
Fast Plane Detection for SLAM from Noisy Range Images in

Both Structured and Unstructured Environments

Junhao Xiao, Jianhua Zhang and Jianwei Zhang
Department of Computer Science

University of Hamburg
D-22527, Hamburg, Germany

{xiao, jzhang, zhang}@informatik.uni-hamburg.de

Houxiang Zhang and Hans Petter Hildre
Department of Technology and Nautical Science

Aalesund University College
N-6025, Aalesund, Norway
{hozh,hh}@hials.no

Abstract—This paper focuses on fast plane detection in noisy
range images. First, two improvements to the state-of-the-art
region growing algorithm are presented to make it faster without
losing precision for unstructured environments. One is to add
the seed selection procedure based on local shape information to
avoid blind growth. The other is to simplify the plane fitting mean
square error computation complex. Second, a novel algorithm
called grid-based region growing is presented for structured
environments. The point cloud is divided into small patches based
on neighborhood information when it is viewed as a range image.
The small patch is called grid. Then the grids are classified
into different categories according to their local appearance,
including sparse, planar, spherical and linear. Finally, the planar
grids are clustered into big patches by region growing. The
plane parameters are incrementally computed whenever a new
grid is added. The resulting planes can be used for 3D plane
simultaneous localization and mapping (SLAM). Experimental
results show promising plane detecting speed for both structured
and unstructured environments.

Index Terms—Plane detection, SLAM, 3D feature extraction

I. INTRODUCTION

Range sensors, e.g., laser range finders, time-of-flight cam-

eras and stereo vision are becoming more and more popular in

the application of mobile robotic systems. Noisy range images

from such sensors can be used for various kinds of tasks,

such as navigation [1], simultaneous localization and mapping

(SLAM) [2], [3], and recognition [4]. If there are objects with

planar surfaces in the scenario, such as floors, doors, walls,

ceilings, tables and chairs, the surfaces can be extracted as

polygons which provide a compressive representation of the

point cloud. The planar patch has been found to be a good

feature for SLAM. Moreover, 3D Plane SLAM [5], [6] has

been proved to be faster and more reliable than the classic

iterative corresponding point (ICP) [7] algorithm and the

recently proposed normal distribution transformations (NDT)

algorithm [8].

Plane detection in range images is a complex task which

has attracted increasing attention from both the computer

graphics and robotics community in recent years. The com-

puter graphics algorithms rely on relatively exact range data

while the range images from robotic sensors are too noise-

prone. Therefore, methodologies from computer graphics are

not suitable for robotics [9]. As a result, researchers from the

robotics community have proposed algorithms on this topic

[9]–[12].

Hähnel et al. [9] proposed the region growing algorithm

in order to learn a smooth model of indoor/outdoor environ-

ments. The algorithm is time consuming. Following this route,

Poppinga et al. presented two optimizations which made it

faster [12]. It will be accelerated further here without losing

any precision. First, the seed selection procedure is introduced

to avoid blind region growth. Second, an efficient method

for computing the plane fitting mean square error (MSE) is

presented. The modified algorithm is called point-based region

growing algorithm.

The work of Weingarten et al. [10] and Kaushik et al. [13] is

closely related to our novel algorithm. In [10], the point cloud

was discretized into small partitions. However, the neighbor-

hood information in the range image has not been employed.

Instead, the octree data structure was used to construct small

cubes. For each cube, RANSAC [14] is employed to find

coplanar points. Then the least squares method is used to fit

an optimal plane to the coplanar points. After that, the small

patches are merged into big ones. However, the parameters

for the resulted planes have not been provided. The algorithm

is time consuming since RANSAC is used. In [13], the point

cloud was also divided into small grids, and plane parameters

are computed for each grid. The grids are clustered into big

planes by the so called Breadth-First-Search algorithm. One

drawback is that there are some grids whose appearance can

not be approximated by a plane. Furthermore, as in [10], the

parameters of the resulted planes are not given which is a

very fundamental issue for plane SLAM. To deal with this

problem, an incremental version is proposed to compute the

plane parameters whenever a new grid is added to the growing

region. The algorithm is called grid-based region growing.

The remainder of this paper is organized as follows: The

point-based region growing algorithm and the grid-based re-

gion growing algorithm will be presented in Section II and

Section III respectively. Experimental results follow in Sec-

tion IV. The conclusion and future work will be drawn in the

last section.

II. POINT-BASED REGION GROWING PLANE DETECTION

The region growing algorithm for detecting planes in noisy

point clouds was proposed in [9] and was modified to a

incremental version in [12]. One further step is made here

to accelerate the speed without losing precision. Part A details

the algorithm procedure and part B formulates the efficient

MSE computation.

A. Point-based Region Growing Algorithm

Our improved algorithm proceeds as follows: one point ps is

selected from the point cloud data (PCD), and its qualification

as a new seed is examined (Algorithm 1, line 4 – 5). The point

ps will be regarded as a new seed if it meets the following two

criteria: First, except its investigated neighbors in the range

image, there are six or more points within distance δ. Second,

the local appearance of ps is planar. Except the threshold δ,

the procedure is the same as the shape classification step in the

grid-based algorithm (This will be detailed in Section III-A). If

ps is a new seed, it together with its neighbors within distance

δ will be marked as a new growing region GR (Algorithm 1,

line 6). GR is extended by considering its neighbors within

distance δ. Suppose the considering point is pc, it will be added

to GR if: First, the distance from pc to the optimal plane of

GR∪ pc is less than γ; Second, the mean square error (MSE)

of the points in GR ∪ pc to the optimal plane is less than ε.
The growth will continue until no more points can be added to

GR (Algorithm 1, line 7 – 12). Afterwards, if it contains more

than θ points, it will be assigned to be a new plane and added

to the regions set R. Otherwise, it is added to the uncertain

area R′ (Algorithm 1, line 14 – 18).

Algorithm 1 Point-based Region Identification

Input: PCD: point cloud data

Output: R: regions constructed by coplanar grids

1: R← ∅
2: R′ ← ∅
3: while (PCD \ (R ∪R′) �= ∅) do
4: select point ps in PCD \ (R ∪R′)
5: if isNewSeed(ps) == true then
6: GR = initializeSeed(ps)
7: while new point can be found do
8: select a neighbor pc with dis(GR, pc) < δ
9: if (MSE(GR ∪ pc)) < ε && dis(plane(GR ∪

pc), pc) < γ) then
10: GR← GR ∪ pc
11: end if
12: end while
13: end if
14: if size(GR) ≥ θ then
15: R← R ∪GR
16: else
17: R′ ← R ∪GR
18: end if
19: end while

The algorithm ends when every point has been assigned

to R or R′. The aforementioned parameters (δ, γ, ε, θ) are

preset thresholds. One parameter tuning step is needed for one

specific range sensor.

B. Efficient MSE Computation

The background of fitting the optimal plane to a point set is

explained below, it is also used to find local plane parameters

for the grid-based region growing algorithm. Suppose the

coplanar points are pi = (xi, yi, zi)
T, i = 1, ...K. In order

to find the optimal plane, based on the idea of least square

fitting, the sum of orthogonal distances to the plane should be

minimized.

The mass center m of the point set is defined as m =
(
∑K

i=1 pi)/K. A matrix C which is similar to the covariance

of the point positions can be computed as C =
∑K

i=1(pi −
m)(pi − m)T. Obviously, C is the product of the position

covariance and the number of points. Hessian plane parameters

is used in this paper. Suppose that the equation of the plane

is �n · p = d, where p is an arbitrary point on the plane,

�n is the normal direction and d is the orthogonal distance

from the plane to the origin. Now the goal is to minimize∑K
i=1(�n · pi − d)2. For consistency, all the normal vectors

have been normalized and their direction is from the origin to

the plane, which means d > 0.

In order to reach the minimal, two valuable results are

reached after some linear algebra. First, the mass center is

located on the optimal plane. In other words, �n · m = d.

Second, the normal direction is the eigenvector of matrix C
corresponding to its minimal eigenvalue. After plane fitting,

MSE of the point set to the optimal plane can be computed

as:

MSE =
1

K

K∑
i=1

(�n · pi − d)2 (1)

One main contribution of [12] is an incremental version of

computing the MSE and C whenever a new point is added.

However, the relationship between MSE and C has not been

realized while C has been tracked for plane parameters. The

mathematical derivation of the relationship is drawn below, (1)

can be rewritten as

MSE =
1

K

K∑
i=1

(�n · pi − �n ·m)2 (2)

Equation (2) gives MSE = (�nTC�n)/K. Note that �n is the

eigenvector of C corresponding to the minimal eigenvalue.

