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Abstract

This work develops a connectionist memory model for a service robot that satisfies a number
of desiderata: associativity, vagueness, approximation, robustness, distribution and paral-
lelism. A biologically inspired and mathematically sound theory of a highly distributed and
sparse memory serves as the basis for this work. The so-called sparse distributed memory
(SDM), developed by P. Kanerva, corresponds roughly to a random-access memory (RAM)
of a conventional computer but permits the processing of considerably larger address spaces.
Complex structures are represented as binary feature vectors. The model is able to produce
expectations of world states and complement partial sensory patterns of an environment
based on memorised experience. Caused by objects of the world, previously learnt experi-
ences will activate pattern sequences in the memory and claim the system’s attention. In this
work, the sparse distributed memory concept is mainly considered a biologically inspired and
content-addressable memory structure. It is used to implement an autobiographical long-
term memory for a mobile service-robot to store and retrieve episodic sensor and actuator
patterns.

Within the scope of this work the sparse distributed memory concept is applied to several
domains of mobile service robotics, and its feasibility for the respective areas of robotics
is analysed. The studied areas range from pattern matching, mobile manipulation, navi-
gation, telemanipulation to crossmodal integration. The robot utilises properties of sparse
distributed memory to detect intended actions of human teleoperators and to predict the
residual motion trajectory of initiated arm or robot motions. Several examples show the
model’s fast and online learning capability for precoded and interactively provided motion
sequences of a 6 DoF robot arm. An appropriate encoding of sensor-based information into
a binary feature space is discussed and alternative coding schemes are elucidated.

A transfer of the developed system to robotic subfields such as vison-based navigation is
discussed. The model’s performance is compared across both of these domains, manipula-
tion and navigation. A hierarchical extension enables the memory model to link low-level
sensory percepts to higher-level semantic task descriptions. This link is used to perform a
classification of demonstrated telemanipulation tasks based on the robot’s experience in the
past. Tests are presented where different sensory patterns are combined into an integrated
percept of the world. Those crossmodal percepts are used to dissolve ambiguities that may
arise from unimodal perception.





Zusammenfassung

In dieser Arbeit wird ein konnektionistisches Gedächtnismodell für einen Service-Roboter
realisiert, das eine Riege von Desiderata erfüllen soll: Assoziativität, Unschärfe, Approxi-
mität, Robustheit, Verteiltheit und Parallelismus. Als Grundlage dient die von P. Kanerva
entwickelte und biologisch inspirierte Theorie eines hochgradig verteilten und dünn besetzten
Speichers, engl. Sparse Distributed Memory (SDM). Es entspricht generell einem Speicher
ähnlich dem Random-Access Memory (RAM) eines Computers wobei ein weitaus größerer
Adressraum abgedeckt werden kann. Komplexe Strukturen werden als sehr lange Vektoren
eines binären Merkmalsraums auf das Gedächtnismodell abgebildet. Das Modell erzeugt Er-
wartungen und vervollständigt partielle Wahrnehmungen der Umwelt mittels gespeicherter
Sensordaten. Ausgelöst durch Objekte der Umwelt werden zuvor gelernte Erfahrungen durch
Folgen von Aktivierungsmustern im Fokus der Aufmerksamkeit des technischen Systems dar-
gestellt. Primär wird in dieser Arbeit das Sparse Distributed Memory als eine dem mensch-
lichen Vorbild ähnliche Gedächtnisstruktur zur autobiographischen Langzeitspeicherung von
Erfahrungsmustern diskutiert.

Diese Arbeit präsentiert die Übertragung des Sparse Distributed Memory Konzepts auf
verschiedenste Domänen der mobilen Service-Robotik und analysiert dessen Eignung für die
jeweiligen Bereiche. Diese Bereiche umfassen die mobile Manipulation, Navigation, Telema-
nipulation und die kreuzmodale Integration verschiedenartiger Sensormuster. Der Roboter
nutzt die prädiktiven Eigenschaften des Modells um beispielsweise Intentionen von Tele-
operatoren zu erkennen und initiierte Roboterarm-Bewegungsmuster sowie mobile Naviga-
tionsaufgaben autonom zu Ende zu führen. Verschiedenste Anwendungsszenarien zeigen die
schnelle Lernfähigkeit von kodierten sowie interaktiven Manipulationssequenzen eines Robo-
terarms mit sechs Freiheitsgraden mittels einer vorwärtsgerichteten, neuronalen Architektur,
die das SDM darstellt. Dabei werden u.a. die Probleme der Informationsenkodierung von
Sensordaten in einen binären Merkmalsraum erörtert und weitere Kodierungsmöglichkeiten
untersucht.

Die Übertragung des Modells auf andere Modalitäten zur Lösung von visuellen Navi-
gationsaufgaben wird dargestellt und das Verhalten des Modells bezüglich der Manipula-
tionsdomäne verglichen. Durch eine hierarchische Erweiterung des Gedächtnismodells wird
es ermöglicht, Sensorwahrnehmungen mit semantischen Konzepten höheren Abstraktions-
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grades zu verknüpfen um beispielsweise Ziele einer interaktiven Telemanipulationsaufgabe
frühzeitig zu ermitteln. Es werden Untersuchungen präsentiert, die eine kreuzmodale In-
tegration verschiedenartiger Sensormuster zu einem multimodalen Perzept der Umgebung
darstellen, um Ambiguitäten unimodaler Wahrnehmungen zu kompensieren.
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1
Introduction

Memory is the means by which we draw on our past experiences in order to
use this information in the present.
(Robert J. Sternberg, Professor of psychology, 1999)
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Motor learning in biological beings exhibits properties such as generalisation, learning,
discrimination, and forgetting. Recognising and reconstructing motions is important for
analysing behaviours, activities and movements. Trajectory learning is a fundamental com-
ponent to teach a robot complex manipulation patterns. If this is achieved through an
interactive control by a human instructor it is known as learning by demonstration (LbD).
However, human demonstrations are noisy and inevitably inconsistent.

The goal of this work is to build a memory system that is able to learn and predict low-
level sensor and actuator patterns of a service robot. The memory system should allow the
robot to learn motion sequences and to autonomously control its actuators by retrieving
sequences at a later date. It should allow making predictions of the consequences for a
perceived situation similar to already learnt circumstances. However, a major requirement
for such a system is a flexible and fast memory-based learning component that exhibits
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the ability to recognise, cluster, and approximate trajectories demonstrated by humans even
under consideration of noisy and incomplete patterns.

To pursue the development of conscious machines and cognitive robots, the memory system
needs to be capable of associating new input patterns to already learnt contexts. Similarly,
the memory system needs to be flexible enough to memorise and generalise interactively
taught motion trajectories from both individual and multiple user demonstrations. Because
robots are generally operated with more than a single sensor, the system needs to facilitate
an extension with further sensoric modalities. The implementation of the robot memory
structure presented in this work is based on the work about sparse distributed memory
(SDM) proposed by Kanerva (1988), also known as Kanerva coding (Sutton and Barto,
1998).

1.1. Motivation

The following sections will briefly outline the four research areas that mainly motivated the
study presented in this work.

1.1.1. Learning from Experience

Biological beings reveal remarkable learning capabilities to constantly meet new challenges of
life. The ability to relate and generalise new circumstances to once memorised experiences,
e.g. to select appropriate actions to interact with the environment, plays a crucial role in
their struggle for survival.

Let us consider how human beings model the world. While interacting with the world
over and over again, we become better at dealing with it. It is said that we learn from
experience. Records of experiences are stored in our memory and we constantly relate them
to sensations of the environment to predict what is likely to happen. Based on the resulting
predictions due to our experience we choose appropriate actions, e.g. to avoid danger or to
avoid mistakes we have made before. We understand what is happening only to the extent
that we are able to predict what is going to happen. In this, the internal model is our means
of prediction. Apart from just observing the world through sensors and learning about it, a
system also acts and learns from its interactions with the world. Learning to perform actions,
thus, relies on learning to reproduce sequences of motion patterns. The more experience we
have, the more faithful are the dynamics of the world reproduced by our model of the world.
Consider for instance the growing habitual formation of expectations. Thereby, the model
just captures statistical regularities of the world reported by its senses and the system’s own
actions. In doing so, not just the main effects of actions but also the side effects are recorded
in our memory.

Human attention is attracted if something unusual happens caused by discrepancies be-
tween what is predicted by the internal model and is reported by the senses. The internal
model affects our perception profoundly. As an example, consider driving along your thor-
oughly known way to work. You will hardly pay attention to things that stay unchanged
and agree with your internal model. But if a new sign or parking bay appears overnight, you
will become aware of the changes after passing them, as your experience startles. Comparing
experiences with current circumstances yields a criterion for updating and revising the world
model.
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Let us consider an individual’s subjective perception of the world at any given moment as
a state in which the world resides in a particular moment. The flow of the world states over
time can then be described as a sequence of subjective perceptions. Accordingly, a simple
way to build a world model is to store the reports of the senses in the memory and to retrieve
them from there later. Thus, a mechanism is required to store subjective perceptions in a
memory in a way that the system is able to retrieve the information later for predicting
what might happen. Cognitive psychologists have identified three common operations of
memory: encoding, storage, and retrieval. A memory structure possessing above-mentioned
functionalities will be implemented for a service robot to encode, store and retrieve low-level
sensor and actuator patterns.

Some general principles are known from studies ranging from neuroscience to cognitive
science and psychology. The brain remembers recurring activity patterns and detects regu-
larities in them (Hawkins, 2005). That also explains why things become familiar and why we
rehearse mental or physical skills when presented with similar patterns over and over again.
Memory plays a very important role in this process. The artificial intelligence (AI) commu-
nity focus on how humans reason and solve problems. They reveal one of the highest levels
of human behaviour. Traditional AI mainly focuses on reasoning, but often neglects that
thinking is also based on information storage and retrieval. It mostly considers what to do,
but not what these decision processes and actions are based on. Mathematical models that
study principles for detecting regularities within different patterns include associative mem-
ories and self-organising maps (Willshaw, 1981; Hopfield, 1982; Kanerva, 1988; Kohonen,
1989; Hassoun, 1993).

1.1.2. Cognitive Robotics

Humans know how to behave according to a context they are in. This is subtle and difficult
for a robot to understand. Nevertheless, by refining this ability to anticipate, it should
be possible to produce robots that are proactive in what they do and that are more like
a companion rather than remain a worker. Service robots that are able to predict the
intentions of its human partner and to anticipate imminent actions could make human-robot
interactions more natural.

Levesque and Lakemeyer (2007) define cognitive robotics as the study of knowledge rep-
resentation and reasoning problems faced by an autonomous agent (a robot) in a dynamic
and incompletely known world. Central to this effort is an understanding of the relationship
between the knowledge, the perception, and the action of such a robot. In contrast, AI is
not sufficiently concerned with the dynamic world of an embodied agent regarding low-level
quantitative perception. Uncertainty, vagueness and associativity are also great challenges
for knowledge processing in the field of AI. AI methods perform poorly on low-level tasks
such as pattern recognition which are automatic. Combining AI methods with connectionist
memory models into hybrid models can be of a certain benefit. Methodologies to handle
major problems in the course of cognitive robotics include not only approaches of classical
symbolic AI, but also biologically inspired approaches that use distributed representations.
Such approaches are artificial neural networks, sparse distributed memory, connectionist
models and parallel distributed processing (PDP).

In order to develop cognitive robots that exhibit behaviour which resembles some form of
human-like intelligence, one way is to model robot control structures similar to those of hu-
mans. A cognitive developing robot needs robust and flexible learning mechanisms to acquire



4 Chapter 1 Introduction

and memorise relevant world knowledge and to organise this knowledge to facilitate inter-
action with its environment. D’Mello and Franklin (2009) propose four fundamental types
of learning that would be essential for cognitive, autonomous developing robots: learning
of perceptual qualities, known as perceptual learning, episodic learning of events, procedural
learning of new actions and action sequences, and attentional learning. Perceptual learning
in humans, for instance, occurs incrementally; there is no need for large training sets. Learn-
ing and knowledge extraction is achieved by a dynamic system that can adapt to changes
in the nature of the stimuli perceived in the environment. Attentional learning is concerned
with the principles that drive attention.

One question addressed in this work is whether robots can benefit from a system that is
based on human-like learning mechanisms in the sense that they become more flexible accord-
ing to: the required training cycles, knowledge integration, transfer of existing knowledge
to new but similar tasks and memory organisation. Haikonen (2009) identifies associative
processing as the most elementary cognitive process for determining the proper motor re-
sponse to a perceived situation. This could be managed either by reactive approaches as
proposed by Brooks (1986, 1991) or by memory-based approaches. This work particularly
focuses on a memory-based approach to learn associations of sensor and actuator patterns
while being constrained to few exposures of such events. I will treat a particular aspect of
cognitive robotics which involves memory performance. Thus, I will outline the state-of-the-
art in cognitive science regarding memory to underline the important aspects for a transfer
to cognitive robotics in this work.

1.1.3. Distributed Representations

Computing architectures such as artificial neural networks, connectionist models and parallel
distributed processing (PDP Research Group, 1986a,b; Anderson, 2007) have been motivated
by the fundamental architectural differences between the brain and the conventional von-
Neumann architecture. Behaviours more similar to the brain are expected to be obtained
by studying architectures that are more similar to the brain.

According to Sjödin (1998), the architecture of the brain suggests that it uses distributed
representations, i.e., somewhat exaggerated everything is stored everywhere. A major con-
tribution arose through studying distributed representations in cognitive and neural nets
instead of previously used local representations. Neural-nets research mainly focuses on
distributed representations which spread information largely over a network architecture in-
stead of representing a concept by a single unit. This essential mechanism of the brain leads
to the fundamental requirement of studying how to encode and operate with distributed
representations (Hinton et al., 1987; Plate, 1994; Field, 1994). This research showed that
such distributed representations are robust and support generalisation. Distributed repre-
sentations are suitable for the learning and clustering of similar or closely related—according
to some metric—concepts. With such mechanisms, behaviours can be produced that look
like being rule-governed although no explicit rules exist, as usually used in traditional AI.

Our brains model the world as the world is presented to them by our senses. Sparse coding
of sensory input plays an important role in this capability. Sparse coding means that neurons
encode sensory information by just using a small subset of active neurons out of a larger
set. According to Olshausen and Field (2004), sparse coding provides an efficient means
of representing data found in the natural world and provides a means of efficiently forming
associations and storing memories. It also appears that sparse representations constitute an
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important processing strategy of the nervous system, which massively increases the storage
capacity of associative memories while saving energy (Field, 1994; Zhao, 2004). The sparse
and distributed encoding of sensorimotor information in an associative memory constitutes
the major object of research in this following study on developing a biologically-inspired
cognitive memory system for service-robots.

1.1.4. Sequence Learning

The internal representation of a real-world problem mostly consists of a spatio-temporal
ordered set of events and actions. Sequential organisation is fundamental in human behaviour
(Tanji, 2001; Bapi and Doya, 2001; Sun and Giles, 2001; Serrien, 2009). According to Sun
and Giles (2001), sequence-learning problems can be divided into the categories of sequence
prediction, generation, recognition and sequential decision making .

In this work, temporally ordered sequences will mainly be created through a discrete
sampling of robot trajectories (and further parameters) during a complex movement of, e.g.,
a redundant manipulator or a mobile platform. Generating a sequence through actions,
making a sequential decision, is considered as being trajectory-oriented in this work. This
means that a given sequence si, si+1, . . . , sj ; aj → sj+1 should determine an action aj at time
step j that leads to the desired state sj+1.

Prominent approaches to sequence learning are recurrent back-propagation networks (Hochre-
iter and Schmidhuber, 1997), associative networks such as Hopfield networks (Hopfield,
1982), hidden Markov models (Baum et al., 1970), temporal difference and reinforcement
learning (Sutton and Barto, 1998) and self-organising maps (Kohonen, 1987, 1989). Another
approach to sequential decision making is explicit symbolic planning. The latter approach
tries to reach its goal through iterative problem decomposition. Unfortunately, this method
is quite complex, requires substantial prior domain knowledge which is not always available
and is unnatural for describing situated actions (Agre and Chapman, 1990). In this work I
will use a sparse and distributed memory model (Kanerva, 1988) to recognise a given par-
tial trajectory based on the memory contents to establish an autonomous generation of a
potential sequence remainder.

1.2. About this Work

This section highlights the main objectives of this work. The decision for the SDM model is
elucidated based on requirements of cognitive robotics that are based on features of natural
cognitive systems.

1.2.1. Objectives

The service robot TASER from the Technical Aspects of Multimodal Systems1 (TAMS)
division at the Dept. of Informatics, MIN Faculty2, University of Hamburg3 does not have
any memory at all to store sensory experiences. Nor is it able to relate current situations
to subjectively experienced situations of the past. By using a memory model the service
robot TASER should be enabled to learn new manipulation and classification tasks fast and

1http://tams.informatik.uni-hamburg.de
2http://www.min.uni-hamburg.de
3http://www.uni-hamburg.de

http://tams.informatik.uni-hamburg.de
http://www.min.uni-hamburg.de
http://www.uni-hamburg.de
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online while being robust against noise. Furthermore, it should be enabled to relate current
situations to learnt, similar tasks of its past to predict possible consequences based on the
present context. In order to reach the intended goal of a remembered task autonomously, the
robot should be allowed to control its next movements based on the predicted consequences.
The memory system has to provide mechanisms for determining the similarity of situations
it currently faces to those stored in its memory. The main objective of this work is to build a
biologically-inspired associative memory system that possesses basic cognitive capabilities for
memory storage and retrieval and is able to learn and predict low-level sensor and actuator
patterns. This work realises a concrete implementation of the highly abstract SDM model
and presents a feasibility study of making the SDM model accessible for robotic applications
and cognitive robotics research. The motivation of using a memory for robotic applications
is to mimic human memory with a model that can make associations between information,
recall more salient information more accurately, and have a comparably fast memory recall.
Motion sequences that are remotely executed by a teleoperator should be recognised by the
robot to help the user accomplish the intended action. The following research questions will
be addressed in this work:

• To which extend can the connectionist SDM concept be used to endow robots with
basic cognitive capabilities to memorise robot motion sequences?

• How can sensor-based information that originates from laser range scanners and cam-
eras be encoded such as to make it usable in a connectionist network?

• Is it possible to relate new input patterns and sequences of patterns to already learnt
situations by some kind of generalisation?

• Can a memory be used to predict a certain behaviour regarding a given situation based
on past experience by means of mechanisms of abstraction?

• Is it possible to gain memory-based autonomous robot control by retrieving sequences
from experience with respect to the current context?

• Does an SDM-based model support different perceptual modalities equally?

• Can an SDM be used to identify the intent of a human operator that uses a robot for
a remote task execution?

• Is an SDM suitable for accomplishing perceptual disambiguation of classifications pro-
vided by different sensoric modalities?

• What are the problems and advantages of such a system as compared to other ap-
proaches?

1.2.2. Requirements

This work utilises Kanerva’s SDM model (Kanerva, 1988) to examine the above-mentioned
research questions. Based on associative memory principles the model should be able to
autonomously generate and execute spatial trajectories when confronted with positions or
arm configurations similar to a learnt trajectory. The system learns by either hard-coded
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trajectory examples or interactively human-guided movements to fulfil an arbitrary high-
level task. The system is trained with a discrete set of spatial positions resulting from a
desired continuous motion sequence. The model should be able to interpolate points and
joint angles based on the trained motion patterns and to extrapolate motion sequences based
on its experience.

Equipping a robot with an associative memory that bears a resemblance to some human
long-term memory characteristics must be based on a definition of requirements. In the
following some features of human-long term memory are emphasised and their importance
with respect to cognitive, autonomous developing robots are elucidated.

Pattern recognition: An essential mechanism of the brain is to recognise and discriminate
high-dimensional sensorial input patterns, e.g. speech signals, human faces, movements
and to classify them based on already learnt patterns. Closely related individual pat-
terns are grouped into categories based on common properties. The recognition and
classification of patterns is the most fundamental requirement for robots in identifying
meaningful entities in physical signals. Caused by an attractor characteristic, succes-
sive memory reading will lead the robot to find a similar pattern or sequence in its
memory. Modern and future robots that sense their environment through various sen-
sors have to deal especially with high-dimensional feature patterns. The SDM theory
appears to be highly suitable to deal with large pattern spaces. Patterns discussed
in this work originate from laser range scanners, omnidirectional cameras, redundant
manipulators and further sensors and actuators.

Content-addressable: Human long-term memory is addressed by contents rather than spe-
cific addresses4. A robot that retrieves a solution to a problem or the consequences
of an action by cueing its memory with the current sensorial description of the world
would be clearly beneficial. If sensor-based patterns are used as the address where they
are to be stored in memory, it becomes possible to converge on a stored pattern start-
ing from an inaccurate (or incomplete) version of that input-patterns by an iterative
process. In an SDM, patterns read from an inaccurate memory-address will retrieve
a more accurate version of the same memory-address because the value was originally
written into many memory locations within a given access diameter.

Auto-associativity: The brain essentially memorises a set of meaningful objects of the world
and the relations and associations between those objects. Auto-associative memories
enable the retrieval of an entire memory even from a fragmentary sample of itself, e.g.
several notes allowing us to retrieve a whole song. If a robot cues its memory with a
trajectory that is similar to a trajectory of some previously encountered tasks, auto-
association allows to retrieve the consequences of that previously executed trajectory
with respect to the current context.

Generalisation: The capability to extend a concept to some less-specific criteria is a fun-
damental characteristic of reasoning. Generalisation is directly related to abstraction.
A system’s ability to acquire and store new information is quantified by its ability
to distinguish among stimuli and to associate an appropriate stimulus with the cur-
rent, unconditioned stimulus. Generalisation diminishes the sensitivity to input noise,

4Although memory does not use addresses to access memory contents, I will use the term to refer to memory
cells. The term address space will refer to the entire amount of cells in a memory.
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variations of input stimuli and the need for storage capacity at the cost of a possible
increase of false-positive responses. With respect to this work, using individual but
similar patterns as addresses for the SDM leads to an averaging of the stored data
patterns. Features that are common to all or most patterns in the neighbourhood of
the used memory locations will stand out as an encoding for a cluster of patterns and
thus cause generalisation. The attraction by stored patterns allows to read informa-
tion from the memory with a vague address pattern which can be considered a kind of
abstraction5.

Sparse coding: The address space resulting from low-level sensory perceptions of a robot
including various sensors is usually quite large. Memorising reference vectors for each
possible scenario or situation therefore becomes infeasible. Sparse coding principles,
which are used in the brain, should reduce the address space to a more reasonable
size. Accordingly, system inputs are not required to match stored memory addresses
exactly but must fall within a specific distance of an address to activate closely related
concepts.

Robustness to noise: Noise caused by the inaccuracy of sensors and complex dynamics in
the perceived world is still challenging. A robot must use mechanisms to deal with noise
in a robust fashion to match input stimuli with memorised patterns. Generalisation
and abstraction as mentioned above play a crucial role for handling noise.

Resilience to memory damage: A concept, e.g. “Grandmother”, is spread across a network
of neurons rather than using a single unit. This is the opposite of symbolic representa-
tions mostly used in classical AI. When a robot uses distributed representation, minor
damage to the underlying network will not cause the loss of entire concepts.

One-shot learning: The ability to store and recognise complex patterns after a single or few
exposures is called one-shot learning. A robot needs this ability to avoid long training
phases.

Forgetting and graceful degradation: A major instrument for memory management which
contributes to ensuring that primarily the relevant memories are recalled. Different
theories have emerged from extensive research on forgetting, e.g. trace decay, inter-
ference and repression theory6. When enhancing intelligent systems, e.g. robots, with
human-like memory capabilities, forgetting cannot be neglected. It could facilitate the
acquisition of new skills by weakening distractive, older ones. Graceful degradation
means that a system responds with the best approximation to some lost information.
If a robot has forgotten an exact execution of an action it should be able to respond
with an appropriate approximation of it.

5The details of memory storage and retrieval are elucidated in Section 3.2.
6According to trace decay theory, time is the cause of forgetting. The interference theory describes interfering

and inhibiting effects of previously learnt and retained memory items while repression theory argues that
unpleasant experiences are pushed into the unconscious to avoid mental re-exposure. In the course of this
work we agree with the definition that forgetting occurs because other information alters or interferes with
already stored memory contents both proactively and retroactively.
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1.2.3. Evaluation and Validation

The model should provide a robot with capabilities for learning and predicting autobiograph-
ical episodic sequences, mainly robot arm motion sequences, based on a biologically-inspired
memory model. The model should provide simple storage and retrieval mechanisms. To the
best of the author’s knowledge there is no work known regarding robot arm manipulation
based on an SDM. Since this work serves as a kind of feasibility study it is hard to bench-
mark the results arising from this thesis. Nevertheless, the memory will be judged by the
accuracy it displays during the retrieval of motion patterns, its resistance to noise, if predic-
tions of consequences finally reach the end of a trajectory and so forth. Thus, a number of
experiments will be conducted to identify the operationality of an SDM in different research
domains of robotics according to the requirements mentioned above.

1.2.4. Further Information

Other work has been proposed that uses associative memories to learn motion trajectories
of robot manipulators. To mention some of it: Albus (1975) developed the CMAC controller
based on structures related to the cerebellum. Araujo and Vieira (1998); Barreto and Araujo
(1998) used a temporal multidirectional associative memory (TMAM) together with a radial
basis function (RBF) to tackle the trajectory generation and inverse kinematics problem. Ito
and Tani (2004) used a recurrent neural network with parametric bias (RNNPB) to generate
synchronous robot arm motion patterns with respect to a human demonstrator. Reinhart
and Steil (2008) use reservoir computing with recurrent neural networks to learn the forward
and inverse kinematics of a redundant PA10 manipulator.

CMAC belongs to the class of linear function approximator called tile coding . Tile coding
has been used in many reinforcement learning tasks and is well-suited for efficient online
learning. Unfortunately, tile coding and radial basis function networks become impractical
when used for tasks with very high dimensionality, e.g. several hundreds of dimensions.
This is because their computational complexity increases exponentially with the number of
dimensions (Sutton and Barto, 1998). Existing approaches to reduce this growth, e.g. such
as hashing, even become impractical after a few tens of dimensions. Alternative approaches
choose binary features that correspond to particular prototype states. The strength of such
methods is that the complexity of the functions that can be learnt depends entirely on the
number of features, which bears no direct relationship to the dimensionality of the task.
Such methods are, e.g. Kanerva coding (Kanerva, 1988) used in this work and the random
representation method (Sutton and Whitehead, 1993).

Connectionist approaches to learning can be grouped in two broad types: those with high
capacity but requiring many learning steps, and those that have low capacity but can do one-
shot learning. Models of the first type are able to extract statistical regularities or hidden
variables gradually from the input. These include back-propagation networks, Boltzmann
machines and competitive learning networks. Models of the second type rapidly memorise
the input without recoding it into hidden features. These include linear pattern associators
(Kohonen, 1972; Anderson, 1977), Hopfield networks (Hopfield, 1982) and convolutional
memory models.

The main research contribution of this work is to study the application of a connectionist
memory model that is able to store and retrieve motion sequences of a mobile robot and
a redundant manipulator. To pursue the development of conscious machines and cognitive
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robots, such systems need to memorise a model of the world and should be endowed with
fundamental capabilities to associate actual circumstances to past experiences and to con-
stantly adapt the underlying model. The neurobiologically plausible SDM model has certain
similarities with the cerebellar cortex, a part of the mammalian brain specialising in sen-
sorimotor coordination. This work might be of particular interest to researchers that seek
a new computational model exhibiting robust and scalable characteristics and normally are
concerned with neural networks.

1.3. Thesis Structure

This chapter gives an introduction to the thesis and the motivations behind it. The remainder
of the thesis is organised as follows.

Chapter 2 illustrates the main memory functions such as acquiring, storing and accessing
knowledge. An introduction is given to recent findings in human memory research from
a neuroscience perspective and various cognitive architectures are presented. The chapter
concludes with various associative network models which form the basis for equipping a robot
with a predictive memory mechanism in this work.

Chapter 3 discusses Kanerva’s sparse distributed memory model in detail, which is the
basis of this work. Related models and extensions are presented. Several SDM-based robotic
and non-robotic applications are introduced.

Chapter 4 presents all necessary details about the hard- and software of the utilised robot
systems, namely TASER and LIZARD. Furthermore, a brief introduction to a telemanip-
ulation system is given that has been developed for this work. The system is used for
an interactive creation of diverse robot arm motion sequences through demonstrations by
arbitrary human instructors.

Chapter 5 describes the implementation of an SDM for robotic applications. Some defi-
ciencies of the source model are eliminated by including a number of functional extensions.
Alternative information encoding methods are proposed and analysed in detail after facing
several practical problems. A series of manipulation experiments is conducted with a 6 DoF
robot arm for evaluation.

Chapter 6 approaches the transfer of the SDM model to other robotic tasks in distinct
fields. The memory model, mainly used for manipulation tasks throughout this work, is
applied to the domain of robot navigation based on view-sequences. The behaviour of the
SDM is analysed and compared across both domains.

Chapter 7 studies an intention-detection system based on episodic experiences. To ground
low-level information with high-level semantic task descriptions, a multi-SDM architecture
is developed to maintain and utilise a number of SDM instances. The memory model gener-
alises several training trajectories given by human instructors and classifies arbitrary trigger
trajectories into a set of known task trajectories. Several experiments are reported and
evaluated to account for varying skill levels of the instructors.

Chapter 8 assesses crossmodal effects of multimodal percepts, e.g. based on laser range
finders and vision sensors. Those are utilised to gain higher prediction accuracy. The multi-
SDM model is used to establish a rough localisation of the robot within an office environment.

Chapter 9 concludes the work presented in this thesis. It illuminates the major results of
this study, finally discusses the established research contributions and some future work.



2
Memory—an Unrevealed Mystery

. . . A farmer went out to sow his seed. As he was scattering the seed, some
fell along the path . . . some fell on rocky places . . . other seeds fell among thorns
. . . [and] other fell upon good soil. . .
(Mark, Chapter 4, The Parable of the Sower: 3–20)
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This impressive, metaphorical quotation can be used to interpret what happens in human
long-term memory during the everydays process of memorising events, concepts, et cetera in
our minds. It has been written a couple of thousand years ago, though in a different context.
The long-term memory commonly plays tricks while memorising something that are caused
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by mechanisms like generalisation, forgetting and the minimisation of discrepancies. Some
impressions may never make it into the mind and fell along the path while others may not
be consolidated and fell upon rocky places. The latter perhaps result from conflicts with
already existing knowledge. That other seeds fell among thorns can be seen as interferences
of impressions, arising form competitive contexts where some have more urgent concerns, or
emotional factors that are leading to a kind of repression. Those memories that make it into
the mind will be memorised in the long-term memory and fell upon good soil.

2.1. Memory

Memory is one of the most widely studied brain functions. According to the handbook of
cognitive science, the term memory refers to different forms of acquiring, storing and access-
ing knowledge (Strube, 1996). The contents of memory are not only acquired by consciously
controlled cognitive processes. Rather, they predominantly result from individual interaction
with the environment. Furthermore, Strube (1996) defines knowledge as acquirement about
the reality, also-called declarative knowledge. Skills are cognitively learnt sensorimotor and
perceptual capabilities. Memorising is a conscious operation and strategy to retain infor-
mation over a long period of time to recall and re-use contents of the memory at a future
date. Recall is partially based on search processes that can be cued by perceptual stimuli
caused by the current environment. Subsequent recognition is characterised as an identifica-
tion of familiarity when a given concrete circumstance is related to previously encountered
experiences.

Amnesia, a memory disorder, results from injuries to parts of the brain that record and
recall memories. It has thus been the major subject of studies that support the theory on
different memory systems (Baddeley, 2001; Squire et al., 1993). The first, simple multistore-
model of memory was described by Atkinson and Shiffrin (1971). It postulates that long-term
memory is composed of separate memory components.

Yet, the mystery of memory has not been solved and there is no unique theory on this
major brain function. However, the analogy between differing theoretical views is that the
memory is suggested to comprise two main information storage systems with respect to the
time that information is retained: namely short-term memory and long-term memory1.

2.1.1. Short-term Memory

The short-term memory (STM) allows for a fast recall of a limited number of memory items
without any rehearsal. The period of decay lies usually in the range from a few seconds to
several minutes. In more recent work, STM is characterised as a component that is actively
involved in the processing of information rather than just being a temporal storage system
(Atkinson and Shiffrin, 1971; Baddeley, 2001). A refinement of STM leads to the so-called
working memory that comprises internally generated and externally perceived information
as well as results of cognitive operations.

Alternative memory models exist, where the STM contains current activated contents of
long-term memory at a certain point in time. Within the scope of the ACT theory (see
Section 2.2.1), the working memory consists of that active contents that becomes part of a

1In addition to the broad categories of STM and LTM, psychologists distinguish subdivisions of primary
memory, secondary memory, reference memory, episodic memory and semantic memory.
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Figure 2.1.: A taxonomy of mammalian long-term memory.

cognitive process. STM models were partly inspired by neurological patients with organic
amnesia caused by bilateral damage to brain structures like the medial temporal lobe and
hippocampus, e.g. the famous patient Henry Gustav Molaison, better known as HM.

2.1.2. Long-term Memory

The long-term memory (LTM) can store much larger quantities of information for a po-
tentially unlimited duration that can last for a lifetime and is expected to have an infinite
capacity. Information can be transferred from short-term to LTM by rehearsal and repetition
mechanisms.

During all those investigations on memory, different views on LTM emerged over time.
Most of them assume multiple memory subsystems within the LTM. Cohen and Squire
(1980) divide LTM into non-declarative procedural memory, the “knowing how” memory
for basic skills such as walking, riding a bike et cetera, and the “knowing that” declarative
memory (see Figure 2.1). The latter memory stores knowledge about factual information
and personal events in our life. Tulving (1972) argues that declarative information is further
divided into episodic memory , which contains details about our life, and semantic mem-
ory , which contains factual information of the world and how it works and describes it as
“mental thesaurus” (Tulving, 1972). Another interpretation is given by Schacter (1987) who
focuses on memories that can be thought about consciously (explicit memory , similar to
declarative memory) and memory that is recalled unconsciously (implicit memory , similar
to non-declarative memory). Each of these approaches is consistent with certain features
of existing data but also has difficulty accommodating others. A taxonomy of hypothesised
LTM subclasses is illustrated in Figure 2.1.

2.1.3. An Everlasting Debate

There is a significant amount of research that supports a clear differentiation of short-term
and long-term memory. While information in an STM is stored and retrieved sequentially,
the LTM stores and retrieves information by association.

The multistore models, pervasively influenced by neuropsychology and supported by stud-
ies of Baddeley (2001), view STM and LTM as separate systems that rely on distinct represen-
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tations. In the theory by Baddeley (2001), the STM is decomposed into information-specific
buffers. He distinguishes between processes for memory storage and executive functions.

According to unitary-store models, supported by the work of Squire (1986, 2004); Atkinson
and Shiffrin (1971); Hebb (2002), STM and LTM rely largely on the same representation but
differ in the level of activation of those representations and respective processes. Prominent
theories characterise memory as a flow of information, e.g. Atkinson and Shiffrin (1971) with
the Multi-Store Model, Craik and Lockhart (1972) designed the Depth Processing Model, and
Baddeley and Hitch (1974) proposed a Working Memory Model with a central executive2 to
replace the STM model. In contrast, connectionist approaches to memory and information
processing suggest that information is stored in several interconnected units rather than in
a memory trace (or related structures).

2.1.4. Three Processing Stages of Memory

Regardless of the ongoing debate on whether STM and LTM are architecturally separable
systems or not, current theories agree on three core memory processes to retain (learn) and
recall past experiences. Those major procedural and functional aspects of memory are:

Encoding: The processing of incoming perceptual information (from sensory input) into a
representation the memory system can cope with.

Storage & maintenance: Creation and processing of encoded information.

Retrieval: Recovering encoded information of the past from our memory and returning it
into the cognitive focus as a response to an arbitrary cue.

Though these stages are distinguishable, they are clearly inter-related. Jonides et al. (2008)
describe biological mechanisms that might support psychological processes on a momentum-
by-momentum basis. An item is encoded, maintained over a delay with some forgetting and
ultimately retrieved. Further, electrophysiology and neuroimaging indicate that working
memory, like LTM, is a widely distributed function, largely neocortical (Fuster, 1998).

The memory system proposed in this work will follow the above-mentioned memory pro-
cesses. Sensory-based signals such as range measurements, joint angles, edge pixels and so
forth will be encoded into an appropriate representation for the memory. It will memorise
these representations with respect to certain similarities within the input patterns, which can
be seen as kind of generalisation. The most interesting functionality of an artificial memory
for a cognitive robot is the retrieval of information stored in the memory. Biological systems
constantly retrieve information from memory according to the given situation to establish
a cognitive focus. The retrieved informations are used to hypothesise what is supposed to
happen. In this work we will allow a service robot to constantly retrieve information from
its memory of the past to make predictions or assumptions of what is supposed to happen
according to a given circumstance. Abstraction will help to make predictions for situations
that are similar but not equal.

2The versatile central executive component of working memory resembles an attentional system and controls
other components.
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2.2. Memory Models and Cognitive Architectures

Memory models differ regarding the format of stored information, namely associations or
memory traces. The former format stores memories as links between memory units (Strube,
1996). Accordingly, learning is the process of creating new and modifying existing associa-
tions. Remembering is defined as a spreading activation between associated memory units
(Anderson, 2007). The latter model, also known as search of associative memory (SAM) by
Raaijmakers and Shiffrin (1981), hypothesise that learning is characterised by the creation
of memory traces, also-called engrams, driven by relation- and context-specific information.
A trace gets activated if parts of the context are perceived. Important characteristics of such
trace models are:

• Recognition is cued by partial patterns and depends on the correlation between cue
and memory trace

• Activation of memory traces occurs in parallel

• Memory traces are content-addressable

Distributed models address the issue of:

• Separate vs. composed memory traces

• Effects of reapplied stimuli

• Information representation within memory traces

• Encoding of contextual information

The difference to other models depends on the search heuristics. Regarding the cause of
forgetting the models mainly assume interferences between memory contents.

Many researchers of cognitive architectures ignore constraints posed by human cognition,
apparently because they focus on studying effective interactions of an agent with its envi-
ronment. Thus, the term of cognitive architecture is often misleading and should rather be
termed agent architecture. In the following, architectures are described that try to bridge
the gap between psychophysics and memory.

2.2.1. Adaptive Control of Thoughts Theory (ACT)

The adaptive control of thoughts (ACT) production system describes a model of the mind
and is proposed by Anderson (1990). It is based on two LTM components, the declarative
and the procedural memory. The fundamental assumption of Anderson is that the memory
contents of the procedural memory are built from declarative knowledge, the knowledge
about the facts of the world. The procedural memory consists of numerous production rules.
According to Anderson (2007), the activation speed and activation probability of a concept
in memory (a chunk) depends on its activation level. The activation level depends on the sum
of a baselevel activation, reflecting its past frequency of use, and an associative activation,
reflecting its relevance to the current goal. An activation spreads from a presented item
through a network towards memory items that bear a relation to the presented one.
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A neural plausible implementation of such production system was shown in the later
theory called adaptive control of thought-rational (ACT-R). To obtain an optimal information
processing the system is parameterised and structured through rational analysis. ACT-R is
the most adequate type of architecture and the best known of the current psychology-based
systems.

2.2.2. Memory Prediction Framework

Building upon work of numerous neurobiologists Hawkins (2005) designed the memory pre-
diction framework (MPF). His theory describes intelligence as “the capacity to predict the
future by analogy to the past” (cf. Section 1.1.1). The brain uses a memory-based model to
make continuous predictions of future events. If those predictions are disproved, the brain
learns, e.g. by novelty detection (Barakova and Lourens, 2005), and adjusts its memorised
information according to the new data.

According to the memory prediction theory, the neocortex learns invariant representations
of pattern sequences in a hierarchical neural network. The structure of an invariant repre-
sentation captures the important relations in the world, independent of any detail. Given
some partial or distorted sensorial inputs of a known environment, the memory recalls the
stored patterns of the past in an auto-associative manner. When unknown patterns occur,
they violate the predictions and capture our attention by reaching the highest cortical layer,
the hippocampus, which depicts the short-term repository for new memories. Thus, the
primary function of the neocortex is to make predictions by comparing the knowledge of
the invariant structure with the most recent observed details (Garalevicius, 2007). These
predictions arise from the comparison between feedforward information (what is happening)
and feedback information (what is expected to happen).

The main limitation of this theory, and the reason it is not discussed in more detail here,
is its lack of detail. Open questions remain on how to create invariant representations—
curiously the most important part of his theory, how the brain handles associations and how
it binds together knowledge by the cerebellum and the neocortex is unresolved. The under-
lying brain algorithm remains undiscovered. Nevertheless, Hawkins’ theory is an innovative
hypothesis on how the brain works.

2.2.3. Connectionist Models

Connetionism disagrees with the idea that the mind uses rule-based and semantic information
processing as proposed by traditional AI. The major principle in connectionism is to describe
mental phenomena by interconnected, weighted networks of simple and often uniform units
(analog to neurons). Each unit represents a microfeature of the world. Further principles
are:

• Information is represented in a distributed manner (this contradicts the local and one-
unit-one-concept representations)

• Encoding of knowledge takes place in the weights between units

• Learning results from modifying the weights

• Memory is content-addressable
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Weights are generally represented as an N × N matrix. Recognition is described as a
reconstructive process where the system activates patterns similar to certain cue stimuli.
The most common connectionist models are neural networks. Future connectionistic models
are expected to explain neurophysiological and neurobiological phenomena in conjunction
with experimental cognitive science (Kandel et al., 1996).

An extension of the connectionist approach is called the embodied cognitive science. Similar
as in connectionism, cognition is seen as a unpredictable selective, constructive, context-
dependent and non-verbal process. Contrary to connectionism, the embodied and embedded
cognitive science community defines intelligent behaviour as an interplay between brain,
body and a dynamic physical world.

2.3. Associative Memories as an Instrument of Prediction

Neural networks whose main functionality is to associate patterns are called associative
memories. All the information is stored in the weights of such networks as proposed by
the connectionist approach. If triggered by an arbitrary input pattern, they retrieve stored
patterns that provide the highest degree of similarity with respect to the input.

Usually they provide one-shot learning3 capabilities and their weight matrix is constructed
by summing up the outer product of all input–output constellation. The output of an asso-
ciative memory is computed by the dot product of the weight matrix and the input vector
followed by a thresholding. There are two main derivates of associative memories: an hetero-
associative memory associates two different types of patterns while a auto-associative mem-
ory associates patterns with themselves. The latter type is capable of retrieving associated
patterns even if the input patterns are noisy or incomplete. Most associative memory models
are linear and feedforward in nature and use Hebbian learning. Common neural networks
that belong to the class of associative memories are Hopfield networks, correlation memories
and backpropagation.

2.3.1. Hebbian Learning

Hebb’s rule explains long-term strengthening (so-called long-term potentiation, LTP) and
long-term weakening (long-term depression, LTD) of synaptic connections under the con-
dition that activation of two connected neurons are correlated. Hebb’s rule is defined as
follows:

When an axon of cell A is near enough to excite cell B or repeatedly or consistently
takes part in firing it, some growth or metabolic change takes place in one or both
cells such that A’s efficiency as one of the cells firing B, is increased. (Hebb, 2002)

Since the modification of a synapse relies only on pre- and postsynaptic neurons, Hebb’s rule
implies locality of the neural plasticity. Furthermore, it introduces the concept of activity-
induced reinforcement or weakening of the synapse (Floreano and Mattiussi, 2008). The role
of synaptic plasticity has been suggested as a possible mechanism for associative learning.

3They are able to learn in a single pass.
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2.3.2. The Hopfield Model

Contrary to a McCulloch-Pitts Network (McCulloch and Pitts, 1943), where an output is
determined based on the neurons’ input at each time step, a Hopfield Network (HN) consists
of neurons with symmetric weights (wij = wji) and asynchronous updating mechanisms
exclusive of self connections (wii = 0).

Hopfield (1982) explains the physical meaning of a content-addressable memory by an ap-
propriate phase space flow of the state of a system. Such a system responds to an ambiguous
starting state by a statistical choice between the memory states it most resembles. A brief
summary of the Hopfield model will be given in the following. For more details the reader is
referred to Hopfield (1982); Amit et al. (1989); Rojas (1996); Hendrich (1996); Arbib (2002).

• The network consists of N neural units with possible states Si ∈ {0, 1}, which cause a
neuron to either not fire or fire. At timepoint t the system is describable by a vector
{S} = {S1, . . . , SN}.

• Each neural unit is connected to all other units and thus, together they form a fully-
connected network. Two neurons Sj and Si are interconnected via symmetric weights
(wij = wji).

• At each time step a unit is picked at random (asynchronous network change4). If unit
i with threshold θi is chosen, Si = 1 if and only if

∑
wijSj ≥ θi, otherwise Si = 0.

The symmetric connection of neurons as well as the absence of self connections is crucial
to guarantee a stable system behaviour. Otherwise such nonlinear, dynamic systems will
show chaotic behaviour (cf. Hendin et al. (1991)). Hopfield defined mathematical quantity
based on the Lyapunov function that describes the activity dynamics as the energy E of the
network, such that:

E = −1
2

∑
ij

wijSiSj +
∑
i

Siθi (2.1)

If a neural unit Sk changes its output value (in the asynchronous case), the energy will
change according to the following Equation:

δE = Sk
∑
j 6=k

wkjSj + Sk
∑
j 6=k

wjkSj (2.2)

In such a symmetric network with asynchronous update, when starting from an initial
state S0, the dynamics of the Hopfield network will move to a lower potential energy when
a neuron changes its state. Thus, the system will converge to a global minimum after finite
number of steps where, unaffected by any state changes of a neuron Sk = 0↔ Sk = 1.

A variation of the Hebbian learning rule (cf. Section 2.3.1) is used for the storage of P
binary patterns ξµ of n-bit length:

wij =
1
n

P∑
µ=1

ξµi ξ
µ
j (1− δij), (2.3)

4The asynchronous network change is commonly used. In a synchronous network, each unit will be updated
in a single time step.



2.3 Associative Memories as an Instrument of Prediction 19

where δij = 1 for i = j and 0 for i 6= j. The Hopfield model achieves a storage capacity of
K = 0.14 bits per synapse (Golomb et al., 1990).

2.3.3. The Willshaw-Palm-Model

Willshaw et al. (1969) and Palm (1980) proposed a simple and linear model of a fully-
connected associative memory with stochastic asynchronous dynamics. It is one of the
earliest neural network models of associative memory. Contrary to the Hopfield model it
does not use any feedback loops.

In most simple neural network models, excitation and inhibition play identical roles. The
Willshaw model stores memories in excitatory synapses using an extremely simple version of
Hebb’s rule (Golomb et al., 1990). The network is composed of a matrix of binary synapses
wij ∈ {0, 1} that feed into binary output units with possible states Si ∈ {0, 1} interconnected
via a binary link . The network’s function is to map input patterns ξµ of length M onto
output patterns Ξ of length N by thresholding the sum of the input signals.

The Willshaw model achieves an asymptotic storage capacity of K = 0.7 bits per synapse,
which exceeds the capacity of most alternative models. While the model offers an extremely
simple way of storing sparsely coded memories, it exhibits a poor performance with regard
to random, uncorrelated memories (Golomb et al., 1990).

2.3.4. Biologically-inspired Associative Memory: Cerebellar Models

Some associative memory models have a strong correlation to biological structures, for in-
stance the cerebellum. The cerebellar cortex is involved in the integration of sensory per-
ceptions and the coordination of movements. According to Albus (1975), the cerebellum
provides precise coordination of motor control for such body parts as the eyes, arms, fin-
gers, legs, and wings. It stores and retrieves information required to control thousands of
muscles in producing coordinated behaviour as a function of time. It receives proprioceptive
and kinesthetic information from the muscle spindles, joints and tendons and gets a copy of
motor commands sent by the cortex. The cerebellum compares how well motor commands
coming from the cortex are executed (see Figure 2.2).

The cerebellum is located in the inferior posterior portion of the head. It is rather in-
volved in modulating, then initiating movements and therefore also termed the silent brain5.
It guides movements based on the sensory feedback. Although recent neurophysiological
evidence supports the hypothesis that the cerebellum learns from experience, the cerebellum
is not generally considered as a memory area of the brain.

According to Arbib (2002, Chapter Part II) the Cerebellum can be decomposed into
cerebellar nuclei and cerebellar cortex. The only output cells of the cerebellar cortex are
the Purkinje cells (see Figure 2.3), and their main function is to provide varying levels of
inhibition on the cerebellar nuclei. Each Purkinje cell receives two types of input—a single
climbing fibre, and many tens of thousands of parallel fibres. The most influential model of
cerebellar cortex has been the Marr-Albus model of the formation of associative memories
between particular patterns on parallel fibre inputs and Purkinje cell outputs, with the
climbing fibres acting as training signals. Therefore, the models by Marr and Albus that
were initially developed in parallel will be introduced briefly. Figure 2.3 outlines the three
layers of the cerebellum. The functions of the main cells and fibres of the cerebellar cortex

5Electrical stimulation of the cerebellum does not cause movements or sense impressions.
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Figure 2.2.: Schematic diagram of the neural pathways involved in precise hand movements.
Source: http://163.178.103.176/Fisiologia/neurofisiologia/Objetivo_8/Clayman78.jpg

are summarised in Table 3.1 in one of the following sections when compared to the SDM
model.

2.3.4.1. Marr’s Theory of the Cerebellar Cortex

In his dissertation, David Marr, one of the founders of the discipline Computational Neuro-
science, detailed a model of the functions of the cerebellar cortex. He draws the conclusion

http://163.178.103.176/Fisiologia/neurofisiologia/Objetivo_8/Clayman78.jpg
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Figure 2.3.: Neuronal connections between the cerebellar cortex and the deep cerebellar nu-
clei. The cerebellar cortex is built of three layers. The superficial molecular layer
with axons, dendrites and many synapses, the Purkinje-cell layer and the granular
layer. Image from Apps and Garwicz (2005).

that the cerebellum learns to perform motor skills. In particular, it is involved in learning
movements and maintaining reflexes by just two forms of input-output relations that are
consistent with the cortical theory (Marr, 1969). A particular action and the context in
which it is performed is associated via synaptic modifications of Purkinje cells. Hence, the
context alone causes a Purkinje cell to fire, which in turn precipitates the next elemental
movement (Edelman and Vaina, 2001).

According to Marr (1969) the cerebrum organises a movement during learning, and in
doing so, causes the olivary cells to fire in a particular sequence. This causes the Purkinje
cells to learn the context in which corresponding elemental movements are required. The
next time such a context occurs, the mossy fibres activity stimulate the Purkinje cell, which
evokes the relevant elemental movements (see Figure 2.2).

Central to Marr’s theory is that afferent input events that are communicated from the
olivary cells by the mossy fibres to the cerebellar cortex are turned into small subsets of
active mossy fibres. This is called the codon representation of an input pattern. Marr (1969)
identifies a granular cell as a codon cell that will only fire if activated by a certain codon.
The number of codons associated with a collection of active mossy fibres is hardly related
to the way Kanerva chooses d coordinates from a total of n coordinates (see Equation 3.9).
Mossy fibres are assumed to be connected randomly among granular cells.
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2.3.4.2. Albus’ Cerebellar Model Articulation Computer (CMAC)

Independently of Marr’s theory of the cerebellar cortex, Albus (1971, 1981) proposed a
comprehensive theory on cerebellar functions that ties together anatomy and physiology
into a pattern-recognition system. He infers an equivalency between the functionality and
structure of the cerebellum to a modified, classical Perceptron-like classification system.
CMAC is a sparse coarse-coded associative memory algorithm designed to provide motor
control for robotic manipulators. It belongs to the class of tile coding. It is a kind of memory
that is capable of learning motor behaviour and exhibits properties such as generalisation,
learning inferences, discrimination, and forgetting, which are major characteristics for motor
learning in biological creatures (Albus, 1975). He treats the problem of learning as function
approximation for a given input, such that the system should learn to predict the commonly
observed output. CMAC has been extensively used in reinforcement learning (Tham, 1995;
Xu et al., 2002), as a classifier, for the adaption of PID control parameters, for industrial
robot arms, and for hand-eye systems and biped walking.

According to Siciliano and Khatib (2008), Albus’ CMAC can be described in terms of
a large set of overlapping, multidimensional receptive fields with finite boundaries. Every
input vector falls within the range of some local receptive fields. The response to a given
input is determined by the average of the responses of the receptive fields excited by that
input. Similarly, the training for a given input vector affects only the parameters of the
excited receptive fields.

Albus (1971) complies with the theory proposed by Marr (1969) and extends it by several
modifications based on the principles of information theory. He argued that the cerebel-
lum accomplishes stable learning processes by weakening synaptic strengths rather than by
strengthening them during the pattern storage phase.

The quintessence of the studies by Marr (1969) and Albus (1971) is the Purkinje cell
plasticity as a basis of cerebellar learning due to the long-term depression of parallel fibre
synapses. However, the rule on the weakening of synapses is still known as the Marr-Albus
model, and remains the reference model of studies of synaptic plasticity of cerebellar cortex
(Siciliano and Khatib, 2008).

2.4. Concluding Remarks: Towards a Predictive Autobiographical
Robot Memory

Another model equivalently discussed with the Marr-Albus Model is the sparse distributed
memory proposed by Kanerva (1988). The SDM model shows many of the characteristics
that a human memory possesses (cf. Section 1.2 for those of special interest for robotics).
Kanerva developed a highly abstract mathematical model for his theory whose application
to robotics is the major concern of this work. CMAC, Albus’ above-mentioned model of
the cerebellum, becomes impractical when used for tasks with very high dimensionality, e.g.
several hundreds. CMAC’s computational complexity increases exponentially with the num-
ber of dimensions. In contrast, Kanerva’s model depends entirely on the number of features
which bears no necessary relationship to the dimensionality of a task. This constitutes one
major reason for selecting the SDM model.

Even if somehow over-anticipated at this stage, where the model has not been introduced,
lets consider the SDM model in the frame of natural memory systems to further clarify the
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authors choice of it. It is declarative in the sense that it uses data as address, making it
content-addressable, and uses only a sparse subset of memory addresses, making it scalable.
Along with all afore-mentioned arguments, the SDM model is procedural in that it forms se-
quences that could be considered as procedures. Learning is realised by incrementing weights
across a probability distribution. With respect to the embodied connectionist approach, it
can learn a set of situation assessments and is able to generalise these. The SDM model is
related to the PDP neural memory models mentioned in Section 1.1.3 and meets most of
the requirements mentioned in Section 1.2. Sensing and perception can be used to recall
the nearest stored memory to any encoded perceptual unit. Thus, an SDM seems to offer
powerful human-like ways of recalling nearest matches to present experience in a best-first
manner (Ritter et al., 2003)

The model can be used to store and recall large amounts of low-level sensory data efficiently,
without requiring the data to be completely accurate or that we know exactly what we
need to recall. Though it may not be an exact model of human memory, it shares enough
characteristics to suggest that human memory works in a similar way.

Kanerva’s memory model overcomes limitations in the Hopfield memory model such as
dependence on storage capacity or the number of neurons, the inability to store temporal
sequences, symmetric interconnections, and a new limited ability to store correlated inputs.
Kanerva discussed the application of his ideas to the “frame problem” of Artificial Intelligence
and showed that parts of the problem concerned with manipulating vast quantities of data
about the real world can be handled with his model.

Keeler (1988) developed a mathematical framework for comparing the sparse distributed
memory to the Hopfield network. He extended Kanerva’s SDM model and showed that
Hopfield’s model was a special case of this extension. Keeler showed that Kanerva’s model
corresponds to a three-layer network with the middle layer consisting of many more neurons
and that Kanerva’s formulation permits context to aid in the retrieval of stored information.
The following chapter will introduce Kanerva’s model of SDM in much more detail.
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3
A Sparse and Distributed Memory Model

The internal plasticity of memory which ‘distributed’ models suggest is one of
the most curious and characteristic features of human memory, and one which
clearly differentiates our cognitive systems from the ‘memories’ of current digital
computers.
(Sutton, 2008)
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Cognitive scientists mainly investigate memory in action to model its functionality. Re-
gretfully this happens almost exclusively in laboratory contexts where natural interferences
are minimal. The brain constantly uses records of past experiences that bias the course of
upcoming actions and interactions in an environment and are accumulated without paying
particular attention to this process.

Memory has the remarkable property of retrieving a stored sequence based on some part
of an observation and then to follow the sequence from that point on, e.g. a melody, a path
etc. Memory has a permanent addressing framework that is independent of what we have
learnt so far and accordingly uses patterns that serve as addresses to the memory. Kanerva
incorporates this theory of a content-addressable memory in his idea of sparse distributed
memory (SDM). He takes an engineer’s view on the theory of a memory to answer mainly
two questions:

1. How do people recall past experiences and distinguish between familiar and unfamiliar
events. What is the organisational structure of such a record?

2. How to implement a physical model that permits appropriate storage and retrieval of
a record?

Kanerva uses the word record as the experience of a person represented by a sequence
of memory items whereas the term memory depicts the medium for storage. SDM is an
idealised model of an highly abstract theory that deals with several aspects of human LTM.
Kanerva mainly focuses on the possibility of using the SDM framework for discussing whether
human memory is of an associative nature and content-addressable.

The correspondence of the distance between concepts in our minds and the distance be-
tween points of a high-dimensional1 space led to his idea of an SDM. SDM uses binary vectors
of length n as input and simply matches them against target vectors. This is realised by
finding the closest target with respect to a distance measure—the Hamming distance. The
vector space exhibits interesting properties if n is sufficiently large.

An SDM is a form of associative memory that is popular in both computer science and
psychology. In the latter discipline associative networks are used primarily to model human
processes underlying the retrieval of information. An individual’s long-term memory of a
concept is given by the strength associated with the node representing the concept (Suppes,
1994). The memory model can be seen as both a generalised form of a random-access-
memory and as a two-layer feed-forward neural network with generalised Hebbian learning
with weightless nodes within a Hopfield network.

As mentioned in earlier chapters, artificial neural networks (ANN) are common models to
approach human memory capabilities, to learn and infer functions from certain observations
and to recognise learned patterns. Interconnected layers of artificial neurons represent a

1High-dimensional means that the number of dimensions is at least in the hundreds.
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connectionist approach to model complex relations between input and output data. An
artificial neuron, also called node, is a crude model, an abstraction of a biological neuron
expressed by a mathematical function. Such models work fine with a small number of nodes
but quickly lead to the problem of computational expenses when scaling up to millions of
nodes. The problem in classical ANN models occurs while trying to provide communication
paths for a fully connected network.

Kanerva’s description of a hardware implementation of the SDM model uses a consider-
able number of counters that do not incorporate information from the other nodes, thus a
communication bottleneck as in alternative NNs does not appear. The strength of SDM as
a physiological model of memory stems from its elegant and simple theory, from the ability
to scale well and the absence of complex requirements for an implementation.

Addressing is a central aspect in the work proposed by Kanerva (1988). The author
claims that in the unifying idea of his theory no fundamental distinction between memory
addresses and data is made. The data to be stored in the memory are addresses to the
memory (Kanerva, 1988). The main aspect of SDM is the mapping of a vast binary memory
onto a smaller set of physical locations, which are called hard locations. A further aspect is
a uniform distribution of data stored to the set of hard locations to simulate a considerably
larger virtual space.

This chapter serves as a basic introduction to the concepts and foundations behind the
theory of SDM. Later in this work, this theory will be applied to many fields of modern
robotic research. Its suitability for robotic applications will be discussed in detail within this
work.

3.1. Boolean Geometry and Characteristics of Boolean Space

The most significant construct used in SDM theory is Boolean geometry. Boolean geometry is
the geometry related to the Boolean space Z2 = {0, 1}n, henceforth denoted by 2n or simply
N , with the dimension n. A point2 of N is represented by a binary n-tuple or a binary num-
ber, e.g. b0, . . . , bn. Thus, a one-dimensional Boolean space consists of two elements (0) and
(1), a two-dimensional Boolean space consist of a four-element set {(0, 0), (0, 1), (1, 0), (1, 1)}
et cetera. There is no particular ordering of binary numbers necessary for analysis issues,
they are just points in a binary space. Figure 3.1 visualises Boolean spaces from one to
five dimensions, if the dimension exceeds five it gets quite hard to visualise the resulting
space. It becomes clear, that the number of points increases exponentially with respect to
its dimension.

The main functional principles of the SDM theory rely on distances d between points of N .
Kanerva denotes this as the distribution of N . In Boolean geometry the Hamming distance
(see Equation 3.5) between two points is the number of coordinates, or number of bits, at
which the binary vectors differ, e.g. d((011010), (000111)) = 4. Thus, the distance represents
a measure of the similarity between two memory items.

If a vector as a collection of n features describes a certain object3, each feature of the
object can either be present (1) or absent (0). Accordingly, the more features of two feature
vectors are similar, the closer these vectors are together and consequently the smaller is the

2A ”point” in memory is an address that can represent a word, a data item, a pattern, an event or a memory
item.

3It can also represent different things from an object, e.g. concept et cetera.
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Figure 3.1.: Visualisation of a one-, two-, three-, four-, and five-dimensional space. According
to Kanerva (1988), the space of an SDM with N = 1000 would map to the corners of a
unit hypercube in 1000-dimensional Euclidean space, which is quite hard to visualise
in the same fashion.
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Hamming distance between them. It is obvious that the choice of the features representing
any concept is a crucial issue. Let us consider a set of animals: a lion, a cheetah, a house
cat, a blackbird, a finch and an ostrich that are represented by the features “is an animal”
and “can fly”. Then, the feature vector x = (1, 0) will reveal that due to the Hamming
distance, an ostrich as an animal that cannot fly is conceptually closer to the lion and the
cheetah rather than to the blackbird and the finch, represented by x = (1, 1). In turn it will
be conceptually closer to the birds if the features are: “is animal”, “has wings”, “can fly”,
“is predator”, “has two legs”, “has four legs”.

The main concepts related to Boolean space are examined in Kanerva (1988, Ch. 1, pp.
15) and more extensively in Blumenthal and Menger (1970). Those concepts are summarised
in the following. Fundamental to all properties is that a point x in N is represented by a
binary n-tuple or a binary number, e.g. x = b0, . . . , bn, with b ∈ {0, 1}.

Origin

0 = 000 . . . 000 (3.1)

The point with zero coordinates.

Complement

′x (3.2)

The inverted n-tuple of a point x is called its complement or opposite where d(x,′ x) = n.

Norm

|x| (3.3)

The number of ones in a binary representation of a point x.

Difference

|x− y| = |y − x| = x⊕ y (3.4)

The number of coordinates at which two binary points x and y differ (exclusive or). The
difference commutes.

Distance

d(x, y) = |x− y|
= |x0 − y0|+ |x1 − y1|+ . . .+ |xn − yn|

(3.5)

The norm of the difference of two binary points is the distance. Distances expressed in bits
are called Hamming distance, while their square root is the Euclidean distance.

Circle

O(r, x) = {y|d(x, y) ≤ r} (3.6)

A set of points that are less than r bits distant from a centre x. A circle with radius n
comprises the whole space N .
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Betweenness

x : y : z iff d(x, z) = d(x, y) + d(y, z) (3.7)

Point y is between two points x and z if and only if the distance from x to z is the sum of
distances from x to y and y to z. Betweenness is:
• recursive u : x : y : z → u : x : y and x : y : z,
• symmetric u : x : y → y : x : u,
• not transitive u : x : y : z → u : x : z

Orthogonality

x ⊥ y iff d(x, y) =
n

2
(3.8)

Two points x and y are orthogonal (perpendicular or indifferent) if and only if they differ at
precisely half their coordinates. The fraction n

2 is called the indifference distance. If x ⊥ y,
it follows that x is also indifferent to its complement, thus x ⊥′ y. x is halfway between y
and ′y.

To get a more concrete idea of the concepts related to Boolean space as shown above, a
few examples with a sufficient number of dimensions will be used for demonstration. Let
the dimension n = 6, a radius r = 1, and the points x = 011001 and y = 111011. Then,
regarding the characteristics of Boolean space:

Complement: ′x = 100110, and ′y = 000100.
Norm: |x| = 3, and |y| = 5.
Difference: x− y = y − x =′ x−′ y = x⊕ y = 100010.
Distance: d(x, y) = |x− y| = |100010| = 2.
Circle: O(1, x) = {011001, 011000, 010001, 001001, 111001, 011101, 011011}.
Betweenness: Any z = $001$0, where each $ is either 0 or 1, is between the points x

and y, e.g. x : 100110 : y.
Orthogonality: Two points can only be perpendicular if the dimension n is even. Since

in this example n = 6, 010101 ⊥ 011011.

The space N can be represented by the vertices of an n-dimensional unit cube in Euclidean
space. Furthermore, an n-dimensional cube can have its vertices placed onto the surface of
a sphere with radius r = n

2 . This gives rise to the analogy to a spherical representation of
the space N . Vectors are points on the surface of the n-dimensional sphere, the point x and
its complement ′x are as two poles with the distance n that embrace the entire space. The
points on the equator correspond to points at a distance

√
n

2 from x and ′x, respectively (cf.
Figure 3.2).

The number of points that are exactly d-bits away from an arbitrary point x is the number
of possibilities to choose d coordinates from a total of n coordinates (see Equation 3.9). Let
the arbitrary point be the origin 0, then the number of points that are d-bits away are
the vectors containing exactly d 1’s. Therefore, the distribution of space follows a binomial
distribution with a mean of µ = n

2 and a variance of σ =
√
n

2 .

(n : d) =
(
n

d

)
=

n!
d!(n− d)!

(3.9)
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Figure 3.2.: SDM analogy to a spherical representation. The points of the N -dimensional
hypercube lie on the surface of a sphere with radius r = n

2 in which more than 99%
of the space lies around the equator (highlighted belt) between the poles that depict
point x and its complement ′x.

Consequently, in a space with N = 1000, a circular region of radius 425 bits centred on x
encloses only about a millionth of the space.

The distance n
2 is called the indifference distance. Kanerva (1988, Ch. 1, p. 19) proves

that almost all of any Boolean space is almost indifferent to any given point and lies near the
equator (see Figure 3.2). For N = 1000, thus 99.9999% of the space lies between distance
422 and distance 578 from a given vector. Almost all of the space is far away from any
given vector. A Boolean space of high-dimension is thinly populated, which is an important
property for the construction of the model (Franklin, 1995). Kanerva calls this outstanding
property of N the tendency to orthogonality. The larger the n, the more pronounced this
effect gets. The distance from a point to the bulk of the space4 is obtained by dividing the
mean distance n

2 by the standard deviation with a distance of
√

n
2 . As in the example used

in Kanerva (1988) let n = 1000, the mean distance is 500. According to this, 99, 9999% of
the space lies within

√
n±5 standard deviations from a point x of N or 5 standard deviations

from the mean value (cf. Figure 3.3), which amounts to 78 bits, thus within the interval
[422, 578].

Kanerva (1988, Ch. 1, p. 26) deduces how many features must be extracted correctly to
classify a memory item out of a million memory items. The distribution of space follows
a binomial distribution and a circle with radius 400 will encircle 10−10 of the space. To
recognise a test item, just 20% of features have to be determined with certainty while the
remaining 80% of features can be assigned with zeros and ones at random, with a probability
of 0.5. This is due to the probability of a correct bit is 0.2 · 1 + 0.8 · 0.5 = 0.6. This
interpretation could explain the recognition of an object in different contexts.

4Which is from the pole to the equator of a sphere
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n
2

Figure 3.3.: According the normal distribution, over 99% of the space lie within 5 standard
deviations of the mean or within

√
n± 5 standard deviation from x.

3.2. Memory Storage and Retrieval

The main question addressed by the work of Kanerva (1988) is how information should be
stored in a memory so that it can be retrieved later when the situation warrants it. These
questions claim to implement a memory with two main functionalities:

1. A present situation has to be recognised as being similar to some situation in the past.

2. If a past situation has been recognised, the consequences of that situation have to be
retrieved.

Conventional computer systems use a memory structure where each memory location is
accessed by its address. The feature of SDM is that the input data patterns can serve both
as address to the memory location and as the data to be stored (Hely, 2006). This is called
the unifying principle. Information can be accessed via its content. Thereby the model
exhibits a form of content-addressability which is considered as one of the most important
characteristics of human memory (Hawkins, 2005) and of major concern for fulfilling the two
above-mentioned requirements.

Kanerva constructs a model of a random access memory capable of being implemented on
a digital computer with three special registers—address, word in and word out. It is also
implementable as an artificial neural network.

A Boolean space with 1000 dimensions leads to an enormous address space of 21000 loca-
tions5. Most literature on SDM compares this number to the number of atoms in the universe
(Hely, 2006; Franklin, 1995) or the number of neurons in the nervous system (Kanerva, 1988)
which is far smaller.

Since it remains infeasible with current hardware to assign a memory address to each
possible input of a 1000-dimensional space, Kanerva proposes to choose a sparse subset of
physical addresses. For this subset a reasonably large, uniform random sample of binary
patterns is selected as representative and physical memory locations of the whole space. The
resulting subset of memory addresses is called hard locations (HL). To make the sparseness
clear, consider the density ratio resulting from the mapping of a huge binary space with 21000

locations onto a subset of, e.g. 220 hard locations, which is 2−980 and indeed very sparse.
The set of sample locations from the entire space can be chosen in many ways. According

to many early proposals, the hard locations are chosen a priori during the initialisation
5That is 1.07150861 · 10301
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of the memory. The memory addresses are distributed randomly in the address space 2n

and cannot be modified during normal operation, except for their content. With regard to
Kanerva, the subset of the address space will be denoted as N ′ of N , and a vector to a hard
location as x′, respectively. Thus, every hard location x′ accounts for a small portion of N .

A randomised reallocation algorithm for dynamic online allocation and adjustment of mem-
ory resources which eliminates the need for choosing the SDM size and structure a priori is
used in this work. The dynamic allocation algorithm by Ratitch and Precup (2004) starts
with an empty memory, and locations are added based on the observed data. New locations
are allocated randomly in the neighbourhood of a location when there is a new datum which
cannot be stored in the existing ones anymore. This approach is used in this work an will
be explained in more detail in Section 3.5.3 and 5.1.1.

In conventional memories, a datum is stored into a single memory location. In Kanerva’s
type of memory, many hard locations participate in storing and retrieving each datum.
Accordingly, a single hard location is involved in the storage and retrieval of many data
items. This is what makes a normal memory a distributed memory.

The SDM associates two binary vectors x and y by projecting x into a very high-dimensional
intermediate word-line vector u, and then associating x→ u and u→ y. Through its analogy
with a conventional computer random access memory , the association of x→ u is a kind of
address decoder memory , and the association of u→ y depicts the data memory.

The SDM is a feed-forward associative memory architecture that has two layers of input
coefficients or weights that are represented by the matrices A and C. The matrix A is
constant, and the matrix C is variable. The rows of matrix A are interpreted as a random
sample of the hard-address space, and the rows of C are interpreted as the contents of those
memory locations.

3.2.1. Storage

According to the above-mentioned analogy, a write process consists of associating a vector
x to a vector u, and then associating the vector u to a vector y. A datum is written to the
memory at all those hard locations that lie sufficiently close to the input address vector x.

In the initial SDM proposal, all hard locations consist of a set of integer counters that
are initially set to zero, so no information is stored. During the write process an access
radius (r = 3 in Figure 3.4) is used to select the hard locations closest to the input cue.
The Hamming distance d(x, x′) between the input address x and a hard location x′ must be
less or equal than r. Each counter of the set of active hard locations (shaded rows in Figure
3.4) will be updated by adding a 1 if the corresponding position of the input data vector
contains a 1 and subtracting 1 from each counter if the corresponding position in the input
data vector contains a 0. However, another storage mechanism is to replace the contents of
a vector instead of using de- and increasing counters.

An input pattern is stored into regions of memory where similar information has previously
been stored. If a write operation is repeated several times, the contents of a particularly
hard location will consist of the sum of all previous inputs. New data will simply be added
to the existing one. This makes clear that every data pattern presented to an SDM will be
stored, old patterns are not removed. Nevertheless, only little information of a once-stored
particular datum may reside in a frequently modified hard location.

The probability of increasing or decreasing a counter value is equal if random binary
data is stored into the memory. Regardless of how many patterns are stored, the statistical
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Figure 3.4.: Write a data-item into SDM (autoassociative case): (a) The input address
pattern x is presented to the memory. (b) Locations x′i with a Hamming distance
d(x, x′i) ≤ r = 3 are selected (shaded areas). The activation radius r is set a priori.
(c) Data patterns of the selected locations are updated by adding 1 to each counter
in the array corresponding to 1, and subtracting 1 from each counter corresponding
to 0 in the input data pattern.

expectation of each counter will be 1
2 . If the input address pattern is different from the input

data pattern, in the sense that their lengths or their contents differ, the SDM is called to
operate heteroassociatively . In case of identical input address and input data patterns, the
SDM works as an autoassociative memory.

Whereas a heteroassociative mode is used to store associations only, an autoassociative
mode is used to create a content-addressable memory, storing individual items that can be
retrieved when given a partial input cue. But there is no reason why an autoassociative
mode cannot be used to store associations between items (Kahana, 2002). It can be seen
as a special case of the heteroassociative mode where the number of inputs is equal to the
number of outputs.

3.2.2. Retrieval

According to the above-mentioned analogy, a read process is simply the presentation of a
vector x, resulting in a word-line vector u, which is then used to read a value y out of the
data memory.

Presenting an input address to the memory will collect the contents of each counter of the
hard locations within a critical distance, the activation sphere, and reconstruct the output
vector y based on a majority rule. Indeed, this majority rule can already be found in
the redundant hashing addressing method of Kohonen (1989), even if its realisation is very
different from Kanerva’s. Since retrieved words are statistical approximations, the memory
model has a sensitivity to similarity. In other words, similar (sensor) patterns trigger similar
areas of the memory.

Similar to memory storage, a distance measure is used to determine whether an address
will contribute to the output vector or not. Figure 3.5 depicts how information is retrieved
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Figure 3.5.: Retrieve a data item: (a) Given an n-element binary address vector x. (b)
Select all storage locations x′i whose addresses lie within a Hamming distance of
d(x, x′i) = r = 2. (c) Add the values of these selected locations in parallel (i.e. vector
addition) to yield a sum vector sum(x) that contains k sums. (d) Threshold these k
sums at 0 to obtain the data vector y with yi = 1 if sumi ≥ 0 and 1 otherwise.

by polling the contents of all storage locations with a Hamming distance smaller or equal
than r = 2 and finding for each bit whether the zeros and ones are in majority (see Figure
3.5). The selection of active hard locations is the same as in the storage procedure, however,
the counters are not altered during this procedure. Figure 3.6 illustrates an alternative
representation on how data is stored into and read from a memory with respect to the access
radius r.

Various other methods to poll data from the memory are also described in Kanerva (1988,
Ch. 7, pp. 66), but most are statistically impractical or computationally expensive. The
methods vary from taking the datum that is stored in the closest hard location x′ to the input
address x or taking the most frequent word in the set of activated hard locations within the
access radius. Another method is to randomly select a word from the set of active locations.

3.2.3. Convergence

If the input patterns that are stored to the memory are random, the point of each pattern
in input space may be considered as an attractor. If a noisy pattern is presented to an
SDM that is filled with multiple patterns and used autoassociatively, the resulting outputs
can be iteratively fed back until the network converges on a stable solution. Kanerva (1993)
shows that a clean version of a target pattern will be obtained if the Hamming distance
between the input and target pattern initially decreases if the output is fed back to the
SDM. The memory will converge to a different attractor if the distance between input and
target patterns initially increases. This means, retrieving data from an address x′ that is
sufficiently similar to a physical hard location x will retrieve the target word y′ that will be
even more similar to y than x′ is to x. If the input address pattern x′ is beyond the critical
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Input address R

r

Input address W
Address space N

Hard locations N ′

Figure 3.6.: The outer circle represents the boundary of the entire memory space N , each
black dot is a physically existing hard location of the sparse representation N ′ of the
memory space N . Though the trigger cues W and R may not correspond to any
physical memory location, they will write memory contents into and read contents
from sourrounding hard locations with respect to an arbitrary access radius r.

distance of x, it will fail to converge.
Nevertheless, iterative reading within the critical distance will converge quite fast to a

clean version of the best-match word. This retrieval of the target pattern will not work if
the memory is saturated or if many almost identical copies of a pattern have previously been
stored (Hely, 2006). A fast convergence could indicate the phenomenon of ”knowing that
one knows” or ”tip of the tongue” and has been described by Kanerva as self-propagating
search.

3.2.4. Capacity

Various studies such as Kanerva (1988); Keeler (1988); Chou (1989) analysed the capacity
of an SDM. Some also compared the capacity of an SDM to neural networks (Keeler, 1988;
Fowler, 1991; Bose et al., 2005; Furber et al., 2007). If too many data items are stored in
an SDM they can overlap and interfere. The retrieval of memories from a set of locations
may include vectors that are stored to other addresses. Even if not intuitively obvious, the
model permits remarkably dense storage due to the characteristics of the vector space before
the capacity is exceeded (Wasserman, 1993). Nevertheless, if too many feature vectors are
stored, the resulting input can be incorrect. Storing the same feature vector several times
into the memory will increase its contribution when a nearby vector is retrieved. This is
particularly related to the exposure frequency and recency property in long-term memory
that affects the speed and probability of memory recall.

3.3. Different Representions of an SDM

An SDM, as mentioned before, can either be considered as a generalised random-access
memory or as a neural network.
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3.3.1. SDM as Generalised Random-Access Memory

By a proper choice of the SDM parameters, the model will exhibit the same behaviour as
an ordinary random-access memory (RAM). The physical address space N ′ must contain all
addresses of space N , this guarantees that all possible addresses x point to at least one hard
location x′. The activation radius has to be zero, accordingly just a single address will be
activated at any one time. A capacity of one bit per counter guarantees that old memory
contents will be replaced by the new datum. According to this parametrisation, SDM is a
generalised form of a random-access memory.

3.3.2. SDM as Artificial Neural Network

An SDM can be seen as a synchronous6, fully connected7, three-layer feed-forward artificial
neural network (ANN) with generalised Hebbian-learning as depicted in Figure 3.7. The
neural representation is composed of:

Input layer: The input pattern x will be presented to the input layer and its dimension n
corresponds to the dimension of an input pattern x. It can be modeled as a set of
perceptrons with fixed weights ±1. A neuron will fire if the Hamming distance d(x′, x)
of an encoded address equals or is lower than the activation radius r.

Hidden layer: The hidden layer contains m units each with values 1 or 0. The input coeffi-
cients of the hidden layer are fixed weights that correspond to the address matrix A.
The kth unit uk of the hidden layer represents the kth row of address matrix A (see
Figures 3.5 & 3.4).

Output layer: The output layer has the same size n as the input layer. The input coefficients
Cm,n are related to the contents matrix C (cp. Figures 3.5 & 3.4). The values of the
neurons are ±1 and correspond to the computation of the counter arrays as shown in
Figure 3.5. Hidden and output layer are linked via weighted synaptic connections wi.
The weights represent the bit counters mentioned in Section 3.2.1. The output layer
represents the summing and thresholding unit according to the output computation of
Equation 3.10:

yn =
{

1 if wi > 0
0 if wi < 0

(3.10)

Some problems occur in neural models when used with high-dimensional algorithms. The
storage capacity depends on the dimension of the input vector and only rather slow training
algorithms are available. In an SDM the dimension of the input vector is independent of the
capacity of the SDM. Since it is composed of only few layers, fast training algorithms are
available.

3.3.3. SDM Analogy to the Cerebellum

Indeed, during development the SDM was never intended as a biologically plausible model of
short-term (working) or long-term memory (Hely, 2006). Nevertheless, it has been considered

6All computations are completed in a single machine cycle, after which the network is ready to perform the
next one.

7All elements of the matrices can assume nonzero values.
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Figure 3.7.: Schematic diagram of an SDM as a three-layer feed-forward artificial neural
network (ANN). For a reasonably large memory, there might be 1000 nodes in the in
and output layer, 1000000 in the hidden layer.

alongside the theoretical models of the cerebellum by Marr (1969) and Albus (1971) as
mentioned in Section 2.3.4.1 and 2.3.4.2, and represents the biological inspiration for the
SDM model.

Kanerva (1988, p.90) indicates, as one of the major results of his study, where in the
brain such a memory structure as the SDM might be found. Even if he does not assign the
functionalities to all its cells or all its connections, he compares the SDM with the cerebellar
cortex. Note that Kanerva himself mentions that the fitting of the SDM model to the
cerebellar cortex is by no means perfect. He also leaves open the issue of whether addresses
to the memory are used as data in the cerebellum (Kanerva, 1988). However, Table 3.1
summarises the relation between the SDM architecture and the cerebellum. This section,
thus, depicts an extension of Section 2.3.4 and illustrates the functions of the neural units
found in the cerebellum in the second column of Table 3.1. Accordingly, the third column
describes the relations between the SDM model and the cerebellum.

The SDM is like the models of Marr (see Section 2.3.4.1) and Albus (see Section 2.3.4.2)
in that they have a hidden layer with fixed coefficients that maps input patterns to subsets
of storage locations. The storage and retrieval of a pattern takes place in the currently
active subset, with most of the locations inactive at any one time. Common to all these
models is that stored patterns are distributed over many memory locations. A single location
is involved in the storage of different patterns and mathematical mechanisms are used to
reconstruct the information from many locations (Kanerva, 1988).

Such distributed representations are typical for most associative memory models as men-
tioned earlier in this work. Some of lesser resemblance to SDM are mentioned by Anderson
(1977), Hopfield (1982), Kohonen (1989), Willshaw et al. (1969); Willshaw (1981). A com-
parison between Kanerva’s SDM and some Hopfield-type neural networks has been made by
Keeler (1988).
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Table 3.1.: Functional interpretation of the SDM framework related to structures of the
cerebellar cortex. Summary of the comparisons made by Kanerva (1988) and Hely
(2006). The structure of the cerebellum is shown in Figure 2.3

.

Structure Function in cerebellum Function in SDM

Mossy fibres Originate from outside of
cerebellum; Synaptic connections
with granular cells

Address lines; transmission of
input pattern to the memory

Granula cells Located in the inner layer; Receive
input from the mossy fibres or
granular fibres and mossy cells

Address decoders; correspond to
hard locations N ′

Parallel fibres Axons of granular cells; Each has
from 200 up to 450 synapses to the
Purkinje cells’ dendrite planes

Activation of counters for memory
locations; counters for given bits

Purkinje cells Their axons form the only output
of the cerebellum; Intersect and
have synapses with up to 400000
parallel fibres each

Data polling for a single output
bit; fires when sum is above
threshold

Stellate and
basket cells

Interneurons; receive input from
parallel fibres; inhibition of
Purkinje cells

Threshold adjustment; Decision of
the majority of zeros or ones in
polled data

Climbing
fibres

Branch throughout Purkinje
dendritic trees; Firing of climbing
fibre guarantees firing of connected
Purkinje cell

Data input line; indication of
learning

Golgi cells Inhibition of granular cells by
feedback inhibition;

No interpretation made by
Kanerva
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Figure 3.8.: The focus accounts for the system’s subjective experience. Adapted from Kan-
erva (1988).

3.4. An Adaptive Autonomous Agent

According to Franklin (1995), and embodied intelligence an autonomous agent (e.g. robot)
must not only sense, remember, recall and predict but also act upon its environment so as to
affect subsequent sensory input. In animals, actions are mostly produced by subsequences
of neural patterns driving muscles. Actions are included in the world model by storing these
motor sequences in memory.

Kanerva’s model already provides such a mechanism where deliberate actions become
part of an agent’s experience. Moreover, it is of major importance that the patterns from
which the world model is constructed contain action components. The flow of information
in and out of an SDM is through the focus, as shown in Figure 3.8. When the memory
reproduces patterns in the focus it also reproduces the corresponding motor action to that
particular pattern, ready to drive the motors. Kanerva (1988) considers this kind of system’s
response to situations and messages via actions as very basic mechanism of interpretation
and meaning8.

An entity in the focus is a high-dimensional feature pattern that encodes everything about
a particular moment in time. Everything means the action, overall context, any specific
things the system is attending to, et cetera. Oversimplified, Kanerva suggests to assign 80%
of the focus’ components to current sensory input and the remaining 20% to the correspond-
ing motor output.

The memory is addressed by the focus, the contents are written into the memory, and
the data from the memory fed into the focus. When a sensory sequence is used to address
the memory, the memory responds with similar consequences as in the past. Information
supplied by the senses and information supplied by the memory can produce the same
subjective experience. Hence, the memory includes an expectation of an action’s result.
Accordingly, to plan an action, the system must initiate the “thought” in the focus while
blocking the physical execution. The memory then retrieves the likely consequences of the
contemplated actions into the focus and can use them as subsequent cue to trigger the next
actions iteratively.

8The complexity arises from the infinite ways of deriving new meanings from old ones.
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Kanerva’s internal model is built from exposure to the world. Side effects of an action and
its main effects are stored in the SDM. When the system moves the model is checked against
the world. thus, the frame problem should never arise in an SDM9.

3.5. Improvements of the SDM Design

Improvements in SDM design mainly differ in the selection of locations based on a certain
input address. Some of those approaches will be shown in this section. The SDM has been
subject to various studies on the capacity as analysed by Kanerva (1988); Keeler (1988); Chou
(1989) and was compared to neural networks by Keeler (1988); Fowler (1991); Bose et al.
(2005); Furber et al. (2007). Bouchard-Côté (2004a,b) investigated convergence properties
of various reinforcement learning algorithms coupled with an SDM as linear, local function
approximation architecture. Kristoferson (1995, 1998) showed that SDM performance does
not scale up10 in the original SDM, but does if sparse vectors are used.

3.5.1. Jaeckel/Karlsson’s Selected-Coordinate Design

In the original SDM model every location is given a binary address. Hard locations that
have a sufficiently small Hamming distance to an input address x are activated. Jaeckel’s
design is based on the assumption that two addresses with small Hamming distance should
roughly activate the same set of locations (Sjödin, 1995). Jaeckel (1989) hypothesises that
an activation pattern for each hard location is defined by specifying just a few selected
coordinates and a set of corresponding assigned values, consisting of one bit for each selected
coordinate.

Each hard location x′ is assigned by a mask(x′) of K coordinates, i.e. a set of indices
ranging from 1 to n. In the interpretation of SDM as a model of cerebellum, K corresponds
to the number of mossy fibre synapses of a granula cell. Each of those indices is associated
with either 0 or 1. A given location is activated, if and only if each of the k associated
values of the mask(x′) coincides with the respective value of the input vector x. In this
design with e.g. 1000-bit binary addresses, only 10 of the 1000-bits might be set to 0 or 1.
The remaining 990 bits are not involved in the activation process. Figure 3.9 exemplifies the
above-mentioned activation mechanism. The activation probability of a location regarding
Kanerva’s model is decreased to p = 2−k.

The advantages of this design are: it is faster due to the abandoned computation of
the Hamming distances, it uses a simpler XOR address-decoding and the selection of a hard
location is independent of n. That the access circles expand, compared to Kanerva’s design11,
can be seen as both a favourable and unfavourable side effect. The disadvantages are that
the original error-tolerant SDM design becomes very sensitive with respect to the selected
coordinates while insensitive to non-selected coordinates. A similar approach by Jaeckel is
the hyperplane design, where fewer selected bits are used for addressing, e.g. 3. This works
well for non-random data.

9The brain produces high-level representations that are stored into a memory. This would require less
memory space than it would need when used for raw sensory data—as in this work.

10The ability to tolerate noise in the retrieval cue decreases with memory size.
11By using just a limited number of selected coordinates, e.g. 10, 210 = 1024 access circles can be represented

regardless of the total number of bits.
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Figure 3.9.: Address activation (red) with k = 3 according to the selected-coordinate design
by Jaeckel (1989).

A restriction of Jaeckel’s hyperplane design by Karlsson (1995b) led to an advantage for
realising SDM with standard, sequential computer architecture. The author proposes a
slightly modified access mechanism that reduces the time-consuming search for the set of
active hard locations within the entire physical memory space. Karlsson (1995a,b) divides
Jaeckel’s hard location memory into A blocks each with 2k locations which yields to a fixed
number of activations per access and thus considerably accelerates Jaeckel’s model. For the
selection of specific and representative coordinates, the author claims that fewer used bits
have to be chosen preferentially. This leads to more randomised sets of activation patterns
than in Jaeckel’s design.

3.5.2. Spatter and Sparchunk Code

The spatter code (Kanerva, 1994) is a method of forming analysable holistic representations
of higher-level, nested concepts12 using real-valued or dense binary vectors, i.e. vectors with
roughly the same number of 1s and 0s and fixed dimensionality.

A concept or item is represented by two N -bit codewords. The first codeword is a high-
level (or dense) word with many randomly placed 1s and the second codeword is a low-level
(or sparse) word with a few 1s. Dense codewords can be used as inputs to an associative
memory while sparse codewords are used in encoding new concepts. A new item is formed by
combining several items, e.g. attributes, concepts, chunks. If parameters are chosen properly,
the two respective codewords are generated from the sparse codewords of its constituents as
follows:

• the new dense word is the logical OR of the constituents (i.e. their sum thresholded at
0.5),

• and the new sparse word has 1s where the constituent words overlap (i.e. their sum
thresholded at 1.5).

An interesting feature of spatter coding is a more efficient way of reading a memory by
using implicit information to remove noise. Any bit or set of bits from a bit-vector can be lost
or erroneous without losing any associations between concepts. The probability of finding
12In the following, the term “concept” is used to refer to the meaning of “representation of a concept”.

Concepts are represented by binary, real-valued, or complex values.



3.5 Improvements of the SDM Design 43

all of the associations is just decreased. In order to continue computation, noise has to be
removed from the retrieved vectors. Denoising is established via a “clean-up mechanism”
that searches for familiar concepts using noisy versions.

The sparchunk code (Sjödin, 1998) solves the same problem as the spatter code though
using sparse codes. This representational model can be used as clean-up memory for finding
constituent parts of a composite pattern while keeping same sparsity. Both of these methods
can be used hierarchically (Kanerva et al., 2001).

3.5.3. Value-Based Reinforcement Learning

Ratitch and Precup (2004) contribute a remedy for the lack of a priori memory size as-
signment for SDM-based mapping of a large high-dimensional address space onto a smaller
physical memory. The authors propose a randomised reallocation algorithm for dynamic on-
line allocation and adjustment of memory resources, which eliminates the need for choosing
the memory size and structure a priori. Their algorithm, that has been evaluated in Ratitch
et al. (2004), starts with an empty memory. Hard locations are added based on the dis-
tribution of observed data. New locations are allocated randomly in the neighbourhood of
an input address when there is a new datum which cannot be stored into a certain number
of existing hard locations. For this, the authors presume that the activation radii of the
memory locations are uniform and fixed by the user.

The minimal number of desired active locations for any data sample is denoted by F . A
new hard location x′ to an input address x is added to the memory centred at x, if the
similarity condition (Equation 3.11) is not violated.

µ(x′i, x
′
j) =

{
1− 1

F−1 if F ≥ 3
0.5 if F = 2

(3.11)

This similarity condition for any pair of hard locations x′i, x
′
j ensures that the fewer lo-

cations are required, a small F , the farther apart these hard locations should lie within
the activation sphere. Should the number of active locations F ′ < F , then (F − F ′) lo-
cations are randomly placed in the environment according to Equation 3.11. This method
obtains an appropriate coverage of address space while controlling memory size. However,
should a maximal memory size be reached and for any new input address x still hold con-
dition F ′ < F , then, at random an inactive hard location is picked and removed and the
corresponding number of new locations is added in the neighbourhood of x.

If condition 3.11 fails and a location x′ has to be removed from an active set of locations,
x′ and its nearest active neighbour x′′ are replaced by a newly added, intermediate hard
location whose datum results from averaging x′ and x′′.

The proposed linear and local function approximation scheme is especially suited for online
value-based reinforcement learning. It is cheap in terms of computational costs and the space
required. Its randomised nature of removals and the care for a sufficient number of hard
locations within visited regions ensures that it does not affect particular areas of the input
space dramatically.

Further online, but unsupervised learning methods adjusting the SDM memory layout are
proposed by Rao and Fuentes (1998); Sutton and Whitehead (1993). The latter approach by
Sutton and Whitehead slowly moves existing inactive memory locations13 toward observed
13Any inactive location is selected at random.
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data if the number of active locations for a given training sample is too small.

3.5.4. Signal Propagation Model

An alternative approach by Hely et al. (1997) propagates an input signal uniformly through-
out the memory space. The signal strength is diminished each time it encounters a hard
location further from the input address. This is also known as a radial basis function (RBF),
but here diminishing follows an arbitrarily defined, decreasing step function. Rather than
binary, the hard locations receive a copy of input data proportionally weighted with a real
value from 1.0 7→ 0.05. Nearest locations are rewarded with greater signal strengths. In-
formation retrieval is realised vice versa. The model periodically deletes rarely activated
hard locations to free resources for memory allocation elsewhere. This technique referred
to as pruning yields memory with only “fit” locations that survived the erasing period.
This dynamic memory is better suited to deal with nonrandom data than Kanerva’s original
model.

3.5.5. Genetic Sparse Distributed Memory

Genetic algorithms (Holland, 1992) are adaptive procedures for optimisation, search and ma-
chine learning problems. They simulate an evolutionary process based on natural selection,
mutation, crossover and inheritance. Whenever there is a large search space without proper
algorithms for pruning and trimming, genetic algorithms can be used.

Several authors like Fan and Wang (1997); Anwar et al. (1999); Anwar (2005) propose
to use SDM in combination with genetic algorithms. The former approach uses a genetic
initialisation of hard locations while the data reading procedure is preserved. Thus, memory
requirements are reduced at the expense of generalisation and learning capabilities as the
memory becomes saturated. The latter approaches keep SDM as it is and invoke genetic
algorithms to obtain a uniform distribution of hard locations. Anwar (2005) mentions a
difference between the similarity of hard locations and the similarity of written memory
words. Thus, their goal is to reach a certain group fitness (see Equation 3.12), meaning
that hard locations of a certain population14 are as far apart as possible from each other on
average, with a limit on the standard deviation. The applied fitness measure for a population
of hard locations is to maximise their distances to each other:

max
∑

d(x′i, x
′
j) with i 6= j and i, j ∈ {1, . . . , n} (3.12)

If seen as SDM, a genetic algorithm changes the weights in the connections between the
input layer and the hidden layer, while connections between hidden layer and output layer
are changed according to the standard SDM method.

3.6. Applications

Various applications have been implemented since Kanerva firstly proposed his SDM. Sim-
ple memory applications vary from two-dimensional character recognition (Hong and Chen,
1991; Fan and Wang, 1997), to speech recognition and pronunciation (Clarke et al., 1991;
Joglekar, 1989), to parallel tree-structure realisation (Hämäläinen, 1996) and connection

14Hard locations are the population of binary strings that serve as the domain of the genetic algorithm.
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machine implementation (Rogers, 1988; Turk and Görz, 1995). Some of the approaches of
particular interest for this study, by no means all, will be introduced while focusing on the
diversity of application and major relevance to robotics.

3.6.1. Cultural Evolution

Memetics is a scientific effort to apply evolutionary models to the development and transfer
of ideas within a culture (Gabora, 1996, 2002). The term meme is popularly attributed
to Dawkins (1976), who proposed the idea in his book “The Selfish Gene”. The Merriam-
Webster Online Dictionary defines a meme as an idea, behaviour, style or usage that spreads
from person to person within a culture.

Gabora (1996) outlines SDM as a way to generate variations of patterns by exploring or
transforming the space. Working memory (WM) can be viewed as memes that lie within
a given Hamming distance of a meme in the focus such that they are retrievable with a
certain number of iterations. She stated that associations between memes are not explicitly
represented as connection strengths but as proximity in multidimensional space. And this
reflects the neurons’ connectivity.

Gabora (1996) outlines that memes in an SDM have a self-replicant capacity via implicit
pointers and details how an SDM-like stream of thought might get established. Gabora
(1996, Ch. 7.1) states the interesting hypothesis that unconsciousness may be a result of
fleeting experience of memes that are dynamically reconstructed as in an SDM but which do
not readily assimilate with other memes and thus get discarded from the focus.

3.6.2. Part of a Cognitive Architecture: LIDA

The Learning Intelligent Distribution Agent (LIDA) (D’Mello et al., 2005, 2006; Franklin,
2005) is a software agent based on a global workspace theory that offers perceptual, episodic
and procedural learning capabilities. It provides a conceptual and computational model
of cognition and is partly symbolic and partly connectionist with symbols being grounded
in the physical world (Harnad, 1990). It uses variants of SDM to computationally model
declarative memory for the long-term storage of autobiographical and semantic information
as well as short-term transient episodic memory for detailed sensory-perceptual information
with a retention rate within hours.

A transient episodic memory holds activation patterns gathered from perceptual entities
by primitive feature detectors. Not decayed contents of transient episodic memory are peri-
odically consolidated into declarative memory. Recall of an event is established by recovering
perceptual symbols from the activation trace within a perceptual associative memory.

3.6.3. Mobile Robot Navigation

The most interesting field regarding this work are autonomous mobile robots that use an
SDM. A framework for learning perception-based navigational behaviours is proposed by
Rao and Fuentes (1998). The SDM is used to attain high-level goal-directed navigation. It
is combined with a stochastic hill-climbing method to achieve low-level reactive behaviours
essentially based on Brooks’ subsumption architecture (Brooks, 1986).
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Contrary to the nearest-neighbour look-up table technique, the curse of dimensionality15

is avoided by employing only a sparse number of active memory locations and a layered
architecture for goal-directed navigation.

Within a training phase, they feed the SDM with current motor inputs indexed with
probability vectors of the current and two preceding perceptions. Such that the robot is
able to predict the next two motor commands according to an estimation during navigation.
The robot is remotely controlled by a human user during a training stage. An estimation of
the current motor output ât during autonomous memory-based navigation is obtained by a
weighted averaging method:

ât =
s∑
i=1

γi(t)ait (3.13)

where γi(t) is a weight according to a predicted estimate i of a current situation based on
the number s of current and past sensory inputs involved. A drawback of this approach is
that the weights are predefined and not determined online in consideration of the current
and past perceptions.

Another work on SDM-based robot navigation is proposed by Mendes et al. (2007, 2008,
2009). A tank-style robot is remotely controlled during a training phase and images from a
digital camera together with the corresponding motion command are stored into the SDM.
During an autonomous run the robot predicts the associated motion based on images pre-
sented to the memory. Instead of a priori memory allocation, the authors use the randomised
reallocation algorithm (cf. Section 3.5.3) to dynamically allocate new hard locations if needed.
While following a learnt path autonomously, small drifts of the robot are adjusted according
to a horizontal displacement of the current to the predicted view. Images are enhanced by
a histogram equalisation before storing into memory to make the system more robust to
changing lighting conditions.

The work at hand, in parts, is closely related to the approach mentioned above. A com-
parison of the performance of the latter approach and the studies presented in this book is
extensively discussed in Chapter 6. Hence, the LIZARD robot system is described in more
detail in Section 4.1.2 & 4.2.2. Moreover, this study presents the first SDM-based approach
to mobile robot manipulation and crossmodal interactions.

3.6.4. Weather Forecasting

Rogers (1990) uses an SDM and Holland’s genetic algorithm to obtain weather forecasts for
the Australian coast based on 58000 weather samples taken every 4 hours over 25 years.
The goal is to predict rain given 15 local weather features such as air pressure, cloud cover,
month, temperature, et cetera. The main mechanism used is genetic recombination, also
called crossover (see Figure 3.10). Based on a fitness function as a measure of statistical
predictiveness of a memory locations, two highly-ranked hard locations are used to replace a
low-ranked one. The result of a recombination of two highly-ranked hard locations as shown
in Figure 3.10 is added to the memory while a low-ranked hard location is erased. Thus, a
better distribution of address space is reached.

15The number of samples per variable increases exponentially with the number of variables to maintain a
given level of accuracy. The curse of dimensionality can only be avoided if several or all input features are
somehow dependent among each other or if the input-output correlation is “simple” such that an output
just slightly changes if an input is modified.
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101010101011111111. . . First parent
110110110110110110. . . Second parent

↓
101010101110110111. . . New member

Figure 3.10.: Crossover of two binary strings.

The weather samples are coded into 256-bit words such that each feature assigns a thermometer-
style 16-bit field in the address. The mixture of SDM and genetic algorithms showed a better
weather predictability than the mere SDM model.

3.6.5. Speech Recognition and Pronunciation

Based on a modified SDM model, Clarke et al. (1991) implemented a short word recognition
system based on continuous speech inputs. First, they use a nonlinear mapping (location
matching) of preprocessed speech into a high-dimensional representation followed by a single
layer of conventional adaptive links that perform a linear mapping for complex pattern
discrimination.

Trained by the multi-speaker Alvey Hotel Speech Corpus, they reached a recognition ac-
curacy of 95% without syntactic constraints for the recognition of 133 different, but not
considerably varying small words in continuous speech. The modified SDM is fed with spec-
tral information from one second of speech to determine which of the small words16 were
presented during the middle 1

10 th of the second. A Holmes 19-channels filter bank with an
energy function is used to provide 20 parameters for each 20ms of speech. 50 of these 20ms
sections are combined to form an input vector composed of 1000 integers. The hidden layer
consists of 9600 units. The hypercube metric is used for the location matching an the radius
is chosen such that about 10% of the locations are active for any given input pattern.

The model is trained with 347 labelled utterances of 25 sentences with different features
deriving phonetic labels. 350 unlabelled utterances of the sentences are used for testing.
Along with the above-mentioned accuracy, the results indicate that recognition of larger
speech units is more reliable and repays the computational effort needed to process large
sections of the speech signal as a single pattern. The recognition accuracy decreased while
adding background noise. It shows a higher sensitivity to the speech volume than to the
speech speed.

The interested reader is referred to further SDM-based approaches for the detection of
phonemes (Joglekar, 1989), phonemes and vowels (Prager and Fallside, 1989) and spoken
numbers (Danforth, 1990) in continuous speech.

3.7. Concluding Remarks

The SDM model depends fundamentally on subtle, nonintuitive properties of high-dimensional
metric spaces and random distributed representations. A unique feature is that SDM can
be mapped onto physiological structures as shown in Section 3.3.3. Many neural models
only duplicate a style of computation and are not intended as models of brain functions.
For instance, back-propagation is a paradigm commonly used in neural network research.
16Inspired by the morph unit in MITalk.
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Unfortunately, after evaluating an error function the result is propagated backwards through
the whole network to modify the corresponding weights. There are hardly any mechanisms
found in the brain that justify backpropagation.

SDM’s concept of distributed storage can account for the non-specific affects resulting
from brain damage. A hardware implementation of an SDM is simpler as opposed to other
neural models, which normally work fine with a small number of nodes in their network.
Problems of classical NN models, especially in the class of backpropagation networks, occur
while trying to provide communication paths for a fully connected network. Kanerva’s
description of a hardware implementation uses a considerable number of counters that does
not incorporate information from other nodes, thus a communication bottleneck does not
appear as in classical NN models.

Kanerva raises an analogy between the focus of attention of a human and an address-
datum register of a standard computer. Both hold data and serve as a reference address to a
memory register where information can be stored into or retrieved from. His mathematical
theory explains how humans might be able to associate similar situations or fuse different
impressions to a single one without even actively thinking about it. Each element of such
addresses, such long binary vectors, encodes a feature of a prevailing situation of an agent.
According to Hely (2006) it is not necessarily important that the vectors are binary. It is
assumed that similar situations cause similar feature-vectors, which makes the information
and feature encoding a central issue within SDM research.

If any input address is used to access the sparse memory, no distinction is made between
physically existing or not existing addresses. An address-decoder takes care that all those
memory locations get activated which are sufficiently similar to the target input address.
Such similarity is measured as the number of differing bits which is the Hamming distance.
This generalisation of the read and write operation permits features of adjacent regions to
get intermixed. The memory locations in such overlapping regions contain an average of the
stored information. If a memory address is considered as the property of a situation and its
content as the address to a succeeding situation, sequences of actions are represented.

3.7.1. Advantages of the SDM Model Regarding Cognitive Robotics

The main advantages of using a memory model like SDM for robotic applications will be
summarised with respect to the research questions and requirements mentioned in Section
1.2.

• The SDM model is suitable for working with high-dimensional feature patterns which
will easily be reached in robotic domains when dealing with several low-level sensors
and actuators.

• The SDM model is sensitive to conceptual similarity due to the statistical reconstruc-
tion mechanism of stored information. Thus, similar percepts such as robot motion
patterns can be reconstructed based on a kind of abstraction. Motion patterns that
share similar features will be favourable reconstructed by the memory. The robot will
be able to reconstruct predict data based on the current context.

• The inherent tendency towards orthogonality in high-dimensional spaces causes the
favourable matching properties in SDM.
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• The model provides a huge address space by just allocating a non-exorbitant number
of physical locations. For identifying and activating data locations, input addresses
are not required to match stored addresses exactly but rather lie within a specified
radius. This will enable a robot to process data patterns that are not identical but
similar to previously learnt patterns and thus provides a mechanism for generalisation
and abstraction.

• The SDM model is applicable to parallel processing, when implemented in hardware.
Activation then will be immediate and the number of hard locations does not influence
processing speed. This beneficial feature would allow a robot to quickly access contents
of its memory, e.g. for comparing the current situation with a large amount of past
experience to choose an appropriate action.

• Due to the distribution of multiple copies of the input vector, the memory is robust
to noise, failure of individual locations and incomplete input patterns. Robots are
frequently confronted with partial input patterns that have to be compared with learnt
information.

• Due to the location pruning algorithm, location matching networks can be trained in
roughly 1

2 to 1
10 of the training iterations required by commonly used single or double

layer adaptive networks for an arbitrary task (Prager, 1993). Associative memories
have a far quicker learning cycle than backpropagation networks, and have been shown
to have preferential characteristics after training in some domains. Reducing the num-
ber of training cycles is an important requirement for cognitive developing robots, as
well as for the robots proposed in this work.

3.7.2. Disadvantages of the SDM Model Regarding Cognitive Robotics

The main disadvantages of Kanerva’s model with respect to robotic applications that operate
in natural environments in the opinion of the author are as follows:

• The standard SDM model requires binary address and data vectors. But most natural
environments yield multivalued input patterns. Therefore, either the indexing mecha-
nism must be modified or all input patterns have to be transferred into binary space.
As shown in this chapter, binary spaces have some disadvantages.

• The standard SDM model assumes a random and uniform distribution for the input
vectors. Natural environments are highly structured and therefor hardly ever random.
Normally, they tend to be clustered in many correlated groups distributed over a large
portion of a multidimensional address space. Approaches that self-organise the input
address space should help here.

• Using counters degrades the storage capacity K per bit. Avoiding counters would de-
crease the required memory space while memorising the same amount of data. Robots
that are controlled by a single PC may have to share their memory space with other ap-
plications that use image and video processing which usually demands a large memory
capacity.

• The SDM needs to cycle through all the addresses during training or recall. The
amount of cycles needed directly scales with the number of neurons, the number of hard
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locations respectively. This disadvantage is negligible when implemented in parallel
hardware.

• If the SDM model is realised in software and not in hardware, the potential parallel
nature cannot be fully deployed. Processing time increases.

• The memory is good only for the sparse case. The performance degrades rapidly if the
number of items to be filled up grows (Bose, 2003).

• Contents written to the SDM cannot be removed but only forgotten. Dispensable
contents may interfere with more recent contents of the memory. This can also be a
desired feature of a technical system.

Most of the presented disadvantages will be compensated throughout this work by using
and developing appropriate extensions.
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Experimental Platforms

Those parts of the system that you can hit with a hammer (not advised) are
called hardware; those program instructions that you can only curse at are called
software.
(Levitating Trains & Kamikaze Genes: Technological Literacy for the 1990’s)
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This Chapter presents all necessary details about the hard- and software of the utilised
robot systems. Further, a brief introduction is given about a telemanipulation system that
has been developed for and used in this work. Within the scope of this work, the service
robot TASER is mainly used for SDM-based manipulation. LIZARD is used for SDM-based
navigation. The telemanipulation system is used for an interactive creation of diverse robot
arm motion sequences by human instructors.

4.1. Hardware

This section illustrates and explains the setup of the hardware components used in this work.
The main platform for scientific investigations on SDM for robots is the TAMS Service Robot
(abbr. TASER). Further hardware to compare the performance of an SDM between different
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robots and domains is the LIZARD robot. Robot arm trajectories, the main subject of this
research, have been produced by both direct programming and interactive control using a
haptic interface.

4.1.1. TAMS Service Robot TASER

TASER consists of a mobile platform with a differential drive and wheel encoders, two laser
range finders, a Pentium IV 2.4 GHz industrial computer as central control unit, a PA10-6C
manipulator, a three-finger robotic hand and several IEEE 1394-cameras as shown in Fig.
4.1(a). The robot has a body height of appr. 2m. In this work, SDM learning focuses on 6
degree-of-freedom (DoF) robot arm trajectories for manipulation tasks.

(a) TASER in its aspired final
configuration.

(b) Current TASER I/O structure. Adapted from Bistry et al.
(2007a).

Figure 4.1.: The TAMS service robot.

4.1.1.1. Mobile Robot Platform

The mobile platform is a modified version of NEOBOTIX1 MP-L655. It consists of an
aluminium chassis with shelves as housing for the internal power supply, the control PC and
all controllers of the remaining hardware units. Eight lead-gel-batteries provide the robot
with a supply voltage of 48V . The platform is equipped with a motor system consisting of a
differential drive and wheel encoders. A single Pentium IV 2.4GHz industrial computer with
1GB RAM and a Linux operating system serves as the central control unit for the whole

1http://www.neobotix.de, last accessed Mai 09, 2009.

http://www.neobotix.de
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Table 4.1.: Joint limits for PA10-6C.

Limit

Name of axes Mechanical Servo Software max. Velocity

S1 (Rotation) ±180◦ ±178◦ ±177◦ ±1 rad/sec
S2 (Swing) +127◦,−67◦ +125◦,−65◦ +124◦,−64◦ ±1 rad/sec
E1 (Swing) +164◦,−113◦ +159◦,−108◦ +158◦,−107◦ ±2 rad/sec
E2 (Rotation) ±270◦ ±256◦ ±255◦ ±2π rad/sec
W1 (Swing) ±180◦ ±166◦ ±165◦ ±2π rad/sec
W2 (Rotation) ±270◦ ±256◦ ±255◦ ±2π rad/sec

robot system. The sensor/actuator peripherals are connected to the control PC as shown in
Figure 4.1(b). For further details on TASER, cf. the work by Baier-Löwenstein (2008) and
Weser (2009).

To perceive the environment, the robot possesses two laser range finders, two IEEE 1394-
cameras as a stereo head with a pan-tilt-unit, an additional omnidirectional vision system
and force sensors inside the fingers of the robotic hands. A gyroscope can be used to measure
the robot changing its orientation based on angular momentum.

Range measurements are used for different tasks such as collision prevention, self-localisation
or people tracking. TASER uses two SICK2 Laser Measurement Sensors (LMS) 200 mounted
at the front and at the back of the robot. Each sensor has a 180◦ field of view and is op-
erated with an angular resolution of 0.5◦. A special purpose RS422-to-Ethernet adapter
based on a Rabbit PowerCore 3800 microcontroller was designed by Bistry et al. (2007a,b)
to preprocesses the range data and send UDP-packages over Ethernet to the robot’s host
PC.

4.1.1.2. Manipulator

The manipulation unit of TASER is composed of an MHI PA10-6C robot arm with six
degrees of freedom (DoF) manufactured by Mitsubishi Heavy Industries3 and a three-finger
gripper by Barrett Technologies Inc4. It is shown in Figure 4.2(a). The robot arm is mainly
used for fine-positioning of the gripper to grasp objects precisely. Trajectories of the robot
arm for the positioning of the robot hand are recorded and used in this work for SDM-based
learning and recognition.

MHI PA10-6C Robot Arm TASER’s robot arm is a commercially available industrial
robot. It has a total length of 1317mm (see Figure 4.3), a weight of 39kg and a maximum
payload of 10kg. The robot arm has six DoF. Its working range is comparable to a human
arm with seven DoF5. In general, the higher the degrees of freedom, the more positions a
robot arm can reach with its tool centre point (TCP).

2http://www.sick.com, last accessed Mai 11, 2009.
3http://www.mitsubishi-heavy.de/, last accessed August 13, 2009.
4http://www.barrett.com/, last accessed August 13, 2009.
5The kinematic chain of a human arm consists of different joints, namely the shoulder with three DoF, upper

and lower arm one DoF, lower arm torsion one DoF, wrist two DoF.

http://www.sick.com
http://www.mitsubishi-heavy.de/
http://www.barrett.com/
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(a) MHI PA10-6C and BarrettHand. (b) Alignment of PA10-6C axes.

Figure 4.2.: PA10-6C robot arm by Mitsubishi Heavy Industries Ltd. combined with a grip-
per by Barrett Technologies Inc.

The arm is driven by low-maintenance, brushless DC motors and each joint has a brushless
DC resolver for a positioning repeatability of ±0.1mm. The alignment of the PA10-6C axes
is shown in Figure 4.2(b) while the limits of the rotation angles are listed in Table 4.1.

The PA10-6C is controlled by a standard PC via ArcNet interface. The Robot-Control-
C-Library (RCCL) developed by Lloyd and Hayward (Lloyd and Hayward, 1992; Hayward
and Richard, 1986) was supplemented for PA10-6C and PA10-7C control by Scherer (2004).
A C++ extension of RCCL to RCCL++ developed by Markus C. Ferch and Yorck O. von
Collani at the University of Bielefeld supplements the control software with methods for
complex movements of multiple types of robots. The latter extension permits torque-based
arm control6.

BarrettHand The commercially available BH8-262 BarrettHand produced by Barrett Tech-
nologies Inc. is a multi-fingered programmable grasper. It is mounted as end effector onto the
MHI PA10-6C robot arm and is connected to the control PC via RS-232. The hand has 8 axes
and is driven by four brushless DC motors. The dimensions are 298mm× 149mm× 42mm
(see Figure 4.4) and its weight is 1.2kg. The BarrettHand has a payload of 6kg. According
to the above-mentioned specification and if operated at a supply voltage of 48V , the payload
of the whole manipulation unit (arm and hand) recedes to approximately 4kg.

Along with the servo-controllers and the four brushless motors, the BarrettHand houses a
CPU with an industry-standard RS-232C serial communication link. A single motor controls

6Since the PA10-6C does not have any force-torque sensors. The mentioned torque-based arm control is
based on forces measured with other devices connected to the robot arm, e.g. the BarrettHand (Baier-
Löwenstein, 2008).
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Figure 4.3.: Dimensions of the PA10-6C robot arm by Mitsubishi Heavy Industries, Ltd.
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(a) Metric dimensions of the BarrettHand in mm
and the joint radii. Source:
http://www.barrett.com

(b) BarrettHand mounted at the robot arm
with micro-head camera.

Figure 4.4.: BarrettHand BH8-262.

both joints of a finger (Jx1 and Jx2 in Figure 4.4(a)) via a special gear box mechanism
called TorqueSwitch

TM
(Townsend, 2000). According to Brown (2008), the switch drives the

extensions above both joints to curl forward at the same time. When one meets resistance,
it stops, but the other keeps going until it meets resistance, too. A fourth motor rotates
two fingers (F1 and F2 in Figure 4.4(a)) together up to 180◦ around the palm (J11, J21 in
Figure 4.4(a)) which finally leads to eight DoF of the robot hand.

The BarrettHand uses optical incremental encoders that lead to a sensing resolution of
0.008◦ at the finger base joints. Each finger of the BarrettHand houses a resistance strain
gauge (RSG) in the proximal finger limb to measure forces that act on the gear cable. Only
perpendicular forces exerted onto the distal finger limb are noticeable in consequence of
the mechanical architecture of the BarrettHand. C++ libraries developed at the Dept. of
Informatics, University of Hamburg by Bernd Rössler and Baier-Löwenstein (2008) are used
for the programming.

4.1.1.3. Vision Sensors

Besides the sensors already mentioned in the sections above, TASER is equipped with several
IEEE 1394-cameras (see Figure 4.5). Two are used in combination with a pan-tilt-unit as a
stereo-vision head. Furthermore, an omnidirectional vision system is mounted at the top of
the robot.

Stereo-Vision System Two Sony DFW-VL 500 cameras are mounted with a baseline of
110mm onto a pan-tilt-unit PTU-46-17.5 produced by Directed Perception7 on top of the
robot. The maximal resolution of the cameras is 640px × 480px in a YUV422 colour space

7http://www.dperception.com, last accessed May 14,2009.

http://www.barrett.com
http://www.dperception.com
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Figure 4.5.: The camera systems mounted on top of TASER.

at 30 frames per second. They are connected to the control PC via IEEE 1394 while the
PTU is connected via RS-232.

The resulting stereo system can be used for natural learning of manipulation skills (Hüser
et al., 2005, 2006, 2007), 3D scene and depth reconstruction (Jockel et al., 2007a; Klimentjew
et al., 2008) and people tracking without moving the mobile platform (Weser et al., 2006).

Omnidirectional-Vision System A high-resolution Sony DFW-SX 900 camera with a max-
imal resolution of 1280px× 960px is used for an omnidirectional-vision system. The camera
captures light of nearly all directions falling onto the focal point of a hyperboloidal semi-
sphere and thus has a 360◦ field of view. The camera uses YUV422 colour space and captures
7.5 frames per second if operated at full resolution. Omnidirectional cameras are mostly used
for visual odometry and simultaneous localisation and mapping (SLAM) problems.

4.1.2. LIZARD Robot

The LIZARD robot (Mendes et al., 2008; Jockel et al., 2009) shown in Figure 4.6 is based
on a Surveyor SRV-1 Robot8. The name is derived from the Portuguese word “lagarto” and
has similar meaning. It is an open-source wireless robot with video for telepresence that can
be operated as a remotely-controlled webcam or self-navigating autonomous robot.

8http://www.surveyor.com, last access April 29, 2009.

http://www.surveyor.com


58 Chapter 4 Experimental Platforms

Figure 4.6.: The Surveyor SRV-1 robot LIZARD.

4.1.2.1. Surveyor SRV-1 Robot

The Surveyor SRV-1 is made from machined aluminium and has a weight of approximately
300g with the dimensions of 120mm×100mm×80mm. It is powered by a 7.2V Lithium-ion
polymer battery with 2Ah which permits a maximum operation duration of four hours per
charge. LIZARD has two precision DC gearmotors controlled by a FAN 8200 with differential
drive that actuate two tank-style treads. The operational speed lies between 20 cms and 40 cms
with an operating distance of up to 100m indoors and 1000m outdoors (line of sight) limited
by the communication module. The processor is a 60mips 32bit ARM7TDMI mounted on a
Philips LPC2106 QuickStart Board, version 1.0, that operates with 3.3V and has 64Kbyte
SRAM, 128Kbyte Flash and JTAG interface9. The robot is able to execute interpreted C
control programs stored in its on-board Flash memory.

4.1.2.2. Sensors

The Surveyor SRV-1 is equipped with an on-board digital video camera and four infrared
sensors for the perception of the environment. The camera, mounted at the robot’s front,
has a maximum resolution of 640px × 480px providing JPEG images. The field of view
was empirically determined to be approximately 40◦. Infrared sensor units consisting of an
emitter and a receiver are mounted at each side of the robot for proximity detection.

9Joint Test Action Group (JTAG) is the commonly used name for Standard Test Access Port and Boundary-
Scan Architecture.
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4.1.2.3. Communication Module

An XBee Pro wireless radio unit is used for the communication between the robot and
the remote PC. The wireless interface is based on the ZigBee specification maintained by
the same-named Alliance10 and operates on an 868–868.8MHz unlicensed frequency band.
ZigBee focuses on low energy consumption and low-speed ubiquitous communication between
devices. It is based on the IEEE 802.15.4-2003 standard for wireless personal area networks
(WPANs).

4.1.2.4. Control PC

Since the robot has limited on-board processing capacities while used for image-based tasks,
it is controlled via a ZigBee wireless connection with an off-the-shelf laptop. The laptop is
equipped with an Intel Pentium IV 1.8GHz processor and 1GB working memory.

4.1.3. Haptic Force-Feedback Device

By using a haptic interface, users are enabled to interact with and feel a variety of virtual
objects with physical properties such as weight, shape, texture. The generation of such
virtual objects that are just represented by forces is called haptic rendering.

Allmost all haptic interfaces have a tool—e.g. stylus—that can be freely moved by the user
to touch virtual surfaces. When the tool is moved into a specific region of a virtual object,
the haptic interface generates forces that simulate contact, friction, slip and so forth.

4.1.3.1. PHANTOM R© DesktopTM

Figure 4.7.: PHANTOM R© DesktopTM

haptic force-feedback device.

The PHANTOM R© DesktopTM device produced by
SensAble technologies11 is a precision positioning
input and high-fidelity force feedback output inter-
face for hand movements pivoting at the wrist (see
Figure 4.7). It consists of a footprint and a freely
movable molded-rubber stylus-gimbal. The device
is constructed of injection-molded, carbon fibre re-
inforced plastics and metal components with a total
weight of 3.6kg. It has six DoF and provides 3D po-
sitioning in x, y, z space with an orientation α, β, γ.
The force-feedback of this model is limited to the
x, y, z position of the stylus.

The range of motion lies within the radius of
60mm with a nominal positioning resolution of
1100dpi. The exertable force ranges from 1.75N
to 7.9N when arms are aligned orthogonally. Ac-
cording to the manufacturer’s data, the inertia at
the tip of the stylus is denoted with < 75g. The device is connected to a control unit, which
is an arbitrary PC that provides the OpenHaptics R© Toolkit and drivers via standard parallel
port.
10http://www.zigbee.org, last accessed April 29, 2009.
11http://www.sensable.com, last accessed Mai 11, 2009.

http://www.zigbee.org
http://www.sensable.com
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Since the PHANTOM R© DesktopTM device is just an interface, data analysis is driven by
a WinXP workstation with dual Xeon 2.4GHz processor, 1GB RAM, a high-performance 3D
graphics accelerator and high-resolution colour display.

4.2. Software

This section details the software architectures and outlines the control and interaction of the
used hardware components.

4.2.1. TASER Control Architecture

The software architecture of the service robot TASER is based on the Roblet R©-Technology12

(Westhoff et al., 2006). With this technology it becomes possible to develop, compile and
execute an application for the service robot on a workstation. The Roblet R©-Technology
permits the easy implementation of distributed systems which generally ease the development
process for service robots. The goal of this technology is to encapsulate both high-level
functionality and low-level access to robot hardware into a distributed software architecture.
An advantage of using client programs running on remote PCs is that this provides more
processing power for complex algorithms. This yields a load reduction of the robot’s control
PC.

The Roblet R©-Technology is a client-server architecture where clients can send parts of
themselves, referred to as Roblets, to an available server and spread them in the local area
network. The server, referred to as Roblet-server, then executes the Roblets with well-
defined behaviour in case of malfunctions. Notice that not only data is transmitted between
the client and server but complete executable programs. This can be compared to Java
Applets but with the difference that Roblets are not downloaded but sent. The network
is transparent and developing distributed applications based on Roblet-Technology is like
developing an application for a single workstation (Baier et al., 2006). Roblet-servers provide
interface units and encapsulate low-level C/C++ hardware drivers of the robot via the Java
native interface (JNI) while client applications provide interfaces to users at an arbitrary
workstation.

Control relevant Roblet-servers provide interfaces to the PA10-6C robot arm, the Bar-
rettHand and its force sensors, laser range scanners, pan-tilt-unit, IEEE 1394 cameras, the
TCP-based control of the drive wheels and to other internal monitoring services like temper-
ature, battery voltage, et cetera. An overview of TASER’s software architecture is shown in
Figure 4.8.

4.2.2. LIZARD Control Architecture

The software architecture of the LIZARD robot consists of different layers (see Figure 4.9).
The first layer handles the IO’s of the robot hardware and software. Inspired by Brooks’
Subsumption Architecture (Brooks, 1986, 1991) it provides basic functionalities as collision
avoidance based on image focus detection and motor control. The first layer is also respon-
sible for the transfer of sensorial inputs to and converting commands from higher levels.

The systems input is 256-bit grayscale images with a resolution of either 80px × 64px or
160px × 128px. Images are converted from JPEG to PGM in real-time. To preserve and
12http://www.genrob.com/de/roblet_org.html, last accessed Mai 9, 2009.

http://www.genrob.com/de/roblet_org.html
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Figure 4.8.: The software architecture of the service robot TASER. Hardware components
are shown in yellow boxes, corresponding C/C++ libraries have blue boxes and the
Roblet servers are green (Baier et al., 2006).

Figure 4.9.: The software architecture of the LIZARD robot according to Mendes et al.
(2008).
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improve image quality for further processing steps, the input image is enhanced by applying
a histogram equalisation13. Three consecutive captured images are used to determine the
noise levels for further processing steps.

According to Kanerva’s terminology, the second layer is the system’s focus. Established
in this layer, a navigation algorithm sends control commands to the lower, first layer, where
they are finally translated into concrete motor commands. Furthermore, this layer adjusts
lateral drifts and determines if the robot was kidnapped from a learnt trajectory.

The third layer is the SDM where the robot stores and retrieves experiences through
interaction with the focus. Mendes et al. (2007) studied different versions of the SDM for
robot navigation. A comparison of the performance of SDM used for manipulation and
navigation is detailed in Chapter 6.

4.2.3. Teleoperation Control Architecture

A teleoperation system was developed to obtain a higher flexibility in producing arm motion
sequences for TASER (cf. Bruder (2009) for details). A client-server based architecture
provides interactive control of the MHI PA10-6C robot arm via a PHANTOM R© DesktopTM

device.
The server runs on the robot’s control PC. It is designed as a resource-friendly application

that provides an interface to the low-level C/C++ hardware drivers of the robot arm. It
manages contingency plans in the case of malfunctions, e.g. catastrophic network break down
and operating errors. The tasks of the server are:

• waiting for and managing incoming client connections,

• monitoring the state ~st = (jt, ft)T of the robot arm14, with joint angles jt = (j1, j2, . . . , jm)Tt
and forces ft = (f1, f2, . . . , fn)Tt at all time points t,

• notification of clients when a state change appears,

• monitoring and treatment of control commands ~ct received by a client.

A client can run on an arbitrary workstation that provides the OpenHaptics library and is
linked to a PHANTOM R© DesktopTM device. It communicates with the server via LAN. A
connection between client and server is established autonomously via TCP/IP request. To
accomplish a quick intercommunication between client and server, an UDP/IP-based unicast
CommandReceiver thread waits for incoming control commands ~ct from a client. Moreover,
a StateStreamer thread continuously sends the robot’s state ~st via a UDP/IP multicast
connection. For a more detailed structure of the transmission protocol the interested reader
is referred to Chapter B. The tasks of a client are various:

• monitoring the desired robot arm position and orientation interactively supplied by
the PHANTOM R© DesktopTM operated by a user,

13A normalisation of the image contrasts has also been studied, but equalisation leads to better images for
further processing steps with respect to the proposed system.

14In case of our robot TASER, m = 10 due to the robot arm with six joints and the BarrettHand with four
joints, and n = 3. Due to the TorqueSwitch mechanism and single RSG each finger of the BarrettHand is
considered as having one DoF in ~st instead of two as mentioned in Section 4.1.1.2.



4.2 Software 63

Figure 4.10.: Overall structure of the telemanipulation systems with the server application
(top) and client application (bottom). Adopted by courtesy of Jan Bruder.
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• transferring current joint configuration ~fPt of the PHANTOM R© DesktopTM into a
matrix representation15 Vt at which the inverse kinematics is solved through a gradient
descent optimisation algorithm (cf. Chapter B),

• sending command ~ct to the server,

• monitoring network for incoming ~st,

• transfer of incoming ~st into Vt,

• displaying a virtual robot model of current Vt to the user.

An inverse kinematic computation is necessary to map the different kinematic chains of
the PHANTOM R© DesktopTM and the PA10-6C. The considerable advantages of client-
driven inverse kinematic computation are that the processing load of the robot’s host PC
is minimised and the simulation and training of manipulation tasks without any server
connection becomes feasible. The benefits of using a gradient descent method for the inverse
kinematics are that it computes meaningful solutions even for unreachable arm positions and
singularities. A disadvantage is the slow convergence behaviour.

The overall structure of the telemanipulation system is shown in Figure 4.10. From a
theoretical point of view, the system uses a two channel position–to–position architecture
with joint space data transmission. The force feedback is based on a positioning error from
Cartesian space coordinates. Differences between vectors ~st from the server and ~st from the
PHANTOM R© DesktopTM input are presented to the user as forces applied to the spatial
position of the tip of the stylus. For more details, the reader is referred to Bruder (2009).

4.3. Concluding Remarks

In this Chapter, important hardware and software components have been introduced that
are used during the studies on SDM-based robot learning. Due to the fact that each robot
and its respective control mechanism is a complex system per se, the reader has been referred
to more extensive literature on those particular systems.

The robot arm is used throughout the whole work and thus occurs in each Chapter.
A comparison of SDM-based learning and prediction between other modalities and robotic
domains is established with the unfailing aid of Mateus Mendes from ESTGOH, Portugal and
his LIZARD robot system in Chapter 6. For a more flexible construction and comparison of
diverse robot arm trajectories the telemanipulation system based on interactive user-control
is used in Chapter 7.

15The matrix representation Vt describes the kinematic chain and stores the current constellation of the robot
arm joints.
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Implementation of and Proper Encoding for
Sparse Distributed Memory

The everyday manipulation tasks we take for granted would stump the greatest
robot bodies and brains in existence today.
(Kemp et al., 2007)
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Albus (1993) argues that intelligence requires the abilities to sense the environment, make
decisions, and control action. Higher levels of intelligence require the abilities to recognise
objects and events, store and use knowledge about the world, and to reason about and plan
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for the future. Albus (1981) also argues that intelligent behaviour of animals and robots
in complex environments requires not just one associative memory but a large hierarchy of
them, with the sensors and the actuators at the bottom of the hierarchy.

The SDM model by Kanerva (cf. Chapter 3) provides such an associative memory mech-
anism suitable for the bottom of the hierarchy that can be used for robots to learn actions
related to certain circumstances in a flexible way. The SDM is used to store a world model
that associates sensory input of a mobile robot system to certain actions. The flow of events
in the world is presented to the memory as a sequence of large patterns that encodes sensor
data, internal-state variables, and commands for the actuators. The memory’s ability to
store and to recall such sequences under conditions that resemble the past makes its use for
prediction and planning possible.

The ability to learn new associations, concepts, actions, et cetera without protracted trials
of learning is an important characteristic for grounded (multimodal) memory in robots. In
several cases it is desired getting the best prediction after a single presentation of a sequence
instead of a perfect learning after many trials. One-shot learning is provided by the SDM.
Being roboust against noisy input data constitutes another crucial characteristic for a robot
memory. A summary of design requirements for memory-based cognitive robots is shown in
Section 1.2.

The goal of equipping a robot with a memory is to preserve subjective experiences on how
to solve tasks based on the current sensed circumstance. Compared to embodied connection-
ist approaches, an SDM is used to process raw sensory data. The memory provides a robot
with basic mechanisms for the detection of perceptual familiarity while acting in a dynamic
and real office environment. A clear separation of a learning and testing phase as done by
conventional classification and prediction models makes no sense and thus disqualifies most
of them for an autonomous mental developing system.

A memory optimisation mechanism in human beings to ensure that just relevant experi-
ences are recalled is to forget irrelevant and unpleasant ones. Forgetting is a major subject
in cognitive science. A technical system equipped with memory will also gain from forgetting
to achieve a kind of memory management. A robot that e.g. learns a multitude of paths to
navigate through an environment may not benefit from keeping a memory trace of all less
interesting tracks that only have been used once a long time ago.

This chapter includes the implementation of an SDM for robotic applications, especially
for storing and retrieving mobile manipulation actions of a MHI PA10-6C robot arm (see
Section 4.1.1.2). Sequences of events are stored as subjective experience and are later used
to guide robot arm behaviour based on its memory content. Several simple manipulation
tasks, such as lifting and placing a wastebin from and on the floor, pushing an object aside
on a table-top, and drawing shapes in the air are analysed under different operational modes.
Previous work mainly focuses on SDM-based robot navigation, as studied by Rao and Fuentes
(1998); Mendes et al. (2007, 2008).

The main purpose of this chapter is to illustrate the implementation, to study different
modes for an appropriate encoding of sensory information and to show reconstructive abilities
of task-dependent arm trajectories based on an SDM.
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5.1. Implementation

Since the implementation should act as an autobiographical memory of a robot, an a priori
fixed memory size assignment seems inappropriate for a life-long learning system. Thus the
dynamic reallocation algorithm is used to provide a flexible growing memory while keeping
the possibility of changing the memory structure without retraining (Ratitch and Precup,
2004). Life-long learning means that a process of learning that once started never ends.

Kanerva’s implementation only relies on Hamming distances. Due to some problems of
the non-proportionality of such distance metric when used with natural binary code, some
investigations on further encoding modes are made and outlined in this section. Parts of this
work are also published in Jockel et al. (2008a).

5.1.1. Dynamic Memory Allocation

Although theoretically sound and attractive, the SDM model has some weaknesses that yield
practical problems. One of them is the question of where to place the hard locations in the
address space. Kanerva proposed a fixed and random distribution during memory creation.
Several authors propose better solutions to keep the memory flexible. By using genetic
algorithms, Rogers (1990) determines the most suitable hard locations. Hely et al. (1997)
propose that the hard locations have to be created where a lot of data should be stored.
Hard locations that make up the memory are not known at memory startup. An idea that
is essentially based on the same idea is proposed by Ratitch and Precup (2004), which is
used in this work. The difference between both latter approaches is as follows. While Hely
et al. (1997) starts with a randomised memory and dynamically reorganises hard locations
according to the data to be stored, Ratitch and Precup (2004) start with an empty memory.

The randomised reallocation algorithm (cf. Section 3.5.3) is used for a dynamic online
allocation and adjustment of memory resources for the SDM. This yields a higher flexibility
to the robot’s sensory data and an advance determination of memory size becomes obsolete.
Memory locations are added based on the observed data. New hard locations are allocated
randomly in the neighbourhood of an input address if the data cannot be stored into enough
existing hard locations anymore.

5.1.2. Data Acquisition

Mobile robot arm manipulation is based on a temporal sequence of spatial coordinates and
respective orientation of the manipulation tool given by a programmer. The MHI PA10-6C
portable robot arm by Mitsubishi Heavy Industries mounted on the service robot TASER
is used for this purpose. The arm has six DoF, an operational range of 1317mm and is
controlled by the Robot-Control-C-Library (RCCL) via ArcNet interface. Further details
about the robot arm and the used hardware are mentioned in Section 4.1.1. The spatial
coordinates are the 3D position x, y, z of the tool centre point (TCP) and its orientation
expressed by the roll χ, pitch ψ, and yaw ω angles.

The robot arm motion sequences used in this chapter are generated by specifying a limited
number of TCP positions1 within a basic control program. The inverse kinematics to route

1A TCP position in the context of manipulation actions is hereinafter referred to as a 3D spatial position
x, y, z and orientation χ, ψ, ω.
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the MHI PA10-6C robot arm from one TCP position to another is computed by the un-
derlying Robot-Control-C-Library (cf. Section 4.1.1.2, RCCL), and not by the programmer
himself. During a learning execution, the 6 joint angles2 of the robot arm, the TCP, the tool
orientation and some additional information (see Equation 5.1 & 5.2) are stored to the SDM
with a sampling rate of 6-10Hz. Different parameters like joint angles and TCP position
express the same, but are stored for redundancy3. The additional information consists of a
unique sequence id seq id for each motion trajectory and a unique index i for each vector
within a sequence. The storage and recall is described in some more detail in the following
section. The input pattern x of the SDM system is as follows:

x =< J,P,O,E > (5.1)

J is the joint constellation of the 6 joints of the robot arm with jn, n ∈ {1, 2, . . . , 6}.

P is the 3D position of the tool mounted at the end of the effector (tool centre point, TCP)
depicted with x, y, z.

O is the the tool orientation depicted by χ, ψ, ω describing the roll, pitch, yaw angle.

E is the additional parameter set consisting of a seq id, a unique 4-byte id for each sequence,
and i is unique for each vector.

The length of the input vector depends on the representational form described later in
this chapter. Two of three investigated operational modes represent the above-mentioned
parameters as 8-byte double value, except the seq id and index i which are represented by
4-byte each. Concatenating all those parameters into one long binary input vector leads to
a total vector length of 832 bits. The resulting vector is as follows:

xi =< j1, j2, j3, j4, j5, j6, x, y, z, χ, ψ, ω, seq id, i > (5.2)

5.1.3. Memory Storage and Retrieval

The locations around a certain input address x have to be determined to accomplish informa-
tion distribution for any reading or writing process. Let N ′ be the set of actual memory hard
locations, x the reference address, n the number of bits in the address and r be the selected
radius. Then the set X ′A of selected locations is given by X ′A = {x′|x′ ∈ N ′ ∧ d(x′, x) ≤ r},
where d(x′, x) is the distance between reference address and the hard locations x′ ∈ N ′.

When storing a pattern to the memory, each counter ci for all selected locations is incre-
mented or decremented according to the bit-value xi being 1 or 0 respectively. Consequently,
each write operation modifies the abstraction of the stored pattern. With an SDM the prob-
lem of learning tasks is transformed to storing and retrieving encoded information.

A prediction of an SDM as described by Algorithm 1 is the average of the information
stored within the set of active hard locations. Each bit position of the content vector of all

2Each joint has a software-limited operation range. Please confer Table 4.1 of Section 4.1.1.2.
3The joint constellation and the TCP position are not symmetrically related in a redundant manipulator. A

certain joint constellation always implies a certain TCP position. Whereas a certain TCP position might
be described by several, varying joint constellations.
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Algorithm 1 The prediction of an SDM
Require: Active hard locations X ′A ← hard locations x′ within the activation radius r

1: result← ()
2: for i = 0 to length of content vector do
3: for j = 0 to |X ′A| do
4: result[i]+=X ′A[j][i]/|X ′A|
5: end for
6: end for
7: return result

active locations is summed up and divided by the total number of active locations. Thus, a
prediction is an average of sub-predictions.

5.1.4. Architecture

The main relations and functionalities of the implemented SDM are illustrated in Figure
5.1. The autonomous service robot TASER provides a distributed software architecture (cf.
Section 4.2.1) that facilitates a simple integration of new software modules. For performance
reasons, the SDM is running on a workstation and is integrated into the robot’s framework via
Roblet R©-Technology. Thus, the workload of the robot’s control PC is reduced substantially.

The system offers two ways to accomplish initial training of the memory. First, the robot’s
manipulator is controlled by a program and logs all the parameters of the manipulation
sequence. The SDM is trained on a workstation by interpreting the log files gathered from
the robot. Secondly, the SDM can also be fed with the relevant data directly while being
remotely connected.

After a training phase, when testing the memory, the robot is triggered with an initial arm
configuration. The sensor data of the manipulator is captured by the robot’s control PC and
is transmitted to the workstation that hosts the SDM. The SDM makes its prediction of the
next state and sends the predicted arm configuration to the robot controller. Hereinafter,
the predicted state is used to predict the next subsequent state.

5.1.5. Complexity

The complexity of our system is as follows: Let N ′ be the set of all hard locations that
represent the address space N . For any write or read operation it has to be determined which
memory locations lie within an activation radius r around an arbitrary input address pattern
x. Thus, each hard location has to be considered for the Hamming distance d(x′i, x) ≤ r, x′i ∈
{1, . . . , |N ′|}. This yields a linear complexity O(|N ′|). The computational time increases
linearly with the number of memory locations. Due to a constant vector dimension n, the
computation of the Hamming distance itself remains constant.

5.2. Experiments

Initial experiments are carried out to prove an SDM’s (cf. Chapter 3) ability to predict
manipulation sequences of a robot arm, the MHI PA10-6C in particular.
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sdm.SDM.core

Predict ion

-results: ArrayList<Result>

-trigger: SDMVector

SDMVector

-content: double[]

-bitSet: BitSet[]

-index: ArrayList<Integer>

-seq_id: ArrayList<Integer>
+arithmeticUpdate(vector:SDMVector,learningRate:double,
                  round:boolean): void

+binaryUpdate(vector:SDMVector,mode:SDMMode): void

+arithmeticSimilarity(vector:SDMVector,start:int,
                      stop:int,sampleRate:int): double

+hammingDistance(vector:SDMVector,start:int,
                 stop:int,sampleRate:int,
                 mode:SDMMode): int

Hardlocat ion

-address: SDMVector

-data: SDMVector

M e m o r y

-hardlocations: ArrayList<Hardlocation>
+learn(address:SDMVector,data:SDMVector)

+predict(trigger:SDMVector,start:int,stop:int)

Neighbourhood

-hardlocations: ArrayList<HLocation>

S D M

-mode: SDMMode

-memory: Memory
+predict(trigger:SDMVector,start:int,stop:int): Result

+learn(address:SDMVector,data:SDMVector): void

Result

-activeHLs: Neighbourhood

-predictionData: SDMVector

<<enum>>

S D M M o d e

+ARITHMETIC

+NATURAL_BINARY

+SUM_CODE

Figure 5.1.: A UML diagram of the SDM architecture that illustrates the main relations and
functionalities.
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Within the initial tests the memory is used to learn an action sequence carried out with
the robot arm. Three kinds of action sequences are investigated primarily for this series of
tests. The studied sequences differ in their length and range from 125 up to 277 discrete
arm configurations. The high-level transcriptions of the manipulation action sequences are:

• Place the robot hand closely above a table in front of the robot, and push a certain
object aside by a lateral cartesian motion on a transversal plane.

• Lift and place a wastebin from and on the floor.

• Draw a U-like shape in the air with the robot’s hand.

After learning, during an autonomous run the arm is placed at an arbitrary initial position
within the sequence. The sensor readings at that position are transferred into the vector x
(cf. Equation 5.2) and are presented to the memory as the reference address. Note, that the
memory can be triggered with partial cues and thus can compare parts of an input vector
separately, e.g. the joint constellation. The remaining values of the vector are neglected. The
memory predicts the best match for the next associated position by its experience according
to Algorithm 1. The control program, then, guides the robot arm to the respective predicted
position. If the new position is reached, again the sensor readings of that position are
presented to the memory such that it predicts the next position over and over again. Since
the data was captured at a rate of 6-10Hz during learning, each predicted movement is quite
small. Figures 5.3, 5.2 and 5.4 show a) freeze images of the robot during the execution of
several tasks and the corresponding b) x, y, z tool trajectory in a 3D plot with separate 2D
plots for c) the joint constellation and d) the TCP spatial position and orientation over time.

5.2.1. Comparing Different Encoding

Kanerva used plain binary code. In such code the represented value depends on the positions
of each bit, e.g. the binary pattern p1 = 0100 represents the value 4 while the pattern p2 =
1000 represents the value 8. The Hamming distance of d(p1, p2) = 2, while the represented
value doubles. If compared to a third pattern p3 = 0001 the Hamming distance d(p1, p3) = 2,
while p3 represents just a fourth of the value of p1. Thus, if the Hamming distance of
two patterns is of equal length, the number of bits in which both patterns differ is not
proportional to the represented values. The Hamming distance sometimes even decreases
when the arithmetic distance increases, e.g. the binary patterns p4 = 0100 and p5 = 0011.

Mendes et al. (2009) propose some initial ideas to improve the encoding problem of binary
memory features. They studied the resorting of bits representing a gray value within an
interval [0, 255]. They mainly tested tens of thousand randomly chosen permutations of the
higher-order bits [244, 255] to reduce undesirable transitions. In the following paragraphs
alternative encoding modes for the SDM are proposed to deal with robotic domains.

5.2.1.1. Natural Binary Mode

The bitwise implementation by Kanerva works with counters, which is one of the model’s
weaknesses. That is also the reason why his implementation requires a lot of unnecessary
processing time. A counter decreases the storage capacity per bit of a traditional computer
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(a) Pushing an object aside.
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(b) Trajectory of the x, y, z spatial tool position.
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(d) Cartesian TCP coordinates and tool orientation.

Figure 5.2.: Images of the test sequence of TASER pushing an object aside by a lateral
cartesian motion on a transversal plane.
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(a) Lifting a bucket from the
floor.
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(b) Trajectory of the x, y, z spatial tool position.
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(c) Joint values.
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(d) Cartesian TCP coordinates and tool orientation.

Figure 5.3.: Images of the test sequence of TASER lifting and placing of a wastebin from
and on the floor.
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(a) Drawing an U-like shape in
the air.
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(b) Trajectory of the x, y, z spatial tool position.
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(d) Cartesian TCP coordinates and tool orientation.

Figure 5.4.: Images of the test sequence of TASER drawing an U-like shape in the air.
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to 0.1 bits (Kanerva, 1988). To reduce the memory size4 and to increase the processing
power the bit counters of Kanerva’s model are replaced by a single bit to store one bit of
information according to the proposal by Furber et al. (2007). The contents of the memory
is simply overwritten based on an OR function if a new data word is stored into the same
memory location. The structure remains the same as in Kanerva’s model. The first layer
depicts the address decoder which decodes the input addresses into high-dimensional space.
The second layer is the memory where associations are learnt and stored. Furber et al. (2004)
proved that the memory performance is not significantly affected in doing so. Accordingly,
the SDM’s content matrix C (cf. Figure 3.4 and 3.5) comprises 1s and 0s instead of the
counters. Writing any information to the memory is done by replacing an old datum by the
new one. Now that the values of C are within [0, 1], 0.5 will suit as threshold value. This
kind of implementation depicts the bitwise operation mode (Mendes et al., 2008; Jockel et al.,
2009).

5.2.1.2. Arithmetic Mode

A modified form of SDM proposed by Ratitch and Precup (2004) (cf. Section 3.5.3) is used
to implement an arithmetic operation mode. Values are represented in Rn for a higher
flexibility concerning the precision of stored information, e.g. joint values. The pattern is
grouped into several chunks of 64 bit double precision patterns. Learning is achieved by using
reinforcement learning and addressing is achieved by using an Euclidean distance instead of
the non-proportional Hamming distance. The vector values are updated by applying the
following equation:

∆x′k = α(xk − x′k), with α ∈ R ∧ 0 ≤ α ≤ 1, (5.3)

where x′k denotes the kth 64 bits of the hard location, xk is the corresponding value in the
respective block of the input vector x and the learning rate is denoted with α. The learning
rate specifies how much current information influences the already stored information within
a hard location.

5.2.1.3. Sum Code Mode

Due to the above-mentioned problems with the non-proportional Hamming distance, the sum
code is tested. A number u within an interval [a, b] = {u ∈ Z|a ≤ u ≤ b} is defined by the
number of 1-bits according to Equation 5.4. This representation is known as sum code (Jockel
et al., 2008a, 2009), a derivate of the 1-of-N code5, or thermometer code. The boundaries of
the intervals are defined by the maximum and minimum values for the particular operating
range of each parameter (joints, x, y, z and χ, ψ, ω) of the pattern vector.

sc(u) = u− a (5.4)

Table 5.1 shows the difference between the non-proportional binary and proportional sum
code representation. Strictly speaking, the sum code representation is another form of the

4Although the memory capacity of current available hard disks allow to store huge amounts of data, a
reduction of memory size was required in this project. The TASER robot is equipped with a single
standard PC and it has to share its lean memory with several other applications that require a lot of
memory space, e.g. to store image data from various cameras.

51-of-N codes are a special case of constant weight codes that encode log 2N bits in a code-word of N bits.
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Table 5.1.: An example of different representational types.

Decimal code Binary code Sum code

0 0000 00000000
1 0001 00000001
2 0010 00000011
3 0011 00000111
4 0100 00001111
5 0101 00011111
6 0110 00111111
7 0111 01111111
8 1000 11111111

arithmetic representation, the Hamming distance in such code corresponds to the Euclidean
distance. Thus, the sum code mode is a supersized version of the arithmetic mode such
that the representation is blown up. However, the mode is chosen to test the advantageous
SDM characteristic for high-dimensional binary vectors. With the sum code representation
we stay in the binary address space, flipping of bits is still possible while the problematic
distance measure is amended.

Coding theory provides many other interesting codes that have not been considered in
the scope of this work. Gray code, for instance, also offers better distance properties than
natural binary code. The above mentioned sum code provides features similar to Gray code:
Successive values differ in only one bit.

5.2.2. Dealing with Memory Damage

Humans have a the remarkable capability that stored information within their memory is
retained even when individual neurons die, e.g. caused by heavy intoxication. Beside other
reasons, this may be caused by an information distribution within the underlying neural
network. Tests have been made to show that an SDM is suitable to retain information even
when individual locations are erased.

The distributive nature of SDM has the side effect that many locations participate in
information storage and retrieval. The output of the system represents an average of the
information of the participating memory locations. The remaining prediction accuracy when
memory locations are erased is studied to highlight the differences between an SDM and a
generalised RAM according to Section 3.3.1. To simulate memory loss a certain percentage
of hard locations are randomly erased after a training stage. Note that the same trained
memory is used for each test. The learnt trajectory corresponds to the trajectory shown
in Figure 5.4. After training, the memory is applied to predict residual arm trajectories by
triggering it with the first sequence element. The elapsed time until the first prediction error
occurs is given as a percentage of the original trajectory. A prediction error is defined as a
non-intended prognostication, e.g. a prediction of a previous or identical state with respect
to the state the robot currently resides in. Table 5.2 and Figure 5.5 show the mean of ten
runs for predicting a trajectory with gradual memory injury. Figure 5.5 shows very plainly
that the SDM is able to cope superiorly with memory damage than a generalised RAM.
While it shows the elapsed time until the first occurrence of a prediction error, it does not
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Table 5.2.: Gradual decrease of associative capability after suffering a loss of memory
locations. This table indicates when the first errors occurred during sequence
reproduction.

Randomly erased Elapsed time till first prediction error

hard locations SDM r = 0 SDM r = 2 RAM

0% 100.00% 100.00% 100.00%
1% 79.11% 94.07% 53.89%
2% 39.69% 68.70% 25.68%
3% 30.12% 52.84% 22.84%
4% 21.91% 57.59% 17.47%
5% 27.72% 57.47% 7.41%
6% 20.25% 47.47% 8.52%
7% 16.05% 38.52% 4.63%
8% 40.62% 28.64% 5.25%
9% 15.43% 40.37% 7.72%

10% 36.85% 37.04% 5.25%
15% 46.48% 20.25% 3.09%
20% 12.72% 18.95% 0.80%
25% 70.49% 8.77% 1.23%
30% 42.10% 33.70% 1.11%
40% 30.86% 12.72% 0.37%
50% 50.99% 30.74% 0.62%
60% 11.98% 21.36% 0.37%
70% 31.42% 21.17% 0.25%
80% 21.48% 30.68% 0.12%
90% 3.77% 21.79% 0.12%
99% 38.52% 53.21% 0.00%

give any information about final success to reach the goal of the trajectory. It merely shows
at which stage the first error occurred, while the sequence may be continued till the end
from a sequence element xt−k, k ≤ 0 predicted at time point t. Also, one and the same
sequence element may be predicted twice (or more frequently) but the memory may escape
the stagnation. The system does not necessarily get to be stuck when a prediction error
occurs as later sections will show. Accordingly, a correct prediction will predict a sequence
element xt−k, with k > 0.

Contrary to a generalised random-access memory (RAM), an SDM with activation radius
r = 0 uses the closest location when confronted with an input address that is physically not
existent within the memory. This constitutes one main advantage of an SDM, it behaves
like an attractor network. Partly, the prediction accuracy can be improved when data is
distributed into more than a single memory hard location. In case of r = 0, the SDM used
as much hard locations as world states to be represented, 162. In case of r = 2, around
250 hard locations have been used by the memory. It can be undoubtedly seen that an
SDM outperforms a generalised RAM. Nevertheless, increasing the activation radius and
thus the number of locations that participate in information storage, prediction errors may
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Figure 5.5.: Decrease of associativity after suffering a loss of memory locations according to
Table 5.2. Line shows an SDM with activation radius r = 0 that choose the
closest hard location if an input address does not physically exist. Line results
from an SDM that uses distribution (r = 2). Line corresponds to the behaviour
produced by a conventional random-access memory (RAM).

occur without any memory injury. This is due to the averaging nature of the SDM when a
memory location participates in storing more than one content item.

Equipping a robot with a memory that retains its predictive capability when it is injured
would be a great advancement to bear intelligent agents with a long-term memory. Further,
the memory is able to produce an output concerning an arbitrary input cue that is not
precisely known with respect to the particular feature configuration. Further studies are
necessary to analyse the SDM behaviour regarding failures in a more technical context, e.g.
a malfunction of entire memory blocks or banks. However, the results show that an SDM
can be used as a memory that is able to compensate memory damage up to a reasonable
degree. Additional results on the robustness of the memory against noise is presented in the
context of learning multiple heterogeneous tasks. Thus, the reader is also referred to the
latter Section 7.5.7.

5.2.3. Overcoming Problems with Cross-Sequences

Perceptual aliasing refers to the situation where two or more identical perceptual inputs
require different responses from an autonomous system. The effects of aliasing can be reduced
to some extent by incorporating additional sensory information that suffices to distinguish
between any two given situations (Whitehead and Ballard, 1991).

Initial experiments revealed predictability problems of consecutive states within learnt
cross-sequences. Accomplished tests comprise sequences where circular or recurring move-
ments are involved, e.g. to beckon to a person, sequences with a start position similar to a
sequence end position, drawing an “8” et cetera. Other experiments just contained a short
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Figure 5.6.: Schematic diagram of a k-folded memory with three folds. Adapted from Kan-
erva (1988).

sequence of nearly identical arm configurations for a small part of two trajectories.
Kanerva (1988) proposes to use a k-folded memory such that an input consists of the last

k sensory inputs to provide the necessary context for disambiguation of potentially similar
perceptions. The implemented SDM model for the robot domain was extended to use such
k-folded memories. Figure 5.6 explains the folding concept.

Instead of using a single SDM, a composite of several SDMs will be utilised in accordance
with the desired number of folds. Each SDM gets the same address matrix, which means
that all SDMs describe the same set N ′ ∈ N of hard locations. The SDMs differ in their
content matrix. While a single-folded SDM stores a pointer to the next sequence element,
a twice-folded SDM stores a pointer to the second element of a sequence and a triple-folded
memory to the third element of a sequence and so forth. The prediction of an address, e.g.
xt results from k simple predictions xt−1, xt−2, xt−3 (in case of a three-folded memory).

An example shall clarify this issue. Assume that a sequence A → B → C is usually
followed by D and a sequence E → B → C by F . Both sequences are equally probable. To
predict the consequences of C it is necessary to know what happens two steps before C. A
third-order prediction is required to reliably choose between D and F .

An experiment in the scope of this work where standard first-order memory fails is a beck-
oning sequence where the robot arm is shaken to the left and the right several times. Each
sampled arm configuration occurring while moving the arm to the left is strikingly similar to
those occurring while moving it back to the right. While testing this sequence with a first-
order memory, the robot arm occasionally changes its moving direction in between. Three
and five folded memories proved to be sufficient to overcome such simple prediction errors
and to let the arm autonomously move to the leftmost and rightmost position consecutively.

A crucial issue: the folding concept only leads to reliable predictions as long as the number
of folds exceeds the number of identical states of various sequences. Whereas the three- and
five-folded memory is applicable to solve short sequence overlays it is not suitable for a
reliable prediction on when to exit the shaking motion, as in our experiment after three
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(a) Beckoning.
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Figure 5.7.: TASER beckons by waving the hand and the bent forearm several times from
the right to the left and back again. The trajectory contains lots of similar arm
configurations over a longer period of time what makes reliably prediction difficult.

iterations. In the beckoning experiment approximately 145 states overlap or are strikingly
similar from the entrance point until the exit point of the recurring shaking motion. At
least a 146-folded SDM must be used to predict the whole sequence trustworthily. Higher-
level concepts are required to solve such problems due to the fact that an increase in the
number of folds yields a growth in the required memory space. Some ideas to include higher-
level concepts will be mentioned in Section 7.4 and 9.2.1. Nevertheless, SDM provides useful
characteristics making it suitable for the prediction and familiarity detection of manipulation
action sequences based on experience as subsequent chapters will show.

Although the TCP spatial position in the graphs of Figure 5.7(b) show several intersections
the system achieves mostly correct predictions. The remaining parameters of the vector, so
to speak the arm configuration, differ enough even for similar spatial positions of the robot’s
tool. Nevertheless, three- to five-folded memories constitute an improvement of the predictive
value of basic action sequences, whereas the above-mentioned problems still occur.

5.3. Results

Various test are made to gauge the performance of an SDM while focusing on different
encoding modes. The information stored to the memory is distributed among active hard
locations with regard to the activation radius. Experiments with three different representa-
tional modes have been implemented. The averaged results of 30 runs of sequence predictions
with respect to three different tasks are summarised in Table 5.3. The columns of the table
describe:

Task: Three different tasks are learnt by the memory: A) placing the robot hand closely
above a table in front of the robot, and pushing a certain object aside by a lateral



5.3 Results 81

Cartesian motion on a transversal plane, B) lifting and placing a wastebin from and
on the floor, and C) drawing a U-like shape in the air.

Operation mode: Three different modes are studied:

Arithmetic mode: Values are represented in Rn. The Euclidian distance is used to
define a metric in order to calculate distances between hard locations. A more
detailed description of this mode can be found in Section 5.2.1.2. The dimension
n of a memory vector is 832 bits.

Bitwise mode: The data is represented in a natural binary manner as described in
Section 5.2.1.1. The Hamming distance is utilised as a distance metric for this
mode. The dimension n of a memory vector again is 832 bits.

Sum code mode: A binary representation of the arithmetic mode as described in
section 5.2.1.3. Compared to the arithmetic mode, the vector length is massively
enlarged to 22320 bits while retaining the nice characteristic of boolean space
as the possibility of shifting bits which disappears when using normal arithmetic
mode.

Number of hard locations: The number |N ′| of hard locations that have been created and
used by the memory with respect to the particular operation mode and access radius.

Distance to closest hard location: Describes the distance to the closest hard location x′i ∈
N ′ to a given n-bit input address x.

Distance to second closest hard location: Describes the distance to the second closest hard
location x′i ∈ N ′ to a given n-bit input address x.

Average distance to all hard locations: The average distance is defined as follows:

d∅(x) =
1
|N ′|

|N ′|∑
j=0

d(x, x′j) (5.5)

The larger the difference between the distances of the first and second closest location to
the average distance of all locations, the lower the confusion caused by other trajectories
stored in memory.

Increment: These percentages result from the above-mentioned distances between the closest
and the second closest hard location and from the closest hard location to the average
distance of all hard locations respectively.

Errors: A prediction error is defined as an unintended prognostication, e.g. a prediction of
a previous or identical state with respect to the state the robot currently resides in.

Processing Time: Average number of milliseconds needed to predict the next state within a
sequence over all runs. This time measure just takes into account the time needed for
the prediction. Learning phase, previous polling of sensor data as base for triggering
the memory, the transfer of sensor data from and control command to the robot as
well as the command execution are not considered within this measure. The transfer
rate of the wireless network varies whenever several users access the robot and when
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(a) Dist. to closest HL (b) Dist. to 2nd closest HL (c) Average dist. to all HLs

(d) Prediction errors (e) Processing time (ms)

Figure 5.8.: The distances to the closest and 2nd-closest hard locations of the three tasks
according to the operation mode after 30 predictions of a learnt sequence, see Fig.
5.8(a), 5.8(b). The average distance to all remaining hard locations and the sequence
errors, Fig. 5.8(c), 5.8(d). Fig. 5.8(e) shows the average precessing time to predict
the next state of a sequence. The performed action tasks have been A) placing the
robot hand closely above a table in front of the robot, and pushing a certain object
aside by a lateral Cartesian motion on a transversal plane, B) lifting and placing a
wastebin from and on the floor. All tasks have been tested with an activation radius
of 10 and 30.

the robot communicates or swaps programs with workstations due to its distributed
software architecture. To eliminate such varying delays we focus on the time needed
for prediction.

Due to the random characteristics of the SDM model during memory storage, results
cannot be absolutely exactly reproduced. Thus, analysis of SDM behaviour is a non-trivial
task. That is why most of the experiments show averaged values of several runs. Nevertheless,
valuable information and tendencies can be extracted from the series of tests.

5.3.1. Activation Radius

One of the goals is to find an appropriate activation radius to obtain the highest reconstruc-
tion accuracy of a motion trajectory, while retaining the advantages of distributed informa-
tion storage. Empirical tests showed that the activation radius significantly influences the
degree of generalisation. It turned out to be a crucial parameter concerning the reliability
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of any SDM prediction. Different activation radii have been studied, two of them are shown
in Tab. 5.3. The smaller the activation radius, the less error-prone are the predictions of
successive arm positions by the SDM. On the other hand, if choosing smaller activation
radii, the overlapping regions in an SDM become smaller and the generalisation capability
decreases.

The predictions in the arithmetic and the natural binary mode tend to get flawed when
the activation radius exceeds 25, while the sum code mode turns out to be very robust up
to a value of 11000. The latter is explained by the huge and redundant representation of the
features in sum code mode.

5.3.2. Confusion of Patterns

How good the concepts, here the arm configurations, are in contrast to the rest of the memory
can be expressed by the distance from the closest hard location to the mean distance to all
remaining locations of the memory. The average distance of the current arm configuration
to all remaining configurations within the SDM is conspicuously larger in the sum code
and arithmetic mode than in the binary mode. This means that the binary mode is more
susceptible to confusing prediction results of associated actions.

5.3.3. Prediction Errors

If prediction errors occur, the trajectory gets flawed—the action sequence may converge to
a standstill or the robot may execute retrograde actions. Nevertheless, prediction errors not
necessarily cause action sequences to essentially fail. Further predictions may unstuck the
robot and the robot may proceed its execution of a learnt path successfully until its end.

The binary mode causes the most prediction errors as seen in Figure 5.8(d) and Table
5.3. The bit position has a vast impact on the represented value and flipping particular
bits6 causes major changes and inconsistencies in memory content. While accumulating
information from several hard locations upon predicting this may lead to wrong results for
the next associated address. This kind of problem is not observed in the sum code mode.
The arithmetic mode shows worse predictive behaviour according to an increasing activation
radius too, but still performs several degrees better than the binary mode.

An interesting fact is that both binary and arithmetic mode show the largest amount of
prediction errors for task A; pushing an object on a table top. This result may be caused
by the reduced operational speed during the pushing phase. Learning of arm configurations
in that particular period results in many similar but unequal locations in a certain region of
the memory. