
Open-Ended Domain Model for Continual Forward Search HTN Planning

Dominik Off and Jianwei Zhang
TAMS, Department of Informatics, University of Hamburg

Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany
{off,zhang}@informatik.uni-hamburg.de

Abstract

Domain models for automated planning systems often rely on
the closed world assumption. Unfortunately, the closed world
assumption is unreasonable in many real world planning do-
mains. We propose an open-ended domain model based on
definite clauses that can be flexibly extended and is able to
automatically determine relevant but unknown information.
The determination of relevant but unknown information is in-
tended to be the starting point of an active information gath-
ering process which might result in the enablement of addi-
tional planning alternatives. This is particularly relevant for
situations in which it would otherwise be impossible to find
any plan at all. Moreover, we present several knowledge rep-
resentation constructs that help to deal with the special chal-
lenges of open-ended domains. The proposed domain model
is mainly intended for hierarchical task network planning sys-
tems that generate plans in open-ended domains by means of
interleaving planning and knowledge acquisition.

Introduction
Planning systems have been developed that in principle are
efficient enough to solve realistic planning problems in real
time. However, “classical” planning approaches fail to gen-
erate plans when necessary information is not available at
planning time, because they rely on having a complete rep-
resentation of the current state of the world. (Nau 2007)
nicely summarized this problem as follows:

In most automated-planning research, the informa-
tion available is assumed to be static, and the planner
starts with all of the information it needs. In real-
world planning, planners may need to acquire informa-
tion from an information source such as a web service,
during planning and execution. This raises questions
such as What information to look for? Where to get it?
How to deal with lag time and information volatility?
What if the query for information causes changes in the
world? If the planner does not have enough informa-
tion to infer all of the possible outcomes of the planned
actions, or if the plans must be generated in real time,
then it may not be feasible to generate the entire plan
in advance. Instead, it may be necessary to interleave
planning and plan execution.

We propose a domain model that is able to answer some of
the questions raised in the above quotation. More precisely,

the main contributions of this work are:
1. We propose an open-ended domain model—called Do-

main Model for Artificial Cognitive Systems (ACogDM)—
based on definite clauses that is able to answer the ques-
tions: ’What to look for?’ and ’Where to get it?’.

2. We demonstrate how the proposed language of the do-
main model can be easily extended by additional con-
structs.

3. We propose extensions of our basic domain model that
help to deal with the special requirements (e.g., computa-
tional complexity) for open-ended domains.
The proposed domain model is particularly intended for

forward search (i.e., forward decomposition) Hierarchical
Task Network (HTN) (Ghallab, Nau, and Traverso 2004)
planning approaches. However, it might also be useful for
other approaches.

A domain model for planning is usually composed of in-
formation about the state of the domain and information
about the possible activities of an agent. We call the for-
mer part of a domain model the state model and the later
part the activities model.

Extendable State Model
Several non-classical planning systems use axiomatic infer-
ence techniques to reason about the state of the world (Ghal-
lab, Nau, and Traverso 2004). Often the well investigated
definite-clause inference techniques are used. Usually ax-
iomatic inference is supported by calling a theorem prover
as a subroutine of the overall planning process. The ex-
ploited knowledge representation and theorem proving sys-
tems (e.g., PDDL axioms (Thiébaux, Hoffmann, and Nebel
2005)) often rely on the closed world assumption (CWA).
However, if we want to enable a planner to reason about
unknown information in a partially known domain, then we
need a state model and theorem proving system that are not
based on the CWA. Particularly, we need an appropriate han-
dling of negation.

As an alternative to implicitly representing negative in-
formation (e.g., by using the negation-as-failure seman-
tics (Clark 1987))—as often done by definite-clause theo-
rem provers—it is possible to extend the syntax of definite
clauses for the purpose of supporting the explicit representa-
tion of negative information. It has been stated in literature

that this approach is often practically infeasible, because of
the sheer magnitude of negative facts that would have to be
stated (Subrahmanian 1999). We agree with this argumenta-
tion, but only under the assumptions that (1) a complete state
model should be represented and (2) it is not possible to de-
fine a complete representation for local parts of the overall
model. However, with respect to the context and objectives
of this work neither of these two assumptions is fulfilled,
since it is intended to develop an adequate domain model for
incompletely known domains which—as introduced later—
permits the explicit representation of complete parts at the
level of predicates. Thus, we believe that it is reasonable to
directly represent negative information in the context of this
work.

We use definite clauses as the representational basement
for state models. The definition and notation of definite
clauses, definite goals, definite programs and substitutions
is borrowed from (Nilsson and Maluszynski 1995). In short,
a definite clause is notated as A0 Ð A1, . . . , An whereas
n ě 0. Furthermore, J denotes an atomic formula that
is true in every interpretation. A definite clause for which
n “ 0 is notated as A0 Ð J. Moreover, we use ’&’ in
definite clauses and definite goals as the negation as (final)
failure operator as introduced by (Clark 1987) and imple-
mented in several prolog systems.

Additionally, we introduce two special kinds of atomic
formulas: literals and statements. If f is an atomic formula,
then we call f and neg f a literal. Furthermore, we call st a
statement iff it can be constructed by the following rules:

• st is a literal

• st “ pneg st1q and st is a statement

• st “ pst1 ^ st2q and st1 as well as st2 are statements

• st “ pst1 _ st2q and st1 as well as st2 are statements

Literals and statements are syntactically defined as atomic
formulas for the purpose of reasoning about them in the lan-
guage of definite clauses. Conceptually a literal essentially
is what is known as a literal in first order logic. Similarly, a
statement essentially is what is known as a first order logic
sentence. Statements—including literals—are always im-
plicitly quantified. Statements in a definite clause are (im-
plicitly) universally quantified and statements that constitute
a definite goal are (implicitly) existentially quantified.

Similar to PDDL with PDDL Axioms our state model en-
ables domain experts to express factual (e.g., Bob’s mug is
in the kitchen) and axiomatic (e.g., Bob’s mug is in room
X1 if Bob’s mug is on table X2 and X2 is in room X1)
knowledge. Due to the objective to deal with open-ended
domains we additionally support the explicit representation
of negative information. Moreover, we support the flexible
extension of the representation language of a state model
by additional constructs. These additional constructs are in-
tended to constitute higher level (conceptual) knowledge and
are called concepts. In principle, our state model can be ex-
tended to support any conceptual knowledge as long as we
can compile this information to the underlying knowledge
representation formalism, namely, a set of definite clauses.
We exploit this feature in the following part of the paper by

successively adding support for additional concepts that are
intended to deal with the special requirements of open-ended
domains. For example, we are going to support the explicit
representation of subsumption-relations (e.g., ’A mug is an
object’).

A state model is formally defined as follows:

Definition 1 (state model). A state model is a quadruple
sM “ pF,C,RD, RGq. F is a set of literals and C is a
set of atomic formulas such that F X C “ H. RD is a set
of definite clauses l Ð s such that l is a literal and s is a
statement. RG is a set of definite clauses. sMdp “ tf Ð
J|f P FYCuYRDYRG is the definite program constituted
by the state model.

A state model sM is represented by the four sets F , C,
RD, RG. F represents a set of facts about the state of a
domain. C contains additional conceptual knowledge. RD
represents domain-specific rules (i.e., domain-specific ax-
iomatic knowledge). In contrast,RG represents generic (i.e.,
domain-independent) rules (e.g., pA^ Bq holds if A and B
hold). F , C and RD are intended to be specified by a do-
main expert in order to model the state of a certain domain.
RG, however, represents generic rules that are defined to-
gether with the supported state model language constructs
in order to be able to map these constructs to the level of
definite clauses.

The fact that a state model constitutes a definite program
has the advantage that the semantics of a state model is
based on the well-known semantics of a definite program.
From a more practical perspective, we can additionally ben-
efit from the actuality that several highly optimized prolog
implementations are available that can automatically deter-
mine whether a definite goal can be proved or not.

Based on the semantics of a definite program we can de-
fine the derivability of an atomic formula as follows:

Definition 2 (derivable). An atomic formula f is derivable
with respect to a state model sM and a grounding substi-
tution σ (denoted as sM $σ f) iff fσ is a logical conse-
quence1 of sMdp.

In order to specify the semantics of statements we add
the following generic rules to the set RG of a state model
sM “ pF,C,RD, RGq:

pst^ st1q Ð st, st1 (GR1)

pst_ st1q Ð st (GR2)

pst_ st1q Ð st1 (GR3)

neg neg stÐ st (GR4)

neg pst^ st1q Ð pneg st_ neg st1q (GR5)

neg pst_ st1q Ð pneg st^ neg st1q (GR6)

These rules determine the semantics of statements. In
particular, the handling of the introduced negation operator
’neg’ is specified. Furthermore, please note that it directly

1More precisely, this means that f is a member of the least
Herbrand model MsM

dp (Nilsson and Maluszynski 1995, Theo-
rem 2.16).

follows from Definition 2 that a statement st is derivable
with respect to a state model sM and a substitution σ iff stσ
is a logical consequence of sMdp. For the purpose of avoid-
ing misunderstandings we would like to emphasize again
that statements are syntactically treated as atomic formulas,
but semantically constitute a first order logic sentence.

As already pointed out, a domain modeller has the oppor-
tunity to define domain-specific axioms. Axioms are known
to be an important feature of domain languages (Thiébaux,
Hoffmann, and Nebel 2005). Two example axioms are de-
fined as follows:

in roompO,Rq Ð onpO, T q, in roompT,Rq (DR1)

neg in roompO,Rq Ð in roompO,R2q,

R2 ‰ R
(DR2)

DR1 represents the fact that an object is in a room R if it
is lying on a table which is in room R. DR2 is an example
for the explicit representation of negative information. It
represents the fact that an object can only be in one room at
a given point in time.

Due to the fact that we support the explicit representa-
tion of negative information it is in principle possible to
construct a syntactically inconsistent2 state model. This
means that it is possible to construct a state model where
st and neg st are derivable. Indeed, it is desirable to sup-
port domain modellers with software tools in order to pre-
vent the creation of inconsistent state models. However, se-
mantic inconsistencies may also occur in CWA based rep-
resentations. For example, one can create a CWA based
state model such that openpdoor1q and closedpdoor1q is
derivable. Thus, one also has to deal with inconsistency
in CWA based models. Furthermore, note that the explicit
representation of negation by means of the definite clause
neg openpdoor1q Ð closedpdoor1q has the advantage that
it would make it possible to detect the semantic inconsis-
tency via syntactic techniques. However, we will not further
address that problem here, since dealing with consistency is
not in the focus of this work. The fact that a state model sM
is consistent is denoted as cpsM q. In the following part of
this paper it is implicitly always assumed that a state model
is consistent.

Conceptualizing Open-Endedness
CWA based knowledge representation and reasoning sys-
tems (e.g., prolog) can in principle also be used in open-
ended domains. Nevertheless, in open-ended domains one
has to consider that it is possible that true instances of a
statement “exist” but cannot be derived due to a lack of
knowledge. CWA based approaches are—by definition—
unable to reason about unknown (i.e. non-derivable) but
possibly true information. More precisely, it is unfeasible
for CWA based systems to distinguish between instances of
statements that cannot be derived because the existence is
impossible and instances of a statement that might be deriv-
able if additional information about the state of the domain
were available.

2See (Nguyen 2008) for more details about syntactic and se-
mantic inconsistencies.

Example 1 For example, let us assume that the only literals
that can be derived from the state model sM of an agent are
mugpbobs mugq and in roompbobs mug, kitchenq. If one
would try to derive whether a true instance of mugpXq ^
colorpX, redq exists with respect to sM , then the only in-
formation a CWA based reasoner can provide is that such
an instance cannot be derived. Nevertheless, in principle
there are two possible situations in which an instance of
this statement exist. It might be (1) possible that Bob’s
mug is red or (2) it might be possible that there is an ad-
ditional (i.e., non-derivable) mug that is red. For the pur-
pose of also exemplifying the case where the existence of
an instance is impossible, let us take a look at the statement
in roompbobs mug, officeq. Once again, the only thing a
CWA based reasoner can tell us about the literal is the fact
that it is not derivable. However, in this case the existence
of a true instance is impossible if one makes the reasonable
assumption that Bob’s mug cannot be in two different rooms
at same point in time as specified by DR2.

Summing up, the CWA leads to a strong limitation that
makes it hard to reason about unknown information. The
objective of the proposed open-ended domain model is to
enable the distinction between situations in which the exis-
tence of a non-derivable instance of a statement is impos-
sible and situations in which additional information might
make non-derivable instances derivable. Moreover, in the
latter case the domain model should make it possible to de-
rive all situations in which the existence of an additional in-
stance is possible. If we want to enable such a reasoning,
then we need an open-ended domain model. We propose
an open-ended domain model that is based on the following
three concepts: a F-extension; an open-ended literal; and a
possibly-derivable statement.

For the purpose of reasoning about open-ended domains
we have to reason about possible extensions of a state model.
Here we only consider extensions that are constituted by
adding factual knowledge (i.e., a set of literals) to a state
model. These extensions are called F-extensions and are for-
mally conceptualized as follows:
Definition 3 (F-extension). A state model s1M “

pF 1, C,RD, RGq is called an F-extension of sM “

pF,C,RD, RGq (denoted as sM ĎF s1M) iff F Ď F 1 and
cpsM q ñ cps1M q.

In other words, one can create an F-extension of a state
model by adding literals such that a consistent world model
stays consistent. We denote the set of all instances of a state-
ment st that are derivable with respect to a state model sM as
r$psM , stq respectively as r$pstq if the respective state model
is apparent. Furthermore, we call literals for which the exis-
tence of non-derivable instances is possible open-ended:
Definition 4 (open-ended literal). A literal l is called open-
ended w.r.t. a state model sM (denoted as lĹ) iff it is possible
that there is an instance lσ of l and a state model s1M such
that sM ĎF s

1
M , lσ R r$psM , lq and lσ P r$ps1M , lq.

Please note that for a ground literal the following holds:
Remark 1. If l is ground, then l is open-ended iff & l and
& neg l holds.

Let us recall the situation of Example 1 in order to ex-
emplify the concept of an open-ended literal. mugpXq and
colorpred,Xq are examples of open-ended literals, because
the existence of non-derivable mugs and red things is possi-
ble. In contrast, mugpbobs mugq is not open-ended, since
the only possible instance is already derivable.

Let groundplq be a meta-predicate that holds iff l is
ground and non-groundplq be a meta-predicate that holds
iff l is non-ground. The following two clauses constitute a
first attempt to specify an open-ended literal by means of a
set of definite-clauses:

lĹ Ð non-groundplq (GR7)

lĹ Ð groundplq,& l,& pneg lq (GR8)

In other words, a literal l is open-ended if it is non-ground
(GR7); or if it is ground and neither l nor neg l can be de-
rived (GR8).

Based on the definition of an open-ended literal, a
possibly-derivable statement is defined as follows:

Definition 5 (possibly-derivable statement). A statement st
is possibly-derivable w.r.t. to a state model sM and a set of
open-ended literals Lx (denoted as ♦pst, Lxq) iff the exis-
tence of a new instance lσ for each l P Lx implies the exis-
tence of a new instance stσ of st.

A possibly-derivable statement constitutes the partition of
a logical statement into a derivable and an open-ended part
(i.e., a set of open-ended literals). This partition determines
what additional information is necessary in order to derive
an additional (i.e., non-derivable w.r.t. the state model at
hand) instance of a given statement. Note that there may be
more than one way to partition a statement into a derivable
and an open-ended part.

Let us assume that we have the same state model sM as
introduced in Example 1 and would like to know whether
the statement st “ mugpXq ^ colorpX, redq is possibly-
derivable (i.e., we are looking for a red mug). In this
example there are two different situations in which st
is possibly-derivable. In the first situation, X is substi-
tuted with bobs mug and st is possibly-derivable with re-
spect to sM and the resulting set of open-ended literals
tcolorpbobs mug, redqu. In the second situation, we exploit
the fact that there might exist an unknown red mug and st is
possibly-derivable with respect to sM and the resulting set
of open-ended literals tmugpXq, colorpX, redqu.

Let literalplq be a meta-predicate that holds iff l is a lit-
eral. In order to be able to derive possibly-derivable state-
ments we introduce the following generic rules:

♦pst, Lxq Ð ♦pst,H, Lxq (GR9)

♦pst, Lx, Lxq Ð literalpstq, st,@lPLx : lĹ (GR10)

♦pst, Lx, Lx Y tstuq Ð literalpstq, stĹ (GR11)

♦ppst^ st1q, Lx, Lx
1
q Ð♦pst, Lx, Lx

2
q,

♦pst1, Lx
2, Lx

1
q

(GR12)

♦ppst_ st1q, Lx, Lx
1
q Ð ♦pst, Lx, Lx

1
q (GR13)

♦ppst_ st1q, Lx, Lx
1
q Ð ♦pst1, Lx, Lx

1
q (GR14)

♦pneg pst^ st1q, Lx, Lx
1
q Ð

♦ppneg st_ neg st1q, Lx, Lx
1
q (GR15)

♦pneg pst_ st1q, Lx, Lx
1
q Ð

♦ppneg st^ neg st1q, Lx, Lx
1
q (GR16)

GR10 and GR11 specify under what conditions a literal
is possibly-derivable. The general idea is that a literal is
possibly-derivable if it is derivable or open-ended. Thus, ev-
ery open-ended literal is possibly-derivable, because for ev-
ery open-ended literal it is possible that there is a consistent
extension of the current domain model so that it is deriv-
able w.r.t. this extension. Note that a (non-ground) literal
can be both derivable and open-ended. Lx denotes the set of
open-ended literals of the previous part of a statement and
initially is empty (see GR9). Including Lx into the recur-
sive definition is necessary in order to consider the possible
dependencies between different parts of a statement. To be
more precise, it has to be ensured that all literals that have
been ”chosen” to be in the open-ended part of a statement
stay open-ended after additional substitutions. This is ex-
actly what is done in GR10 by means of ensuring that possi-
ble substitutions that are necessary in order to derive an in-
stance of st do not affect the open-endedness of the literals
in Lx. Besides the correct handling of the set of open-ended
literals, GR13 - GR16 essentially describe well-known rules
of first order logic.

Continual Planning in Open-Ended Domains
As already mentioned, ACogDM is developed for forward
decomposition HTN planners (e.g., SHOP (Nau et al. 1999)
or SHOP2 (Nau et al. 2003)). In this section we briefly
motivate and explain how the proposed domain model can
be combined with such a planner so that the combination
constitutes a continual planning system.

Forward decomposition HTN planners choose between a
set of relevant (Ghallab, Nau, and Traverso 2004) methods
or planning operators (i.e., actions) that can be in principle
applied to the current task network. In the context of this
work preconditions of action or methods are represented by
definite goals of the form ’Ð st’ such that st is a state-
ment (e.g.,Ð pmugpXq ^ neg in roompX, kitchenqq). If
it does not lead to ambiguity, then we will omit the lead-
ing ’Ð’ of a definite goal. A relevant method or planning
operator can actually be applied if and only if its precondi-
tion p holds (i.e., an instance pσ is derivable) with respect
to the given domain model. Therefore, we define the set
of relevant preconditions with respect to a given planning
context (i.e., a domain model and a task network) to be the
set of all preconditions of relevant methods or planning op-
erators. A HTN planner cannot continue the planning pro-
cess in situations where no relevant precondition is derivable
with respect to the domain model at hand. The notation of
a relevant precondition is a first step to determine relevant

extensions of a domain model, since only domain model ex-
tensions that make the derivation of an additional instance
of a relevant precondition possible constitute an additional
way to continue the planning process. All other possible ex-
tensions are irrelevant, because they do not imply additional
planning alternatives.

The general idea is to adapt a forward decomposition
HTN planner such that the behaviour is not changed as long
as sufficient information is available in order to generate a
plan. However, if necessary information is missing, then
the planning process is stopped and a partial plan prefix
and a set of open-ended literals of a relevant and possibly-
derivable precondition is returned. If the planner stops the
planning process due to a lack of knowledge, then the set
of open-ended literals constitute a relevant extension of the
domain model that would make it possible to continue the
planning process. Hence, a planner can answer the question
“What to look for?” as follows: Look for non-derivable in-
stances of the open-ended part (i.e., a set of open-ended lit-
erals) of possibly-derivable and relevant preconditions. For
example, if want a planner to perform the task “Deliver
Bob’s mug into the kitchen”, but the the fact whether the
kitchen door is open or closed cannot be derived from the
domain model, then a planner returns a partial plan (e.g.,
rpick uppbobs mugq, . . .s) and a set of open-ended liter-
als (e.g., topenpkitchen doorqu). Based on that, a planner
can try to generate and execute a plan that acquires a non-
derivable instance for each open-ended literal (e.g., try to
acquire whether the kitchen door is open). Subsequently, a
planner can continue the planning process based on the up-
dated domain model. By this means a planner can automat-
ically switch between planning and acting such that missing
information can be acquired by means of active information
gathering.

Additional State Model Constructs
Supporting the representation on a conceptual meta-level—
in contrast to representing knowledge on the level of definite
clauses—has the advantage that it eases the knowledge engi-
neering process, since domain experts can represent knowl-
edge on a higher abstraction level that is often closer to the
way they think about the domain.

In this section, we are going to extend the state model
by additional concepts that make it possible to reduce the
open-endedness of the state model. The general idea is that
one can reduce the open-endedness by means of exploiting
additional domain knowledge such that the number of open-
ended literals can be reduced. For example, according to Re-
mark 1 one could deduce that an opened-ended and ground
literal l is not open-ended if additional domain knowledge
would make it possible to derive l or neg l.

With the current state model (i.e., the state model
constituted by GR1 - GR16) every non-ground literal is
open-ended (see GR7). To put it another way, we as-
sume that we never know all instances of a non-ground
literal. However, this might not always be the case.
On the conceptual—or semantical—level domain con-
straints can limit the number of possible instances of a
statement. For example, let us assume that the literal

in roompbobs mug, officeq is derivable. In this case the
non-ground literal in roompbobs mug,Xq is not open-
ended (i.e., no additional instance is possible) if we assume
that an object can only be in one room at a given point in
time. In order to be able to express these kinds of constraints
we extend the language of the state model by constructs of
the form imaxpl, n, cq such that l is a literal, n P N Y t8u
and c is a statement. imaxpl, n, cq specifies that the literal l
can maximally have n ground instances if c holds. In order
to “ground” this additional construct to the level of definite
clauses we have to add the following rules:

imaxpl, nq Ð imaxpl, n, cq, c (GR17)

imaxpl,8q Ð non-groundplq,& imaxpl, n,X1q (GR18)

imaxpl, 1q Ð groundplq (GR19)
Now we can formulate an advanced version of (GR7) as

follows:

lĹ Ð non-groundplq, i maxpl, nq, n ă |r$plq| (GR20)

In other words, a literal is open-ended if the number of
derivable instances is less than the number of maximum in-
stances.

A less flexible, but easier way to define the maximum
number of instances for a subset of non-ground literals is
based on the instantiation scheme of a literal.

A literal or a term is called duplicate-variable-free iff
it does not contain two identical variables. For exam-
ple, ppX,Y q is duplicate-variable-free and ppX,Xq is not
duplicate-variable-free. For duplicate-variable-free terms
and literals we define a corresponding instantiation scheme
as follows:
Definition 6 (instantiation scheme). Let g be a duplicate-
variable-free term or literal. The instantiation scheme gρ of
g is defined as follows:

gρ :“

#

ground if g is ground
var if g is a variable
fpuρ1, . . . , u

ρ
mq else if g “ fpu1, . . . , umq

An instantiation scheme abstracts from the concrete argu-
ments of a literal by replacing variables with the constant
var and ground terms with the constant ground. We re-
strict instantiation schemes here to duplicate-variable-free
terms and literals, because the multiple occurrence of the
same variable imposes additional constraints that otherwise
would be unintentionally abstracted away. Moreover, from
the knowledge engineering perspective we wanted to keep
the definition of an instantiation scheme simple, since in-
stantiation schemes are intended to be specified by a hu-
man domain expert. Explicitly representing possible con-
straints that result from duplicate variables in a literal would
make the representation significantly more difficult while
only being necessary for the minority of literals. Addition-
ally, please note that Definition 6 can also be applied to
negative literals, since the negation operator is technically
a “normal” predicate. Let Lρ :“ tlρ|l P Lu. The maximum
number of possible instances with respect to an instantiation
scheme is defined by the function imax ρ : Lρ Ñ NY8. In

ACogDM, we can define the possible number of instances
with respect to a representation scheme with atomic formu-
las of the form i max ρpscheme, nq such that scheme is
a instantiation scheme and n P N Y t8u. In order to sup-
port these constructs we add the following generic rule to
the state model:

imaxpl, nq Ð imax ρpl
ρ, nq (GR21)

For example, the fact that an object can only be in one
room at a given point in time can be easily represented by the
atomic formula i max ρpin roompground, varq, 1q. How-
ever, now we have a semantically redundant representation
because the conceptually same actuality is already speci-
fied by the domain specific rule DR2. Note that both rep-
resentations have been introduced for different technical
reasons. DR2 solely makes it possible to derive that all
statements of the form neg in roompobj, rq are true if it
is known that in roompobj, r1q and r1 ‰ r hold. In con-
trast, i max ρpin roompground, varq, 1q solely makes it
possible to deduce that all statements with the instantiation
scheme in roompground, varq can only have one instance.