This yields a nice result:

MSE =
1

K
λmin(C) (3)

where λmin(C) stands for the minimal eigenvalue of matrix C.

Compared to [12], our algorithm not only save half the memory

by tracking less variables but also reduce the computation cost.

The algorithm evaluation will be presented in Section IV after

proposing the grid-based algorithm.

III. GRID-BASED REGION GROWING

From the application point of view, the advantage of the

point-based region growing algorithm is that it can be used

in both structured and unstructured environments. Planar de-

tection in structured environments could be faster with our

proposed grid-based region growing. This idea is motivated by

two observations: First, a structured environments is mainly

constructed by big planes; second, the point cloud is closer

to uniform sampling than in a unstructured environment.

Therefore, if the point cloud is divided into small grids,

most of them should be in a planar shape. Then optimal

planes can be fitted to grids with planar appearance. After

plane fitting, the small planar patches from the same physical

object surface should have similar parameters. Only the planar

grids are considered for plane detection. Like our point-based

region growing algorithm, the seed is selected first, then it

is extended by considering its neighbors. Compared to [13],

our algorithm computes the plane parameters for the growing

region whenever a new grid is added. This is advantageous

for plane SLAM which cannot be performed without plane

parameters. The algorithm will be presented in detail in the

second part of this section.

A. Feasibility of Grid-based Region Growing

The grid-based algorithm is suitable for structured environ-

ments if the following two assumptions are confirmed. First,

most of the grids which locate on plane surfaces have a planar

appearance. Second, the grids from the same physical surface

have similar plane parameters. To confirm the first assumption,

the grids are classified into different categories. Using the same

notations as Section II, a matrix C is computed for each grid.

Given its sorted eigenvalues λ1 ≤ λ2 ≤ λ3 from a grid g. The

appearance of g can be decided by the following criteria:

if size(g) < μ then
g ⊂ sparse

else if λ2 ≤ αλ3 then
g ⊂ linear

else if λ1 ≤ β λ2 then
g ⊂ planar

else
g ⊂ spherical

end if

The grid size is fixed to 3 × 3. g will be marked as a

sparse grid if it contains less than μ valid points. μ is set

to seven since less points will probably cause a problem to

the shape classification criteria. Taking six valid points as

example, there may be one row or one column which is invalid.

Regardless of the orientation, only two such configurations

exist as shown in Fig.1. The right one has degenerated to 2×3
and needs a new set of shape parameters. Testing whether a

grid with six or less points is degenerated will increase the

computational complexity. As a result, only grids with more

than six points are picked up. α and β are thresholds which

Fig. 1. Two possible configurations when there is one invalid line and six
valid points in a 3× 3 grid, regardless of the orientation.

(a) Grid classification result.

81.84%

11.82%

4.18%2.16%

Planar

Sparse
Spherical

Linear

(b) Category percentages.

Fig. 2. Shape classification result of the grids and the corresponding
percentage of each shape. For better visualization, pseudo-color is used for
shape classification.

belong to (0, 1), a parameter tuning step is needed in order to

give good classification results. For better understanding, an

example is illustrated in Fig. 2. It was sampled by a panning

2D laser range finder and the data is stored in a 2D array as a

range image. For details on the data gathering step, the reader

is referred to [13]. In Fig. 2, α = 0.006, β = 0.4.

The Point Cloud Library (PCL) [17] is employed for visu-

alization. In Fig. 2(a), different colors are assigned to the four

classes: green for planar, blue for spherical, red for linear and

light gray for sparse grids. The percentage of each category has

also been given in Fig. 2(b). Similar results have been found for

other scans, thus the first assumption is confirmed. The second

assumption means that the local normal of a grid is a good

estimation of the surface. In [9], the authors pointed out that the

local surface normals from a planar surface in the real world

are almost uniformly distributed. However, two orthogonal 2D

laser scanners on a mobile robot were used for data collection.

The horizontal one was employed to perform 2D SLAM to

locate the robot. At the same time the upward pointing laser

was scanning the 3D structure of the environment. Therefore,

both localization error and measurement noisy exist in their

3D point cloud. The noise level should be higher than point

cloud sampled by a rotating/panning laser range finder, which

only contains measurement noise.

Considering the planar grids of Fig. 2(a), their unit normals

can be seen in Fig. 3. Although some random normals are still

present, it is apparent that it has five dense clusters according

to the five plane directions in Fig. 2(a). This gives a positive

answer to the second question. As a result, grid-based region

growing is feasible for structured environments.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

Y
X

Z

Fig. 3. Distribution of the unit normals for all planar grids in Fig. 2.

