especially
important for the minimum. A value of -100 dBm would be 0 after normalization
and this would mean it would be indistinguishable from a value far outside the
range of the training data. This is a scenario we want to avoid. Another reason
for the normalization is that the used optimization algorithm, the already dis-
cussed Rprop-algorithm, works better with the normalized values. The resulting
operation for the normalization is the following:

y′ =
y − (−100)

0− (−100)

=
y + 100

100

(3.4)

This operation is both applied to the training data and to the new incoming data,
when a weight for a particle is computed.

3.6 Wi-Fi Position Estimation

amcl

wifi_position_estimation

wifi_state

/amcl

/amcl_failure_probability

/wifi_position_estimation

/initialpose

/wifi_state /wifi_state

Figure 3.5: A basic diagram of the Wi-Fi localization and the subscribed and
published topics.

The Wi-Fi position estimation uses the data that was collected to create a number
of Gaussian processes. For every network a new Gaussian process is created.
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Figure 3.6: Example of using the Wi-Fi position estimation for global local-
ization in our laboratory. The black circle represents the robot and the green
arrows the position and orientation of the particles of AMCL using the 2D laser
range finder. In the upper left picture the Wi-Fi position estimation was per-
formed already. Compared to figure 2.6 one can see that the particles are a lot
more concentrated and not spread over the entire state space. The position is
off by a certain margin. In the following pictures the robot is turning around
itself to observe its environment with the 2D laser range finder. The particles
are quickly clustered around the correct location and thus the correct position
of the robot can be inferred.

Since we only try to estimate the position we basically only replicate the first step
of the global Monte Carlo localization. So particles are spread across the map.

The Wi-Fi data publisher node will provide us with the current Wi-Fi signal
strengths of the different networks. We will use this data with the coordinates
from the particles to compute the weights for each particle.

The processes get the coordinates and the signal strength that corresponds to the
MAC-address of the data that the particular Gaussian process was created with.
For each particle the weights are computed by multiplying the computed values
from each MAC-address. So for n MAC-addresses we get the following formula to
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compute the weight:

w(x∗) =
n∏

i=1

p(z
[i]
t |x∗) (3.5)

At the end the highest particle weight determines which position is the most likely
one. This position is then sent to AMCL. AMCL will use it as a new start position
and will proceed the localization from those coordinates.

AMCL will reset its own particles and spread them around that location. How far
the particles are spread is determined by a covariance matrix. These values are
not computed, but set manually.

So the first use case would be the manual initiation of the position estimation in
order to give AMCL a seed for the localization. This would be similar to a global
localization. The robot doesn’t know where it is on the map and has to deduce
its own position with the available data.

Another use case would be in case of a localization failure. To determine a local-
ization failure we use the “/amcl failure probability” published by AMCL using
the 2D laser range finder.

We specify a threshold. If the computed value from equation 2.11 is higher than the
threshold, the Wi-Fi position estimation is triggered. A position will be computed
and sent to AMCL as a new start position.

3.7 Using the Wi-Fi Position Estimation

In the preceding sections we explained the implementation of all the parts of the
system. So this chapter will discuss the appliance of said software in the real
world. The robot used is a TurtleBot 2 (http://www.turtlebot.com, accessed on
02.11.2016) with a Kinect [Andersen et al., 2015]. To complement the Kinect
there is also the laser range finder ”Hokuyo UTM-30LX“ [Hokuyo Inc. Ltd., 2012]
installed. It can be seen in figure 3.7. According to Microsoft the Kinect has
a scanning range of 4 meters, but the data is still usable some meters beyond
[Andersen et al., 2015]. The laser range finder has a scanning range of 30 meters
[Hokuyo Inc. Ltd., 2012], so it is vastly superior for our purposes. The environment
we tested the software in was mainly a long hallway at the TAMS research group
at the University of Hamburg that can be seen in figure 3.8.

The goal now is to put the Wi-Fi position estimation to use. The first step here
is to collect data of the environment the robot is supposed to localize itself in.
This can be done with AMCL from section 3.3 by using the laser range finder, the
Wi-Fi publisher from section 3.2 and the Wi-Fi data collector from section 3.4. So
one needs to start the nodes one after another. It is also important to make sure
that AMCL’s localization is close to the real position, so it is advisable to set the
position manually at the start. An easy way to do this is the RViz-node. It can

39



Chapter 3. Implementation

Figure 3.7: The laser range finder used for the TurtleBot.