We can omit redundancies introduced by i max ρ via
adding generic rules. For the purpose of achieving this we
first introduce the sub-scheme-relation as follows:
Definition 7 (sub-scheme). An instantiation scheme s is
called a sub-scheme of an instantiation scheme s1 (denoted
as s ĺ s1) iff one of the following holds:
• s1 “ var ;
• s “ ground^ ps1 “ ground_ s1 “ varq ;
• or s “ gpα1, . . . , αnq and s1 “ gpβ1, . . . , βnq and for all
1 ď i ď n it holds that αi ĺ βi.
The sub-scheme-relation constitutes an ordering on in-

stantiation schemes. We are interested in this ordering, since
it is related to imax ρ as stated by the following proposition:
Proposition 1. If l and l1 are duplicate-variable-free liter-
als, then the following holds: lρ ĺ l1ρ ñ imax ρplq ď
imax ρpl

1q.
We define the lift of a duplicate-variable-free literal or

term with respect to a compatible instantiation scheme as
follows:
Definition 8 (lift). Let g be a duplicate-variable-free literal
or term, g1ρ be an instantiation scheme such that gρ ĺ g1ρ

and X‹ denote a new (i.e., unused) variable. The lift of g
w.r.t. g1ρ is defined by the function ρÒ as follows:
• ρÒpg, g1ρq :“ g; if gρ “ g1ρ

• ρÒpg, g1ρq :“ X‹; if g1ρ “ var and g is not a variable
• ρÒpg, g1ρq :“ fpρÒpu1, u

1
1
ρ
q, . . . , ρÒpum, u

1
m
ρ
qq; if g “

fpu1, . . . , umq and g1ρ “ fpu11
ρ
, . . . , u1m

ρ
q

Lifting a literal or a term with respect to an instan-
tiation scheme gρ essentially means to replace ground
terms by new variables such that the instantiation
scheme of the resulting literal is gρ. For exam-
ple, lifting in roompbobs mug, officeq with respect to
the instantiation scheme in roompground, varq results in
in roompbobs mug,Xq. Now we can propose the follow-
ing:

Proposition 2. For each duplicate-variable-free literal l,
neg l is derivable w.r.t. a state model sM if the following
holds:

1. Dσ : sM $σ l; (l is not derivable)
2. Dl1ρPLρ : lρ ĺ l1ρ ^ |r$psM , ρÒpl, l

1ρqq| “ imax ρpl
1ρq

This means that we can derive neg l if l is not derivable
and it exists an instantiation scheme that is more general than
the instantiation scheme of l for which all possible instances
are already derivable. Proposition 2 constitutes a rule that
enables us to now derive, based on the definition of imax ρ,
that something cannot hold. We can now represent Proposi-
tion 2 as the following rule:

neg lÐ & l, imaxρpl
1ρ, nq, lρ ĺ l1ρ,

|r$pρÒpl, l
1ρqq| “ n

(GR22)

For example, we can now derive neg in roomp
bobs mug, officeq if in roompbobs mug, kitchenq and
imax ρpin roompground, varq, 1q are derivable. Thus, we
can now omit the domain specific rule DR2 in order to re-
move the redundancy without loosing derivable information.

We proposed an open-ended state model where all
statements are by default interpreted based on the open
world assumption (OWA). Nevertheless, in order to com-
bine the best of both worlds it is possible to define on
the predicate level if a literal should be interpreted based
on the CWA or the OWA. This property of a predi-
cate is called the interpretation model of a predicate and
can either be OWA or CWA. For example, imagine a
predicate connection(R1,D,R2) which describes that
room R1 is connected via door D with room R2. The
relation that is represented by this predicate is rather
static, thus even in dynamic unstructured environments
it is possible to equip an artificial agent a priori with
all true ground instances of this relation. In this situ-
ation it would be reasonable to define the interpretation
model of the connection predicate as CWA. This def-
inition implies neg connection(R1,D,R2) holds iff.
connection(R1,D,R2) cannot be derived—which in
fact is the negation-as-failure semantics as introduced by
(Clark 1987). Predicate based CWAs reduces the lack of
knowledge and can significantly improve the performance
of the plan generation and knowledge acquisition process.

A predicate is symbolically represented as rname{ns
where name is the name of the predicate and n denotes the
arity. The predicate of a literal l is denoted as l%. The fact
that a predicate is interpreted with respect to the CWA is rep-
resented by atomic formulas of the form cwaprname{nsq.
Thus, all predicates that are not defined as being interpreted
with respect to the CWA are—by default—interpreted based
on the OWA. In order to support CWAs at the level of pred-
icates we only have to add the following rule:

neg lÐ cwapl%q,& l (GR23)

Another featured knowledge representation construct is
the explicit definition of subsumption-relations between lit-
erals. More precisely, subsumption is a relation between

concepts which are constituted by literals. The subsump-
tion relation can only be defined for literals that have the
same arity. Let Xi p1 ď i ď nq be variables and
ppX1, . . . , Xnq and p1pX1, . . . , Xnq be literals. The fact
that a literal ppX1, . . . , Xnq is conceptually subsumed by
a literal p1pX1, . . . , Xnq is denoted as ppX1, . . . , Xnq Ď

p1pX1, . . . , Xnq. Information about subsumption relations
can now be exploited as follows:

lÐ l1 Ď l, l1 (GR24)

In other words, a literal is derivable if there is a subcon-
cept that is derivable. Moreover, it can be easily shown that
the following holds:

neg l1 Ď neg lÐ l Ď l1 (GR25)

Similarly, the fact that the literals ppX1, . . . , Xnq and
p1pX1, . . . , Xnq are disjunct is denoted as ppX1, . . . , Xnq[

p1pX1, . . . , Xnq. Knowledge about the disjointness is ex-
ploited by the following inference rule:

neg lÐ l [l1, l1 (GR26)

Knowledge Acquisition
We already proposed an answer to the question: “What to
look for?”. In this section we briefly survey our answer to
the second initial question:“Where to get it?”.

The central concept to answer this question is an ex-
ternal knowledge source. Anything that is able to pro-
vide additional information about the world (e.g., percep-
tion, human-computer interaction, low-level reasoning and
planning) might serve as an external knowledge source. Of
course, an external knowledge source has to conform to a
corresponding interface in order to enable the planner to sub-
mit queries to various external sources in an uniform man-
ner.

Artificial agents—especially robots—can usually acquire
information from a multitude of sources. Sources may dif-
fer strongly from each other in terms of the type of infor-
mation they can provide and other non-functional character-
istics (e.g., acquisition cost, reliability, degree of necessary
human interaction, world altering effects). Here we restrict
ourselves to the following two major properties of an exter-
nal knowledge source: the type of information it in princi-
ple can provide, and how expensive it is to answer a certain
question. Let ks be the symbolic representation of a knowl-
edge source and l be a literal. We further extend the repre-
sentation language of our state model by constructs of the
form applicable kspks, lq in order to denote that ks is in
principle able to provide new instances of l.

Now we can answer the question “Where to get it?” with:
“You can get the desired information from an applicable
knowledge source”.

How expensive it is to acquire new information from ex-
ternal sources strongly depends on: the information one is
looking for, the chosen knowledge source, and the current
situation. The expense that takes these three issues into ac-
count is called the acquisition cost. The fact that the cost to

acquire a new instance of a literal l from a knowledge source
ks is c is specified by constructs of the form acpks, l, cq.

Based on the applicability of external knowledge sources
and the expected acquisition cost, a planner can decide (i.e.,
plan) how to acquire relevant information (i.e., the open-
ended part of a relevant precondition) from external knowl-
edge sources.

Activities Model
The activities model of ACogDM contains knowledge about
planning steps and tasks. The term planning step is used
as an abstraction of planning operators (i.e., actions), HTN
methods and High-level actions (HLAs). Planning operators
and HTN methods are mainly defined as in (Ghallab, Nau,
and Traverso 2004) and HLAs are mainly defined as in (Rus-
sell and Norvig 2010). Additionally, it is possible to specify
a cost for each planning step. Please note that specifying the
cost of an action or an HTN method is not a new idea and,
for example, also supported by SHOP2 (Nau et al. 2003).

In many domains there are tasks respectively goals for
which a lot of possible solutions exist. However, in the light
of additional domain knowledge one can often significantly
reduce the number of possible plans and thereby reduce the
computational effort. Continual planning approaches bene-
fit to a special degree from the reduction of alternative solu-
tions, because less alternatives usually also means less un-
necessary execution of planning operators. And execution is
often (e.g., in robotics) a time intensive process.

For forward-search HTN planning (e.g., SHOP (Nau et al.
1999)) we propose to support additional domain knowledge
which makes it possible to reduce the number of alternative
plans for a given task.

Example 2 For example, let us assume that we instruct
a robot to pick up Bob’s mug from the kitchen table
(pick uppbobs mug, kitchen tableq) and there is exactly
one HTN methods that always decomposes this task into the
subtasks rgotopkitchen tableq, grasppbobs mugqs. More-
over, let us assume that there are in principle several differ-
ent ways to go into the kitchen. Nevertheless, how the robot
actually performs the task of going into the kitchen does not
affect the task of grasping Bob’s mug. This information can
be exploited in a situation where a planner successfully gen-
erated a plan for the purpose of getting into the kitchen and
then realizes that it is impossible to grasp Bob’s mug (e.g.,
because the mug is in another room). In this situation it ob-
viously does not make sense to backtrack and try to find an
alternative plan for the task gotopkitchen tableq. A planner
that knows that these tasks can be solved independently can
first generate a sufficiently good plan for gotopkitchenq, cut
alternative decompositions for gotopkitchenq and then plan
to grasp Bob’s mug.

In ACogDM it is possible to express the in-
dependency of subtasks by task lists of the form
rtt1, . . . , tmu, . . . , ttm`k, . . . , tm`k`jus such that
one can plan individually for each set of tasks em-
braced by ’tu’. For Example 2 one can repre-
sent the subtasks of pick uppbobs mug, kitchenq as
rtgotopkitchen tablequ, tgrasppbobs mugqus.

Related Work
Most existing automatic theorem proving or knowledge rep-
resentation and reasoning systems, including planning do-
main models, do not systematically analyze failed inferences
or queries. The only known exception is the “WhyNot” tool
of PowerLoom (Chalupsky and Russ 2002) which tries to
generate a set of plausible partial proofs for failed queries.
Nevertheless, “WhyNot” is rather a debugging tool that tries
to generate human readable explanations that describe why
the overall reasoning process failed. Therefore, this ap-
proach is not adequate for the objectives of this work.

Exploiting local closed world assumptions is also featured
by PowerLoom (Chalupsky, MacGregor, and Russ 2010)
and has also been proposed by (Etzioni, Golden, and Weld
1997).

The approach of (Dornhege et al. 2009) also makes it pos-
sible to integrate external components into the planning pro-
cess. However, integration is not done autonomously (i.e.,
by reasoning on the need to acquire information from exter-
nal sources), but predefined in the domain description.

Converting knowledge from one representation scheme to
another in general and particularly converting an ontology
(e.g., a description logic based representation) to a definite
program is not a new idea. The integration of description
logic and logic programming is currently an active research
topic (Motik and Rosati 2007). How an OWL based on-
tology can be converted to prolog programs is described in
(Samuel et al. 2008). Furthermore, it is possible to express a
subset of OWL directly as a logic program, namely, a de-
scription logic program (Hitzler, Studer, and Sure 2005).
Description logic has been used in many different aspects
in planning systems (Gil 2005). An approach that combines
HTN planning and description logic reasoning is described
by (Hartanto and Hertzberg 2008).

Discussion and Conclusion
We have presented an open-ended domain model based on
definite clauses that can be extended by additional con-
structs. The proposed conceptualization of open-endedness
allows us to automatically determine relevant but unknown
information which makes additional planning alternatives
possible. In particular, it often makes it possible to find any
plan at all if insufficient information is a priori available.

We observe definite clauses to be a solid representational
basement that makes it relatively easy to extend the state
model language by additional constructs. Furthermore, we
define several additional state model constructs that help to
deal with the special challenges of open-ended domains as
well as exemplify how a basic state model can be succes-
sively extended. The additional state model constructs so
to speak reduce the “open-endedness” of a state model by
enabling it to rule out possible extensions of a state model.

Acknowledgements
This work is founded by the DFG German Research Founda-
tion (grant #1247) – International Research Training Group
CINACS (Cross-modal Interactions in Natural and Artificial
Cognitive Systems)

References
Chalupsky, H., and Russ, T. A. 2002. Whynot: Debugging
failed queries in large knowledge bases. In AAAI/IAAI, 870–
877.
Chalupsky, H.; MacGregor, R. M.; and Russ, T. 2010. Pow-
erLoom Manual (Version 1.48). University of Southern Cal-
ifornia, Information Sciences Institute.
Clark, K. L. 1987. Negation as failure. Logic and databases
293–322.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Bren-
ner, M.; and Nebel, B. 2009. Semantic attachments for
domain-independent planning systems. In Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS), 114–121. AAAI Press.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. Artif. Intell.
89(1-2):113–148.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning Theory and Practice. Elsevier Science.
Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.
Hartanto, R., and Hertzberg, J. 2008. Fusing dl reasoning
with htn planning. In KI, 62–69.
Hitzler, P.; Studer, R.; and Sure, Y. 2005. Description logic
programs: A practical choice for the modelling of ontolo-
gies. In 1st Workshop on Formal Ontologies Meet Industry,
FOMI’05, Verona, Italy, June 2005.
Motik, B., and Rosati, R. 2007. A faithful integration of
description logics with logic programming. In IJCAI, 477–
482.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In IJCAI, 968–
975.
Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal on Artificial Intelligence Research 20.
Nau, D. S. 2007. Current trends in automated planning. AI
Magazine 28(4):43.
Nguyen, N. T. 2008. Advanced Methods for Inconsistent
Knowledge Management. Springer.
Nilsson, U., and Maluszynski, J. 1995. Logic, Program-
ming, and PROLOG. New York, NY, USA: John Wiley &
Sons, Inc.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Samuel, K.; Obrst, L.; Stoutenburg, S.; Fox, K.; Franklin,
P.; Johnson, A.; Laskey, K. J.; Nichols, D.; Lopez, S.; and
Peterson, J. 2008. Translating owl and semantic web rules
into prolog: Moving toward description logic programs. In
Theory and Practice of Logic Programming, volume 8, 301–
322.
Subrahmanian, V. S. 1999. Nonmonotonic logic program-
ming. IEEE Trans. Knowl. Data Eng. 11(1):143–152.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of pddl axioms. Artificial Intelligence 168(1-2):38–69.