B. Grid-based Region Growing

The next step is to get big planes from separated planar

grids. Given the planar grids set G from a point cloud data, the

grid g which has the smallest MSE of all the unidentified grids

is selected. This is the initial growing region GR (Algorithm

2, Line 4 – 5), which will be extended by investigating

its neighbors. Suppose that gc is the neighbor grid being

considered. gc is assigned to GR if it meets the following

criteria (Algorithm 2, Line 8 – 9):

1) The dot product between the normal vectors of gc and

GR is greater than a predefined threshold η. Actually

arccos(�nGR · �ngc) is the angle between GR and gc, so

this criterion is to ensure that the investigated grid has

similar direction to GR.

2) To avoid adding grid parallel but not coplanar to GR,

the distance from the mass center of gc to the optimal

plane of GR is calculated. It should be less than γ.

3) The MSE to the optimal plane fitted to GR ∪ gc should

be less than ε.

Algorithm 2 Grid-based Region Identification

Input: G: planar grids with plane parameters

Output: R: regions constructed by coplanar grids

1: R← ∅
2: R′ ← ∅
3: while (G \ (R ∪R′) �= ∅) do
4: select g with minimal MSE in G \ (R ∪R′)
5: GR← g
6: while new neighbor of GR can be found do
7: select a neighbor gc
8: if (�nGR · �ngc > η && |�nGR · (mGR − mgc)| <

γ && MSE(GR ∪ gc) < ε) then
9: GR← GR ∪ gc

10: end if
11: end while
12: if size(GR) ≥ θ then
13: R← R ∪GR
14: else
15: R′ ← R ∪GR
16: end if
17: end while

This process will be ended when no more neighbors can be

added (Algorithm 2, Line 6 – 11). Since our goal is to extract

big planes in the scene, only a GR with more than θ grids is

regarded as a plane and added to the plane set R, otherwise it

will be treated as uncertain region R′ (Algorithm 2, Line 12

– 16). The algorithm ends when every grid is assigned to R
or R′.

C. Mathematical Machinery for Parameter Computing

As mentioned, plane parameters for the growing region are

incrementally computed whenever a new grid is added. When

shape classification is finished, the following quantities have

been tracked for each planar grid: the valid point number

K, the matrix C similar to position covariance, and the

mass center m. The items in (4) are also computed after

classification. ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q =
∑K

i=1 pip
T
i

�n = eigvecmin(C)

d = �n ·m
MSE = λmin(C)

(4)

where Q is the product of K and the second order moment

about the origin, eigvecmin(C) stands for the eigenvector ac-

cording to the minimal eigenvalue of C. Suppose the growing

region is GR, there are KGR points in it. The grid to be added

is NG, and there are KNG points in it. In (5), GR and NG are

used as subscripts to denote the growing region and the grid to

be added respectively. There is no subscript for the combined

region. Note that GR may just contain one grid, i.e., at the

beginning phase of a new region.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S = mGRKGR +mNGKNG

m = S/(KGR +KNG)

Q = QGR +QNG

C =
∑KGR+KNG

i=1 (pi −m)(pi −m)T

�n = eigvecmin(C)

d = �n ·m
MSE = λmin(C)/(KGR +KNG)

(5)

After some algebra, matrix C in (5) can be computed as

follows:

C = Q− SmT (6)

Equations (5) and (6) yield a fast incremental algorithm.

Suppose each point cloud contains n points, and the grid

size is k, which means there are m = 	n/k
 grids. For

each grid, shape parameter computation and classification need

constant time, which means the time complexity is O(m). In

addition, the neighbor search executes with a time complexity

of O(m logm), for all the grids belonging to one region.

Computing the plane parameter when a new grid is added also

(a) Point cloud data before plane detection.

(b) Plane detection result.

Fig. 4. Point cloud and the correspondence planar patches resulted by the
point-based region growing algorithm, the detected planes have been colored
randomly. The point cloud data is from [6].

needs constant time with time complexity of O(m). To sum up,

the overall time complexity of the algorithm is O(m logm).
For each grid and region, at most seven variables are tracked

which yields the memory complexity O(m).

