ISR/ ROBOTIK 2010

Time Efficient Hybrid Motion Planning Algorithm for HOAP-2
Humanoid Robot

Mohammed Elmogy, Christopher Habel, and Jianwei Zhang
Department of Informatics, MIN Faculty, University of Hamburg, Germany

Abstract

The development of practical motion planning algorithms and obstacle avoidance techniques is considered as one of the
most important fields of study in the task of building autonomous or semiautonomous robot systems. The motion planners
designed for humanoid robots combine both path planning generation and the ability of executing the resulting path with
respect to their characteristics. These planners should consider the specific dynamical constraints and stability problems
of the humanoid robots. In this paper, we present a time-efficient hybrid motion planning system for a Fujitsu HOAP-2
humanoid robot in indoor and miniature city environments. The proposed technique is a combination of sampling-based
planner and D* Lite search to generate dynamic footstep placements in unknown environments. It generates the search
space depending on non-uniform sampling of the free configuration space to direct the computational resources to troubled
and difficult regions. D* Lite search is then implemented to find dynamic and low-cost footstep placements within the
resulting configuration space. The proposed hybrid algorithm reduces the searching time and produces a smoother path

for the humanoid robot with low cost.

1 Introduction

The motion planning problem has been studied for sev-
eral decades and there are many algorithms that have been
described in the literature [1, 2]. It is characterized by
the ability of computing a collision-free feasible path for
a mobile robot from a given initial position to a destina-
tion position through a workspace populated with station-
ary or moving obstacles. In some applications, the motion
planning problem can be defined to maintain a set of con-
straints in the state of the world such as following a target,
achieving knowledge about the world, or exploration in an
unknown environment. Therefore, there are many differ-
ent aspects to the motion planning problem, such as op-
timal path planning among rectangular obstacles, optimal
path finding among weighted regions, and path planning to
traverse narrow passages [3].

In the ’80s and part of the *90s, finding collision-free paths
was the main or only goal of the motion planning prob-
lem. Today, while obstacle avoidance remains a key issue,
other important constraints are considered as well such as
visibility, coverage, kinodynamic, optimality, equilibrium,
and uncertainty constraints [1]. These constraints make
motion planning problems more interesting and entail the
implementation of more useful algorithms for real mobile
robots.

In the last ten years, the significant progress in stable dy-
namic bipedal walking has been leading to an increased
research interest in developing autonomous navigation
strategies tailored specifically to humanoid robots. As au-
tonomous navigation becomes an increasingly important

research topic for humanoid robots, efficient approaches
to perception, mapping, and motion planning, which are
suited to their unique characteristics, will be required to in-
tegrate them easily in their typical operating environments.
The ability of legged robots to step not only around but also
over and onto some obstacles makes them particularly well
suited for environments designed for humans, which often
contain a wide variety of objects and obstacles such as fur-
niture, stairs, doors, and uneven ground [4]. In addition
to the bipedal walking of the humanoid robots, the large
amount of their degrees of freedom (DOFs) should be con-
sidered while developing practical motion planning tech-
niques for them. Typically, humanoid robots have 20 or
more DOFs which must be controlled very carefully in or-
der to maintain overall static and dynamic stability. These
constraints severely restrict the set of allowable configura-
tions and prohibit the direct application of existing motion
planning techniques [5]. Motion planning techniques for
humanoid robots should pose these particular challenges
during the design phase.

2 Related Work

There exists an extensive literature on the motion planning
problem in 2D static environments. Previous research with
wheeled robots usually modeled a robot as a 2D circle and
planned a path on a 2D grid map. These robots use a laser
range sensor or a stereo vision sensor to generate a 2D map
for planning. For example, Jan et al. [6] used a single cir-
cle and multiple circle modes for the robot to solve the
narrow passages piano mover’s problem in a 2D simulated

1046

environment. In this approach, the single cell object travels
along the optimal path in the grid plane without any colli-
sion. For the multiple circles model, the checkpoints of the
single cell object are ensured to be collision free regarding
all of the obstacles.