Figure 3.8: The hallway of the TAMS research group at the University of Ham-
burg where we tested the software and carried out the experiments in chapter
4.
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visualize the map used and offers the option to publish a new initial-pose to AMCL
via clicking on the correct position on the map. The data collector offers different
configurations. An important one is whether the Wi-Fi data should always be
collected or only when standing still. In our tests we decided for the latter. To
configure the node the launch file for the node can be customized. It contains the
used parameters.

So when the nodes are started the Wi-Fi data can be collected by calling the rosser-
vice “/start wifi scan” with the value “true”. Now the data is recorded according
to the chosen configuration. Another node not mentioned yet is the map traverser
node. This node gets a list of x- and y-coordinates as parameters and then drives
to these positions one after the other, by using the move base node. This node can
also be used to record the data. Another method is to operate the robot via key-
board with the “turtlebot teleop” package (http://wiki.ros.org/turtlebot teleop,
accessed on 27.10.2016). The Wi-Fi and position data is then saved in CSV-files.
The Wi-Fi data can also be visualized by using occupancy grids. Calling the
service “/publish wifi maps” publishes the occupancy grids that can be used to
visualize the currently collected data. The topics the occupancy grids are pub-
lished to are named after the data’s MAC-address and an identifier signifying the
nature of the visualization. There are four identifiers:

• ln (local normalized): normalized with the minimum and maximum of only
this access point.

• li (local interpolated): normalized with the minimum and maximum of only
this access point and interpolated.

• gn (global normalized): normalized with the minimum and maximum of all
access points.

• gi (global interpolated): normalized with the minimum and maximum of all
access points and interpolated.

The collected Wi-Fi data can then be used as training data for the Gaussian
process. The Wi-Fi position estimation node is given a parameter that contains
the path to a folder with the CSV-files for the training data. There is a launch
file that lists these parameters and should be customized to point to the correct
folder.

Once started the node either trains the Gaussian processes created from the train-
ing data, or if this was already done when previously running the node it loads the
already optimized hyperparameters. The optimized hyperparameters are saved as
CSV-files as well, in a subfolder of the folder containing the training data. Once
the node has been initialized fully it can be used to approximate the position of
the robot. In order to send the position estimation to AMCL the service called
“/compute amcl start point” can be used. Another parameter given to the Wi-Fi
position estimation node is a threshold for the “/amcl failure probability” value
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published by AMCL. Is the value above this threshold, the Wi-Fi position estima-
tion is triggered to recover from the localization failure.

In this chapter we discussed the implementation of all parts needed for the Wi-
Fi position estimation. At first we explained the ROS-framework used for the
implementation of the system. Afterwards the parts needed to collect the Wi-
Fi data were shown, with the Wi-Fi data publisher, AMCL and the Wi-Fi data
collector. The collected data could then be used as training data. In order to
implement the position estimation, the implementation of the Gaussian process
and its application for the Wi-Fi position esitmation node were discussed. At last
we gave information on the particular hardware used and explained how to use
the implemented software.

We now have a system that is able to estimate the position via Wi-Fi data. In the
next chapter we will use it in different experiments to determine how effective it
is for the proposed tasks.

42



Chapter 4

Experiments and Results

In order to determine how well the Wi-Fi position estimation works, we carried out
a number of experiments. First we will analyze the collected Wi-Fi data in section
4.1. In section 4.2 we will assess the accuracy of the Wi-Fi position estimation
by itself. The following section 4.3 contains two experiments that determine how
well the Wi-Fi position estimation can aid AMCL with a laser range finder. In the
first experiment we evaluate how well it can help with the global localization. In
the last experiment we inspect how well the localization failure detection works.

4.1 Wi-Fi Data Analysis

We want to examine the Wi-Fi data and look at how it behaves. Figure 4.1 shows
an example of the Wi-Fi strength of one access point. The signal reaches its peak
close to the access point, marked by the yellow color. The further away the data
was collected the weaker the signal was. In this example the access point was in
the same room and there are basically no obstacles between the access point and
the robot at any position. Another example can be seen in figure 4.2. Here the
signal never reaches the strength of figure 4.1. But still the peak is at the center
of the recorded data. To both sides it gets weaker until the Wi-Fi receiver can’t
pick it up anymore. It is reasonable to assume that the signal originates from an
access point on another floor, so either from a hallway above or below. Still even
though the signal is obstructed it is evenly distributed. This is probably due to
the fact that no matter where the robot recorded the signal on the hallway, the
signal was always obstructed by walls and thus was weakened equally.

Now figure 4.3 paints a different picture. We can see a clear peak in the upper
right corner of the room. And indeed the access point is installed there behind
the wall. But the signal doesn’t weaken gradually like it was on the floor. Even
though in its entirety it does indeed get weaker the further away it was recorded,
there are local peaks in different places.
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Figure 4.1: Visualization of Wi-Fi data collected on a hallway. The access
point the signal originated from is on the same floor.

This is probably due to the nature of this room. There are tables, chairs and a
couch, which can all lead to the obstruction of the signal. Especially because the
recording robot was relatively small.

4.2 Wi-Fi Position Estimation Accuracy

For the Wi-Fi position estimation to be actually useful it is important that it is
accurate to a certain extent. It is not necessary to achieve accuracy on the level of
a few centimeters, but it can only be useful if it can reduce the possible positions
to a radius of a few meters. The first experiment was designed to compare the
actual position of the robot with the estimated position from the Wi-Fi data.

To determine the actual position AMCL is used. The position was determined
at the start of the localization, so that it is as accurate as possible. The test
environment was a long hallway. The hallway can be seen in figure 4.1 This would
be the kind of environment where the Wi-Fi position estimation could give an
advantage over the usual approach to global localization because there aren’t any
characteristics that stand out and there is a lot of symmetry.
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Figure 4.2: Visualization of Wi-Fi data collected on a hallway. In this example
the access point is on a different floor.

The robot drives to different points on the map that were chosen beforehand.
When it arrives the robot will execute the Wi-Fi position estimation. The result
will be compared with the coordinates given by AMCL. The difference between
the two results will be computed.

The result of the experiment was, that on average the difference to the ground
truth was 1.81 meters. The individual results can be seen in table 4.1. The robot
was mostly localized within a few meters of the ground truth. Even when the error
was large, the robot was still localized on the hallway.

Table 4.1: Error of the Wi-Fi position estimation in meters.

Try: 1 2 3 4 5 6 7 8 9 10
Error: 3.75 1.32 0.63 2.72 1.42 3.88 0.25 1.86 3.27 1.55
Try: 11 12 13 14 15 16 17 18 19 20
Error: 1.11 0.38 0.49 0.37 0.97 4.25 1.08 0.38 6.36 0.18
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Figure 4.3: Visualization of Wi-Fi data collected in our laboratory. This is a
room with many potential obstructions of Wi-Fi signals. This is reflected here
by the way the Wi-Fi signal strength behaves. The access point is behind the
wall of the upper right corner, near the maximum signal strength marked by
the yellow color. It can be clearly seen that the signal is not getting gradually
weaker.

4.3 AMCL with Wi-Fi Position Estimation

4.3.1 Global Localization

The proposed potential use for the position estimation was that it could give a
starting position for AMCL. This experiment will answer how well the position
estimation can aid AMCL. Once again the hallway is used. A set of goals for the
robot to drive to is used. When a goal is reached the two different methods for
global localization are compared.

One method uses the typical global localization where the particles are spread
over the entire map and then converge to one pose. The other method will use
the Wi-Fi position estimation as a seed and will lead to a much smaller area for
the particles to be spread out in.
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Table 4.2: Error in meters of the global localization using the Wi-Fi position
estimation.

Try: 1 2 3 4 5 6 7 8 9 10
Error: 3.63 0.01 0.08 7.15 7.85 1.83 0.05 6.48 0.01 2.04
Try: 11 12 13 14 15 16 17 18 19
Error: 0.04 0.17 5.14 0.13 0.02 4.8 0.06 2.82 0.03

Table 4.3: Error in meters of the global localization using the standard ap-
proach from AMCL.

Try: 1 2 3 4 5 6 7
Error: 20.31 34.11 9.89 7.70 29.07 28.31 0.15
Try: 8 9 10 11 12 13 14
Error: 9.68 5.09 20.22 5.24 9.04 10.34 14.38
Try: 15 16 17 18 19
Error: 24.52 34.95 25.46 5.50 35.44

When the estimation was performed the robot will turn 360 degrees and then drive
to the next planned goal. From there the procedure is repeated.

At the arrival at the next goal the difference to the actual position was measured.
Using the Wi-Fi position estimation the mean error was 2.23 meters. With the
global localization the mean error was 17.34 meters.

While observing the global localization using the Wi-Fi position estimation when
executing the experiment some notable behaviors occurred. In 9 of 19 tries the
robot was able to approximately find the correct location. In some cases the
failure could be explained by the fact that the Wi-Fi position estimation was too
far away from the true position. In other cases the robot localized itself in the
wrong direction. So while the robot drives in one direction, the localization moves
to the other direction and thus distances itself further from the true position. This
behavior explains some of the higher errors. The reason for this behavior is the
fact that we are not able to infer any information about the robot’s orientation
with the Wi-Fi data. The hallway looks very similar on both sides, so AMCL
was not able to differentiate them in these cases. In figure 4.2 one can see that
on one side of the hallway the wall is built straight, while on the other side in a
certain interval the wall gives way to a bit more space. Sometimes the robot was
localizing itself next to one of these spaces, even though it was actually next to
the space before or behind it. Even when we are able to narrow down the possible
position of the robot on the map, the laser range finder based localization can still
get confused by the structure of the room.

The global localization implemented in the AMCL package was mostly able to
localize the robot on the hallway, but in just one case it was able to approximately
localize the robot on the right position. The obvious reason is that the hallway’s
outline is very similar in a lot of places. The Wi-Fi position estimation had similar
problems, but there the part of the hallway that was taken into account was
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already very small. AMCL spreads its particles over the whole map when starting
the global localization, so naturally these problems are magnitudes higher too.

4.3.2 Kidnapped Robot Problem

Another case where the position estimation can be used in AMCL, is when the
robot was picked up while localizing and brought to a different position without
noticing it. This kind of problem is called the kidnapped robot problem.

In this experiment the robot will drive up and down the hallway. The values from
equation 2.10 are used to compare the weights in the long term, with the weights
in the short term. This means the robot needs to be localized correctly for some
time, so that it can be detected that the robot was kidnapped. So at first the
robot will drive up and down the hallway with the help of AMCL using the laser
range finder. We will record this with a rosbag. Once finished the rosbag can be
replayed and a new instance of AMCL can be applied to the recorded data. At
first we will initialize the new instance of AMCL to the correct location. After
driving up and down for some time AMCL will be given an initial position at a
random point on the map. So this will result in a localization failure. Meanwhile
AMCL still gets the data from the robot driving up and down the hallway from the
rosbag. Since AMCL now has the wrong location, the “/amcl failure probability”
value should rise and signal this localization failure or kidnapping of the robot.

We now want to know if the Wi-Fi position estimation would be triggered. For
that to happen we set a threshold of 0.1 for the “/amcl failure probability” topic.
This value is computed by AMCL as explained in section 2.1.7.

In 10 tries the Wi-Fi position estimation was triggered every time by the time the
robot was at the other end of the hallway. The method that is used is the same as
in the previous experiment, so a new the new computed position is given as a seed
for AMCL. The accuracy of this mechanism was already discussed in the previous
chapter.

We looked at the Wi-Fi data and its behavior. When there are are no obstacles
in between the access point and the robot, the signal gradually gets weaker the
further the robot is away. In rooms with many obstructions we saw that the
signal is less predictable. The first experiment was designed to measure the Wi-Fi
position estimation’s accuracy. It resulted in an average error of about 1.81 meters.
In the next experiment we used this method to enhance the global localization of
AMCL. The computed position is given as a seed for AMCL. The result was an
improvement over AMCL’s usual global localization, with an error of 2.23 meters
using the Wi-Fi position estimation compared to an error of 17.34 meters without
it. The last experiment was designed to test the localization failure detection. It
worked in 10 out of 10 tries. In the following chapter we will evaluate the results
of the experiments and draw our conclusions from them.
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Conclusion

The Wi-Fi position estimation can be realized with Gaussian processes. The result
of the first experiment, where the accuracy of the Wi-Fi position estimation was
tested, was a mean error of around 1.81 meters to the ground truth. This value is
low enough to use the Wi-Fi position estimation to give a global localization that
is using a laser range finder a rough position estimate at the start.

In the next experiment we determined how suitable the Wi-Fi position estimation
is for the use for a global localization. The result of the Wi-Fi position estimation
was used as an initial position for the Monte Carlo localization with a laser range
finder. The result was that on average the position differed only 2.23 meters from
the ground truth. This is a big improvement over the global localization provided
by AMCL, which had a mean error of 17.34 meters. In 9 out of 19 cases the global
localization using the Wi-Fi position estimation was able to approximately find
the true position. This too is a big improvement over the global localization from
AMCL, that was only able to do this in 1 out of 19 cases.

The experiments were carried out on a hallway and especially in the second exper-
iment the problems laser range finders can face in such in an environment became
apparent. There were no outstanding landmarks in the hallway. Many parts of
the map look very similar. So when AMCL was used for the global localization it
happened that the robot was not able to distinguish one end of the hallway from
the other end. In other cases the robot was localizing itself in the wrong part of
the hallway, because many parts of the hallway’s outline are very similar. This
symmetry and lack of any outstanding features in the outline were the main causes
for the difficulties AMCL’s global localization was facing. The global localization
using the Wi-Fi position estimation was suffering from these problems as well, but
to a much lesser extent. Sometimes the robot would localize itself in the wrong
direction or in a part of the hallway that was a few meters away from the true
position. This is a big improvement over the issues the global localization was
facing when only using the laser range finder. While the experiments showed that
we can almost be certain that the global localization using only the laser range
finder will fail, the Wi-Fi position estimation worked almost 50% of the time.
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The method to detect if the robot was kidnapped was working well and was able
to correctly identify the problem in 10 out of 10 tries. So using this the Wi-Fi
position estimation are also be able to re-localize the robot on the correct position
in case of a localization failure.

In practice we foresee some drawbacks to the Wi-Fi position estimation. First of
all the Wi-Fi scan to fetch the signal strengths and MAC-addresses of the access
points in the environment can take a few seconds. Also the computations involved
in the Wi-Fi position estimation can take some time depending on the number of
access points observed, training data involved and the number of particles used.
For the experiments on the hallway usually a large number of access points was
observed and with 1000 particles the Wi-Fi position estimation was taking around
30 seconds to compute an approximate location. This is fine for an initial global
localization, because without knowing the robot’s position, moving around would
be difficult anyway. In the case of a localization failure, when the Wi-Fi position
estimation is triggered by the “/amcl failure probability”, the robot would need
to stop for the time of the computation of the new initial position as well.
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Outlook

The Wi-Fi position estimation precision is good enough in the experiment with
a mean error of 1.81 meters, so that it can be used for the global localization for
AMCL with a laser range finder. We used a radial basis function kernel for the
Gaussian processes, but we did not investigate any other kernels. Investigating
different kernels could potentially improve the accuracy even further.

The Wi-Fi signals can only be used to infer information about the position, but
not about the orientation of the robot. One could for example use a compass to
get this kind of information. Right now the particles that are spread by the Wi-Fi
position estimation have a random orientation. Using a compass one could infer an
approximate orientation and thus would be able to spread particles that have that
orientation. When carrying out the second experiment where the Wi-Fi position
estimation was used for the global localization we observed that the robot would
often be localized in the wrong direction on the hallway. So using a compass could
clearly lead to an improvement in this case.

Another concern is the computation time of the Wi-Fi position estimation. When
the global localization using the Wi-Fi position estimation is executed, random
positions on the map are generated that are used for the particles. So every Gaus-
sian process for each of the networks has to compute a Gaussian distribution for
all those particles. Depending on the number of particles, size of the training data
and the number of observed Wi-Fi networks in the moment, this can cause long
computation times. One solution would be to pre-compute the Gaussian distri-
butions when the Wi-Fi position estimation node is initialized. So the random
positions are all generated beforehand and when the Wi-Fi position estimation
is actually called these randomly generated positions are used. The obvious con-
sequence here is that in case we only generate the random positions once, the
position of the particles would not change in subsequent executions. A solution
would be to draw a new set of random positions after a Wi-Fi position estimation
was performed and calculate the new Gaussian distributions then.

Right now the robot has to stand whenever the Wi-Fi position estimation is exe-
cuted. The reason for this is the already mentioned computation time, but another
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reason is also the time the Wi-Fi scan takes, which usually is a few seconds. The
different Wi-Fi channels are scanned one after the other. When the robot moves
in the few seconds that the scan is taking, then the data from the different chan-
nels is spread over the path the robot moved on. So we do not know the actual
position the specific networks were actually recorded on. But as we explained it
is also possible to scan the different Wi-Fi channels separately. This is a lot faster
than the whole scan, but we will also fetch less Wi-Fi networks. This makes some
optimizations possible. First off we would be able to scan the different channels
one after the other, but get the data from each channel instantly instead of waiting
for scanning all the other channels. This would give us the ability to process the
data when it is only a fraction of a second old. Another possible optimization
would be to only scan a selection of Wi-Fi channels. The command used for the
Wi-Fi publisher also provides information about the channel used for a network.
So when recording the training data, we would be able to save those channels, and
when we use the Wi-Fi position estimation we would only need to scan these par-
ticular channels. This could also help with the computing time. When we scan the
channels individually we observe less access points and therefore less computation
time is needed for the Gaussian processes.

This can also help to implement the Wi-Fi sensor model for direct use with AMCL.
The faster we are able to update the weights with new data, the better. We could
apply the computed weights directly to the particles from AMCL. This can be done
by multiplying the weights computed with the measurement model for the laser
range finder with the weights computed by the Wi-Fi receiver sensor measurement
model. One problem here will be that the weights produced by the Wi-Fi sensor
model can differ from iteration to iteration. Their value is dependent on the
number of Wi-Fi access points observed, so they would have to be normalized
somehow before used with AMCL. If the channels are scanned individually the
data can be used instantly to compute the weight, instead of waiting a few seconds
for the scan of all channels to end. Another factor for the computation time is
the number of particles. AMCL varies the number of particles. When they are
clustered around one position there are less particles compared to the start of a
global localization when the particles are spread over the entire map. Less particles
would lessen the computation time as well.

Another factor for the computation time is the size of the training data set. If we
would find a strategy that is able to reduce that set while keeping the accuracy of
the Wi-Fi position estimation and the quality of the results from the Wi-Fi sensor
model relatively stable, then this would also help to reduce the computation time.

We used the weights computed by AMCL using the laser range finder for the
detection of the kidnapped robot problem. One possible way to use the Wi-Fi
position estimation for this task would be to compare a position computed by
it with a position computed by AMCL. Is the difference larger than a certain
threshold, then AMCL is re-initialized using the Wi-Fi position estimation.
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Code Overview

This is an overview of the code created for this thesis. The tree shows folders and

files. The number in parentheses behind the files is the number of lines the file

contains.

wifi localization

include

csv data loader.h (31)

wifi data collector

mapcollection.h (70)

mapdata.h (137)

subscriber.h (142)

wifi position estimation

gaussian process

gaussian process.h (119)

kernel.h (68)

optimizer.h (41)

wifi position estimation.h (90)

launch

kidnapped robot experiment.launch

pos-est-accuracy-experiment.launch

wifi data collector csv.launch

wifi data collector.launch

wifi data collector record only stopped.launch

wifi position estimation.launch

msg

MaxWeight.msg

WifiPositionEstimation.msg
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WifiState.msg

wifi localization

scripts

wifi publisher.py (72)

wifi.py

wifi.pyc

src

csv data loader.cpp (50)

experiments

map traverser node.cpp (137)

wifi pos est accuracy2 node.cpp (95)

wifi pos est accuracy node.cpp (40)

wifi pos est kidnapping node.cpp (182)

wifi data collector

mapcollection.cpp (105)

mapdata.cpp (209)

subscriber.cpp (109)

wifi data collector node.cpp (48)

wifi position estimation

gaussian process

gaussian process.cpp (152)

kernel.cpp (51)

optimizer.cpp (59)

wifi position estimation.cpp (232)

wifi position estimation node.cpp (21)
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