IV. EXPERIMENTS AND RESULTS

Currently our panning indoor/outdoor laser rang finder plat-

form is under construction, which includes an indoor/outdoor

pan-tilt-unit (PTU) and an indoor/outdoor 2D laser scanner.

The PTU can perform 360-continuous pan thanks to an in-

tegrated slip ring. Since it is still under construction, other

data-sets were used in this paper. Both algorithms were imple-

mented in C++ and run on an Intel Core 2 Duo 2.53GHz, 2GB

RAM under Ubuntu 10.04. For both algorithms, the efficiency

of linear algebra is crucial. This is especially so for calculating

the eigenvalues and eigenvectors of a matrix, for it has to be

performed whenever one point (grid) is investigated. Therefore

the Eigen library [18] which is a C++ template library for

linear algebra was employed.

A. Unstructured Environment

The on-line data-set “Collapsed Car Parking Lot” [6] was

used as an unstructured environment. There are 195301 points

in each scan. In order to evaluate the performance of our point-

based algorithm, it was tested on all the 26 scans. One typical

result and its corresponding point cloud are illustrated in Fig. 4.

The resulted planes have been randomly colored, so one color

could have been patched to more than one plane. The grid-

based region growing algorithm was also applied to this data-

set, the relatively big planes could be extracted while some of

the relatively small ones were lost in the result. The reason is

Fig. 5. Two different view angles of one typical plane detection result using
the grid-base region growing algorithm, the data is from [13].

that grids close to the surface edges will be probably classified

as sparse or spherical when decomposing the range image.

B. Structured Environment

The data-set from [13] was used as a structured environ-

ment. There are 149577 points in each scan. Both the point-

based and grid-based algorithm were applied to this data-set.

Except speed, the only difference is that under the point-based

algorithm, there are some points which belong to more than

one patches, i.e. they lie on the joint area between surfaces.

However, this has no effect on the resulting plane parameters.

From the speed point of view, the grid-based algorithm is much

better, it is four times faster than the point-based algorithm.

One typical result from the grid-based algorithm with two

different view angles is illustrated in Fig. 5, the colors were

also randomly selected for the planes.

C. Discussion

A box plot of execution times can be seen in Fig. 6. The

mean time of the point-based algorithm is 0.7666 seconds

when applied to the unstructured data-set, and 0.6911 seconds

when applied to the structured data-set. They are close due to

the similar valid point number in each point cloud. It implies

the algorithm computation complexity to be linear. The grid-

based algorithm is four times faster with a mean time of

0.1555s second when applied to the structured environment.

The exact processing time depending on the number of regions

extracted has been drawn in Fig. 7. Note the linear relation

between the processing time and the number of detected

regions. The slope of the point-based algorithm is different

when applied to the two data-sets. It is caused by a different

average point number in one region.

Both algorithms work well on a structured environment

while the grid-based algorithm makes a faster execution. Using

the grid-based algorithm, the total execution time is below

170 milliseconds (see Fig. 6). It demonstrates that a 6 Hz

update rate can be reached even when dealing with point

clouds including 1.5 × 105 points. It is quite promising for

the SLAM system which requires planar features in structured

environments, thus has attracted application areas such as

home service robots and industrial robots.

For unstructured environments, the point-based region grow-

ing algorithm is preferred since some information will be

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1

2

3

Execution time[s]

Experiment

Experiment

Experiment

Fig. 6. Total plane detection time span of the three experiments, shown using
box whisker plots. Whiskers encompass the full range of time, box bounds
show upper and lower quartiles. Experiment 1: point-based region growing
algorithm applied to unstructured data-set; Experiment 2: point-based region
growing algorithm applied to structured data-set; Experiment 3: grid-based
region growing algorithm applied to structured data-set.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of planes

To
ta

l t
im

e[
s]

Experiment 1

Experiment 2
Experiment 3

Fig. 7. Processing time depends on the number of extracted regions of the
three experiments. Experiment i (i ∈ {1, 2, 3}) is same as that in Fig. 6.

lost using the grid-based method. It is faster compared to

the state-of-the-art algorithm [12]. It is not solid to claim

that our algorithm is three times faster than theirs, since

the our computing-hardware is different from theirs. There

are two factors which make it faster: First, our derivation

saves computation cost for computing the plane fitting MSE.

Second, only qualified seeds seeds are grown (Algorithm 1,

line 5) thus blind growths of points not on a planar surface

are avoided. Note that blind growth can be quite expensive,

for example, when the starting point is located in the dense

part but not on a surface of the point cloud.

V. CONCLUSION AND FUTURE WORK

An improved point-based region growing algorithm for un-

structured environments and a novel grid-based region growing

algorithm for structured environments have been presented. For

both algorithms, the neighborhood information is used when

the point cloud is viewed as a range image. For the point-

based algorithm, qualified seed points are detected firstly using

local shape information and extend them to big patches. The

local shape information is also employed in our novel grid-

based algorithm, where the range image is broken down to

small grids with fixed size. The grids in which the points are

approximately coplanar will be used in the later steps. Similar

to the point-based algorithm, a seed grid is searched first and

then extended using our incremental version for computing the

optimal plane parameters.

In the future, the grid-based algorithm can be extended

in order to be employed under unstructured environments.

It will make sense for real time 6D SLAM in unstructured

environment.

ACKNOWLEDGMENT

Many thanks to Kaushik et al. [13] for kindly providing us

the point cloud data they acquired in structured environment.

REFERENCES

[1] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying”, in IEEE International Conference on
Robotics and Automation (ICRA), Kobe, Japan, pp. 2878–2883, 2009.

[2] J. Weingarten and R. Siegwart, “EKF-based 3D SLAM for structured
environment reconstruction”, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Edmonton, Canada, pp. 2–6,
2005.

[3] P. Kohlhepp, P. Pozzo, M. Walther, and R. Dillmann, “Sequential
3D SLAM for mobile action planning”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sendai, Japan,
pp. 722–729, 2004.

[4] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards
3D point cloud based object maps for household environments”, Robotics
and Autonomous Systems, Special Issue on Semantic Knowledge, vol.
56, no. 11, pp. 927–941, 2008.

[5] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga, “Fast registration
based on noisy planes with unknown correspondences for 3D Mapping”,
IEEE Transactions on Robotics, vol. 26, no. 3, pp. 424–441, 2010.

[6] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger,
and J. Poppinga, “Online 3D SLAM by registration of large planar
surface segments and closed form pose-graph relaxation”, Journal of
Field Robotics (JFR), Special Issue on 3D Mapping, vol.27, no. 1, pp.52–
84, 2010.

[7] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
for 3D mapping outdoor environments”, Journal of Field Robotics (JFR),
Special Issue on Quantitative Performance Evaluation of Robotic and
Intelligent Systems, vol. 24, no. 8/9, pp. 699–722, 2007.

[8] M. Magnusson, T. Duckett and A. J. Lilienthal, “Scan registration for
autonomous mining vehicles using 3D-NDT”, Journal of Field Robotics
(JFR), Special Issue on Mining Robotics, vol. 24, no. 10, pp. 803–827,
2007.

[9] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3D models
of indoor and outdoor environments with a mobile robot”, Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

[10] J. Weingarten, G. Gruener, and R. Siegwart, “A fast and robust 3d
feature extraction algorithm for structured environment reconstruction”,
in International Conference on Advanced Robotics (ICAR), Coimbra,
Portugal, pp. 390–397, 2003.

[11] G. M. Hegde and C. Ye, “Extraction of planar features from swissranger
sr-3000 range images by a clustering method using normalized cuts”, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Louis, USA, pp. 4034–4039, 2009.

[12] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast plane
detection and polygonalization in noisy 3D range images”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nice, France, pp. 3378–3383, 2008.

[13] R. Kaushik, J. Xiao, S. Joseph and W. Morris, “Fast planar clustering
and polygon extraction from noisy range images acquired in indoor
environments”, in IEEE International Conference on Mechatronics and
Automation (ICMA), Xi’an, China, pp. 483–488, 2010.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography”, Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[15] M. Magnusson, H. Andreasson, A. Nüchter and A. Lilienthal, “Auto-
matic appearance-based loop detection from 3D laser data using the
normal distributions transform”, Journal of Field Robotics, vol 26, no.
11-12, pp. 892–914, 2009.

[16] M. Bosse and R. Zlot, “Continuous 3D scan-matching with a 2D
spinning laser”, in IEEE International Conference on Robotics and
Automation (ICRA), Kobe, Japan, pp. 4312–4319, 2009.

[17] R. B. Rusu and Steve Cousins, “3D is here: Point Cloud Library (PCL)”,
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 2011.

[18] G. Guennebaud, B. Jacob, et al., Eigen v3, homepage:
http://eigen.tuxfamily.org, 2010.