On the other hand, some attempts are reported in 3D mo-
tion planning for simulated and real humanoid robots. For
example, Lau and Kuffner [7] presented a behavior plan-
ning approach to automatically generate realistic motions
for animated characters. Motion clips are abstracted as
high-level behaviors and associated with a behavior finite-
state machine (FSM) that defines the movement capabili-
ties of a virtual character. Shiller et al. [8] implemented a
practical motion planner for animated human figures that
can be also used for humanoid robots. They focused on
path planning and sensor-based recognition of the environ-
ment. The human motions are modeled as a sum of rigid
body and cyclic motions. They identified body postures
that represent the rigid-body part of typical motion pat-
terns. This leads to a model of the configuration space that
consists of a multi-layered grid, each layer corresponding
to a single posture.

Numerous research groups worldwide concentrate on the
design and implementation of various motion planning al-
gorithms that consider the bipedal capabilities of humanoid
robots. For example, Bourgeot et al. [9] proposed a
method to generate footprints from a reference path. This
method finds a path and footprints in terrain under robot
stability and motion continuity between starting and goal
positions. The path is planned in a 3D simulated environ-
ment. The researchers studied the biped walking problem
on horizontal flat and sloping grounds. Lorch et al. [10]
have developed a sensor-based planning system using a
biped robot with a stereo vision sensor. They proposed a
footprints planner using a local environment map based on
visual sensor inputs. This planner finds the step sequence
while the robot is walking in a straight line. They recog-
nized an obstacle under the assumption that any object in
the scene is a rectangle. Okada et al. [11] described the
vision-based navigation system for humanoid robots with
vision-based floor recognition and path planning using a
multi-layered body image. They utilized an RRT-Connect
Planner as a path planning method. Kuffner et al. [5]
developed a footprints and leg trajectory planner for hu-
manoid robots using a global method. This method enables
the robot to step over obstacles and consider global infor-
mation to cope with local minima. Their approach adapts a
variation of the randomized planner to compute full-body
motions for humanoid robots that are both dynamically
stable and collision-free. They employed a randomized
search strategy based on Rapidly-exploring Random Trees
(RRTs) [12]. Their algorithm has some limitations. First,
their current implementation of the planner can only han-
dle a fixed position for either one or both feet. Second, the
effectiveness of different configuration space distance met-
rics needs to be investigated. Finally, they currently have
no method for integrating visual or tactile feedback.

We developed a motion planning system for a humanoid
robot to execute route based navigation tasks. The pro-
posed motion planner operates at the level of footsteps and
ignores the lower-level details of leg movements and con-
trol. It is used to solve the motion planning problem and
handle the kinodynamic constraints of the HOAP-2 hu-
manoid robot [13]. The planner is processed as two se-
quential phases. First, a sampling-based algorithm com-
putes a collision-free path for the described route by ignor-
ing system dynamics of the humanoid robot. Then, both
the footstep planner and the motion trajectory generator are
used to compute appropriate controls to implement the de-
sired path and generate feasible motions for the humanoid
robot.

3 HOAP-2 Motion Planner

The proposed planner is implemented to plan the motion
and footstep placements for the humanoid robot while
moving in the route environment. As shown in Figure
1, the motion planner is based on two main inputs. The
first input is the initial path estimation which results from
the symbolic representation of the processed route [14]. It
provides the motion planner with the relationships between
locomotion actions and landmarks. The second input is the
processed vision data from the stereo vision and landmark
detection stage of our humanoid robot navigation system
[15]. It contains the information about the detected land-
marks and their positions in the route environment.

Motion Planner

Head Motion Collision

Planner I I Detection

Footstep
Planner

Initial Path
Estimation Symbol Path Planner <—>
Grounding *

Visual Data | I

Figure 1: The architecture of the HOAP-2 humanoid robot
motion planner.

The motion planner consists of five components: sym-
bol grounding, head-motion planner, collision avoidance,
path planner, and footstep planner. The symbol grounding
phase is used to connect the symbolic representations of
landmarks and actions to their equivalent perceptual land-
marks and motion procedures, respectively. The output of
the symbol grounding stage is provided to the head-motion
planner to plan the motion of the robot’s head with respect
to the positions of the landmarks. It is also supplied to
the path planner to generate the shortest feasible roadmap
graph of the robot’s path.

The path planner is implemented to extract the minimal
feasible C,.. and generate the shortest path to the tar-
get position. We used the Lazy Probabilistic RoadMap

1047

mechanism (Lazy-PRM) with a non-uniform sampling to
avoid the computational complexity of generating a denser
search area. For collision detection, a cylinder model is
used to approximate the trajectory for the body center of
the humanoid robot during navigation. It calculates the ac-
tual areas required to execute different motion actions and
compare them with the distances to the nearest obstacles.
Finally, the footstep planner is implemented to find smooth
and low-cost footstep placements of the humanoid robot
within the resulting C'¢,.c. It uses D* Lite search to reduce
searching time and produces a smoother dynamic path for
the humanoid robot at a low cost. In the following sub-
sections, the building blocks of the motion planner will be
discussed in detail.

3.1 Symbol Grounding

The symbol grounding stage is used to incorporate the
high-level cognitive processes with their corresponding
sensorimotor processes. The high-level cognitive pro-
cesses perform abstract reasoning and generate plans for
robot actions from the processed route. They use symbols
to denote both landmarks and robot actions. Otherwise, the
sensorimotor processes observe the physical world and ex-
ecute actions in the route environment. If the overall sys-
tem is to perform its tasks successfully, it needs to make
sure that these processes are successfully connected to in-
dicate the same physical objects.

z LMDB |
Symbols E — Percepts
BurgerKing | | |
o, (H)=<0,,7,,¥, >
(BKShape, BKColor, BKRecongnition, Relations)
e — = (HC_values, Area, SIFT position)
~
e
S ~ ~ -
\ ~ ~ - ~
\
. o -“h
N
g\

Conceptual Space

Figure 2: The anchoring process for a landmark between
its symbolic and perceptual data.

To solve the symbol grounding problem, a methodology is
needed to resolve situations where the sensors detect sev-
eral landmarks that are consistent with the symbolic de-
scription of a desired landmark. In order to handle am-
biguous situations, it needs to reason and act in a way that
allows it to distinguish between the perceived objects and
determine their correct correspondents. The plan involves
finding out relevant information about the landmarks until
the correct landmark is identified. We used the perceptual
anchoring via conceptual spaces to connect the symbolic
cognitive system (X) with its corresponding sensorimotor

perceptual system (II). Figure 2 shows the anchoring pro-
cess of the “BurgerKing” landmark that connects its sym-
bolic representation with its perceptual region in the cap-
tured image. The conceptual space is a metric space whose
dimensions, called qualities [16], are related with the quan-
tities processed by the robot sensors. Points in a concep-
tual space, called knoxels [17], represent the epistemologi-
cally primitive elements at the considered level of analysis.
For logo landmarks (such as BurgerKing), the conceptual
space represents three different quantities: the correlation
values to the hue component of the stored color histograms,
landmark shape and size range, and the number of matched
points resulting from the SIFT technique.

On the one hand, the symbolic system manipulates indi-
vidual symbols for each landmark to denote its physical
object. The predicate grounding function (g) associates
each individual symbol with a set of symbolic predicates
that assert properties of the corresponding landmark. It as-
sociates unary predicates in X to areas in the conceptual
space. On the other hand, the perceptual system gener-
ates percepts from the observation of physical landmarks
that are represented as regions in the captured images. The
sensor model function (k) associates each percept with its
observed values of a set of measurable attributes. It trans-
forms a measurement vector from the sensor system into a
set of knoxels in the conceptual space.

Therefore, the correspondence between symbols and per-
cepts is reified in a data structure called anchor (c(t)) that
contains pointers to the corresponding symbols (o;) and
percepts (7;). In addition to these pointers, it has a pointer
to an estimate of the current values of some attributes of the
landmark which it refers to. This pointer is called the sig-
nature and denoted by y; which indicates its corresponding
knoxels in the conceptual space. An anchor can be consid-
ered as a model of a physical object that reflects the per-
sistence of the object, and which can be shared across dif-
ferent subsystems of the agent. Once an anchor has been
created, it should be continuously updated to account for
changes in the landmark’s attributes and handle the relation
of this landmark with other landmarks in the route descrip-
tion. This connection is made depending on the relation-
ships that are retrieved from the processed route to handle
the uncertainty during robot navigation.

We extended the anchoring process to also handle robot
actions. The anchoring process is used to connect the
symbolic representation of the robot locomotion actions
to their corresponding dynamic procedures which are con-
trolled by path and footstep planners.

3.2 Head-motion Planner

In real and unknown environments, usually motion plan-
ners only focus on how to find an optimal path to the desti-
nation, but it is also important to decide on where to ex-
plore and look in order to accomplish finding a path to
the goal. When the humanoid robot is following a path,
its head should be moved according to the situation pre-

1048

sented in the initial path estimation to detect and localize
the landmarks. Therefore, the motion planner should gen-
erate walk and head-motion commands and send them to
the motion trajectory generator to execute them.
Accordingly, we implemented the head-motion to plan the
movement of the robot’s head depending on the direction
of landmarks in the estimated initial path and the move-
ment ranges of the neck’s motors. The robot will tilt its
head to the right or left to detect the landmarks which are
located at the road sides. It also looks down to the floor to
detect landmarks such as crossroads and street boundaries
in the miniature city.

The planner checks the direction of the landmark from the
estimated path. Then, the robot changes its head direction
depending on the location of the processed landmark. If
the robot fails to detect the landmark, the planner changes
its head direction by 15 °. It processes again until it detects
the landmark or terminates if the angle of the robot’s head
equals 0.

3.3 Collision Detection

Collision detection is considered to be one of the crucial
factors in motion planning. For humanoid robots, there is
an effective and simple way to detect collision by choosing
an appropriate bounding volume approximating the shape
of the robot. A trajectory for the body-center of a hu-
manoid robot is computed by approximating its shape by
using a cylinder surrounding its body. A cylinder model
is useful during humanoid robot turns and lateral walking
to calculate the actual processing space required to execute
robot actions. As the positions of the nearest obstacles to
the robot are calculated by using triangulation, a cylinder
model of the humanoid robot can be checked for obstacle
avoidance in a constant time. Simply, if the distance be-
tween the robot and the obstacle is known, then it will be
compared to the radius of the cylinder model.

Sideways Right

Straightforward Turn Right
Figure 3: Different motion actions of the humanoid robot
by using a cylinder model.

The cylinder is a tight fit to the shape of the humanoid robot
standing still. When the robot moves, however, additional
space is needed for the transition in C-space as body and
legs are swinging while walking. Figure 3 shows snap-
shots of the robot when moving forward, turning right and
stepping sideways. We account for the additional space by
enlarging the cylinder at the start and end configurations

depending on the action which will be processed by the
robot. When the robot walks sideways, no additional space
is needed. If the robot walks straightforward, it needs addi-
tional space with respect to the swinging of its legs while
walking. Therefore, the obstacle distance is compared to
the enlarged cylinder radius plus the expected step dis-
tance. For turns, the humanoid robot wants extra turning
space in a cylinder model, and then the cylinder model is
enlarged by twice the turn radius to let the humanoid robot
turn in a specific direction without collision. Therefore,
such an approximation enables a humanoid robot to find
paths in real-time and include actions such as walking side-
ways through a narrow space.

3.4 Path Planner

The path planner can be considered as the core stage of our
motion planner. It generates the shortest roadmap graph
(G) of the robot’s path. It only returns the path graph, not
the ability to execute that path. In our system, the path
planner only depends on both the processed route descrip-
tion, as initial path estimation, and the retrieved data from
vision [14, 15]. The path planner processes the path as seg-
ments from the generated topological map [18]. Each seg-
ment represents the distance between two adjacent land-
marks in the robot’s estimated path. The planner processes
each segment as an independent path with its own start
and end points. It is continuously evaluating the current
Cfree and sends the resulting roadmap graph of the pro-
cessed path segment to a footstep planner which computes
the next footsteps of the humanoid robot. The resulting
footstep placements and robot actions are fed to the robot’s
motion trajectory generator to execute the motion of the
robot.

As the sampling-based motion planning algorithms present
practical and efficient solutions for the motion planning
problem, they are extensively applied to many problems
in high-dimensional configuration spaces. Therefore, we
implemented our path planner by using a modified version
of the PRM planner [2, 19]. We applied the lazy evaluation
[1, 20] to the PRM planner with non-uniform sampling to
handle narrow passages. The main theme of the planner
is to minimize the number of collision-checks performed
during planning. By avoiding local planning and instead
keeping the global view, only the part of C-space that is
essential in answering a query is explored.

The path planner minimizes the running time by reducing
the number of collision checks performed during planning.
It initially assumes that all nodes and edges in the roadmap
are collision-free, and searches the roadmap for the short-
est path between the start and goal nodes. The nodes and
edges along the path are then checked for collision. If a
collision with an obstacle occurs, the corresponding nodes
and edges are removed from G. It updates the roadmap
with new nodes and edges, and then searches for a short-
est path. The above process is repeated until a collision-
free path is returned. To avoid bad estimations for the path

1049

planner, we used limited time for processing and generat-
ing G. Figure 4 illustrates the algorithm of the proposed
path planner.

At the beginning, a low resolution regular grid is applied
to C-space to generate a search grid. The C-space is di-
vided into small cells. Each cell has an associated location
in the grid (%, y) and an information value. The grid gener-
ation will help in maintaining the connectivity of the graph
by defining a minimum discretization for the open spaces.
The discretization density is adjusted to suit the environ-
ment, selecting as sparse a grid as possible. Up to this
stage, the cells hold only position information.

input - n-
k— the mumber of the closest neighbors to ¢
output: A roadmap G = (V. E)

)
— vinit £O Canal
F 2 path from cimt to g0

the number of nodes in the roadmap

foreach §; € Imifial Path Estimation do
Ve—{}, E<{}h

Cinit “— the initial conf fion of Sz

«— the goul config n of 5;;

nit |3

repeat
¢ «— a random configuration in C-space;
if ¢ € Chy then
¢ — a random configuration in C-space:

if ¢ Chye then

midpoint of of linc segment;

tm :
if em € Cfree then V « V U {om }:

LV —vufe)
until (V| > n ;
V e VU {eguathi
forall ¢ £ V" do

Ne — the k nodes of ¢ from V;

forall é € N, do
newghbor of ¢ from N in cyoq ditvetion;

AND A (e.¢;) # NIL then

. «— olosest
[olose

I

imit+ Cgoal- (7)3
if P¢ W AND P € Cje then

| returm P:

else if ¢ < tmaex then

l PathEnhoncement();

else

L return failure:

Figure 4: The proposed algorithm of the path planner.

The path planner minimizes the on-line computation by
pre-generating a search space to contain all the informa-
tion that will be used during the on-line path planning. It
also avoids generating an unnecessarily complete and com-
plex space. It samples the Cy,¢. by using a non-uniform
approach returning with the minimal free search space to
avoid the computational complexity of generating a denser
search area. The C-space is sampled by using the bridge
test approach [21] that was introduced to boost the sam-
pling density inside narrow passages using only a simple
test of the local geometry. The idea is to take two random
samples, where the distance between the samples is cho-
sen according to Gaussian distribution. Only if both sam-

ples lie in C,ps; and the point in the middle of them lies
in Cfpec, the free sample is added. Increasing the density
of sampling around narrow passages increases the chances
of finding samples in areas that are hard to reach and are
likely to be needed for finding a solution. On the other
hand, the samples in open space are randomly chosen in
the medial of C'¢,.. with lower density.

The planner builds a roadmap graph of a feasible path by
lazily evaluating the feasibility of the roadmap as planning
queries are processed. The ¢;nit, Cgoar, and a number of
non-uniformly distributed samples are used to form nodes
in a roadmap. They are connected by edges in which each
pair of nodes are sufficiently close together and in cgoq4;
direction.

The second step in the algorithm is to find the shortest path
in G between c;jpi; and cgoq;. Given a procedure that esti-
mates the length of a path, the shortest feasible path in the
roadmap is found by repeatedly searching for the short-
est path by using D* Lite search. Therefore, the path is
checked to know if it is collision-free or not. If the result-
ing path lies in C'y,., it will be supplied with the grid of
cells of the C-space to the footstep planner to retrieve the
actual footstep placements for the humanoid robot.

On the other hand, if no path exists in the roadmap, the
planner either reports failure or go to the path enhancement
stage to add more nodes to the roadmap and start search-
ing again. The choice is determined by the overall time
allowed to solve the problem. If the planner reports an
occurrence of a collision, the corresponding node or edge
from the roadmap is removed. Then, the planner adds new
nodes and edges and searches again for the new shortest
path.

3.5 Footstep Planner

The footstep planner is a high-level planner implemented
to calculate footstep placements under humanoid robot sta-
bility and motion constraints. It ignores as much of the
underlying details of leg movement and trajectory genera-
tion as possible, and works instead from a description of
the robot’s capabilities. By using the roadmap graph as a
reference path, it returns a sequence of footholds that can
be carried by the robot to reach the goal location.

The footstep planner takes the roadmap graph, the initial
and goal points, and the grid of feasible cells as inputs. It
returns the solution as an ordered list of the footstep place-
ments that should be executed to reach the goal position.
The D* Lite search [22] is used to determine repeatedly
the shortest paths between the current footstep of the hu-
manoid robot and the goal location as the edge costs of a
graph change while the robot moves towards the goal po-
sition. D* Lite search provides accurate and fast solutions
for humanoid robot motion in dynamic and unknown en-
vironments. It generates the shortest and the lowest-cost
sequence of footstep locations to reach the target point. D*
Lite works by exploring grid nodes (cells) that are provided
by the path planner and calculates the cost function F'(n)

1050

for each cell in the roadmap graph. The cost function is
calculated as the sum of the following three costs:

1. Step costs (G(n) & rhs(n)): They are the costs of
making the desired step from the start node to the
current node (n). The cost grid is an eight-connected
grid whose edge costs are initially one. The value of
the cell is changed to infinity when the robot discov-
ers that this cell cannot be traversed.

2. Estimated heuristic cost H(n): It is the estimated
cost from the current node (n) to the goal node. It
uses a heuristic search to estimate the cost of the
goal node and it minimizes the cost of the path so
far. D* Lite search is optimal if the estimated cost to
the goal is always underestimated.

3. Clearance cost C'(n): It is used to insure that the
generated footsteps are directed to the middle of
C'tree and they are not adjacent to the obstacles. It
calculates the clearance cost of following G that is
generated from the path planner.

After the cost functions have been calculated, the plan-
ner computes the optimal sequence of footstep locations to
reach the desired goal. The robot actions are modeled by
storing a symmetric collection of candidate footstep tran-
sitions for both feet. A sequence of footstep placements
to reach a goal in the route environment is computed from
a discrete set of feasible footstep locations corresponding
to stable candidate stepping motion trajectories. The plan-
ner returns the solution as an ordered list of the footsteps
which should be processed to reach the goal. To achieve
smooth walking, the parameters of the next step must be
known before the current step of the robot ends.

D* Lite search can efficiently recalculate the shortest path
from the current position of the robot to the goal position.
It only recalculates those goal distances that have been
changed or have not been calculated before. It achieves a
speed up of one to two orders of magnitude over repeated
A* search by modifying previous search results locally.

4 Motion Trajectory Generator

After estimating the footstep placements and the head
movements for the humanoid robot, they are submitted to
the motion trajectory generator to execute the desired ac-
tions. The motion trajectory generator has three fundamen-
tal functions: (i) keeping the humanoid robot in balance,
(i1) moving the swing leg, and (iii) controlling visual atten-
tion. The motion trajectory generator calculates the walk-
ing parameters and sends them to the robot’s actuators to
execute these actions.

We considered the walking process of the humanoid robot
as a symmetric, periodic and smooth motion. The mo-
tion trajectory generator is used in order to output a final
dynamically-stable trajectory. We use the ZMP [23] tra-
jectory in order to maintain overall dynamic stability. The

1051

ZMP walking pattern is used to produce humanoid robot
gaits as dynamic and stable as possible. The foot place-
ment actions indicate the motion, turns, and change of ori-
entation actions. These actions are divided into six foot-
step placement actions for the humanoid robot: straight-
forward, straight backward, turn right, turn left, sideways
right, and sideways left. All of these actions have two pa-
rameters which have real values. Figure 5 shows some
foot placement actions and their parameters for the HOAP-
2 humanoid robot. It is worth noting that the humanoid
robot does not necessarily need to be able to exactly per-
form these six actions. For example, the robot could well
use several footsteps for performing the 45 ° rotation in
turn actions.

Action Straightforward Turn Right Sideways Right

Footstep
Shape

BEw

Distance 0-10cm
Angle 0°

Figure 5: Footstep placements for HOAP-2 humanoid
robot.

On the other hand, the robot’s head is moved depending
on the direction of the processed landmarks and the move-
ment range of the neck’s motors. The robot will tilt its head
to the right and the left to detect the landmarks which are
located at the road sides. It also looks down to the floor
to detect landmarks such as crossroads and street bound-
aries in the miniature city. The head orientations of the
humanoid robot are divided into four actions: turn right,
turn left, move up, and move down.

5 Implementation

We have implemented our approach on the second genera-
tion of Fujitsu’s Humanoid for Open Architecture Platform
(HOAP-2) [13]. HOAP-2 is equipped with 25 servo actua-
tors. It has four force sensing registers (FSRs) in each foot
to detect reaction forces from the floor. It is also equipped
with an accelerometer and gyroscope inside the torso. The
vision system consists of two CMOS cameras, capable of
capturing frames of 320X240 pixels at 25fps.

The navigation task is described by the user as route in-
structions via a graphical user interface (GUI). The naviga-
tion process is executed in a miniature city which is built
on a 5Sm x 3.2m area. It contains buildings of recogniz-
able shapes and colors (such as the railway station and the
town hall) and other buildings of unique characteristics and
symbols.

We tested the proposed algorithm on simple routes and it
takes approximately 1.7 sec to process each segment in the

processed route. We are still working on handling long and
more complex routes which contain narrow passages.

6 Conclusion

In this paper, we presented the anatomy of our proposed
motion planning system for a Fujitsu HOAP-2 humanoid
robot. The proposed technique is a combination of a
sampling-based planner and a D* Lite search to generate
fast and dynamic footstep placements for the humanoid
robot in unknown environments. The robot navigation is
based on the route described by the user to generate initial
path estimation to the navigation task. The humanoid robot
begins from the start point and moves along that path to
collect information and recognize the landmarks by using
its stereo vision and implemented techniques of landmark
recognition. Based on the new findings and the processed
route, the path is then re-planned to adjust the robot’s po-
sition during navigation.

The main task of our motion planner is to find a sequence
of actions as close to optimal as possible that causes the
robot to reach its goal location while avoiding the obsta-
cles. The path planner is implemented to extract the mini-
mal feasible Cy,.. and generate the shortest path to the tar-
get position. We used a modified version of the Lazy-PRM
technique with a non-uniform sampling to avoid the com-
putational complexity of generating a denser search area.
The planner directs the computational resources to trou-
bled and difficult regions, such as narrow passages, leaving
the larger open spaces sparsely populated.

The footstep planner is implemented to find smooth and
low-cost footstep placements of the humanoid robot within
the resulting Cfree. It uses D* Lite search to reduce
searching time and produces a smoother dynamic path for
the humanoid robot at a low cost.

References

[1] Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor,
G.; Burgard, W.; Kavraki, L. E.; Thrun, S.: Princi-
ples of robot motion-theory, algorithms, and imple-
mentations, MIT Press, 2005

[2] LaValle, S. M.: Planning algorithms, Cambridge
University Press, 2006

[3] Tsianos, K. I.; Sucan, I. A.; Kavraki, L. E.:
Sampling-based robot motion planning: towards re-
alistic applications, Computer Science Review, vol.
1, no. 1, 2007, pp. 2-11

[4] Michel, P.; Chestnutt, J.; Kagami, S.; Nishiwaki, K.;
Kuftner, J. J.; Kanade, T.: Online environment recon-
struction for biped navigation, In Proceedings of the
2006 IEEE International Conference on Robotics and
Automation(ICRA’06), Florida, 2006, pp. 3089-3094

[5] Kuffner, J. J.; Nishiwaki, K.; Kagami, S.; Inaba,
M.; Inoue, H.: Motion planning for humanoid
robots under obstacle and dynamic balance con-
straints, In Proceedings IEEE International Confer-
ence on Robotics and Automation(ICRA’01), Seoul,
Korea, 2001, pp. 692-698

[6] Jan, G. E.; Chang, K. Y.; Parberry, I.: Optimal path
planning for mobile robot navigation, IEEE/ASME
Transactions on Mechatronics, vol. 13, no. 4, 2008,
pp- 451-460

[7] Lau, M.; Kuffner, J: Behavior planning for charac-
ter animation, In 2005 ACM Siggraph/Eurographics
Symposium on Computer Animation, Los Angeles,
CA, 2005, pp. 271-280

[8] Shiller, Z.; Yamane, K.; Nakamura, Y.: Planning mo-
tion patterns of human figures using a multi-layered
grid and the dynamics filter, In Proceedings 2001
IEEE International Conference on Robotics and Au-
tomation (ICRA’01), 2001, pp. 1-8

[9] Bourgeot, J.; Cislo, N.; Espiau, B.: Path-planning
and tracking in a 3d complex environment for an
anthropomorphic biped robot, In Proceedings of
IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS’02), 2002, pp. 2509-2514

[10] Lorch, O.; Albert, A.; Denk, J.; Gerecke, M.; Cupec,
R.; Seara, J. F.; Gerth, W.; Schmidt, G.: Experiments
in vision guided biped walking, In Proceedings of the
2002 Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems(IROS’02),
2002, pp. 2484-2490

[11] Okada, K.; Inaba, M.; Inoue, H.: Walking navi-
gation system of humanoid robot using stereo vision
based floor recognition and path planning with multi-
layered body image, In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS’03), Las Vegas, Nevada, 2003, pp.
2155-2160

[12] Ferguson, D.; Kalra, N.; Stentz, A.: Replanning
with RRTs, In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’06),
2006, pp. 1243-1248

[13] Fujitsu Automation Co., Ltd.: HOAP-2 Instruction
Manual, 2004

[14] Elmogy, M.; Habel, C.; Zhang, J.: A cognitively mo-
tivated route-interface for mobile robot navigation,
In proceedings of the 3rd International Workshop
on Human-Centered Robotic Systems (HCRS’09),
Bielefeld, Germany, 2009, pp. 73-82

[15] Elmogy M.; Zhang, J.: Robust real-time land-
mark recognition for humanoid robot navigation, In

1052

[16]

[17]

[18]

proceedings of the 2008 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO’08),
Bangkok, Thailand, 2008, pp. 572-577

Girdenfors, P.: Conceptual spaces: the geometry of
thought, MIT Press, 2000

Chella, A.; Coradeschi, S.; Frixione, M.; Saffiotti,
A.: Perceptual anchoring via conceptual spaces, In
Proceedings of the AAAI-04 Workshop on Anchor-
ing Symbols to Sensor Data, 2004

Elmogy, M.; Habel, C.; Zhang, J.: Robot topo-
logical map generation from formal route instruc-
tions, In Proceedings of the 6th International Cog-
nitive Robotics Workshop at 18th European Con-
ference on Artificial Intelligence (ECAI’08), Patras,
Greece, 2008, pp. 60-67

1053

[19]

[20]

(21]

(22]

(23]

Lindemann, S. R.; LaValle, S. M.: Current issues in
sampling-based motion planning, Robotics research,
2005, pp. 36-54

Bohlin, R.; Kavraki, L. E.: Path planning using lazy
PRM, In IEEE International Conference on Robotics
and Automation (ICRA2000), San Francisco, CA,
USA, 2000, pp. 521-528

Hsu, D.; Jiang, T.; Reif, J.; Sun, Z.: The bridge
test for sampling narrow passages with probabilis-
tic roadmap planners, In proceedings IEEE Inter-
national Conference on Robotics and Automation
(ICRA’03), 2003, pp. 4420-4426

Koenig S.; Likhachev, M.: D* Lite, In Proceedings of
the AAAI Conference of Artificial Intelligence, 2002

Vukobratovic, M.; Borovac, B.: Zero-moment point
-thirty five years of its life, International Journal of
Humanoid Robotics, vol. 1, no. 1, 2004, pp. 154-173

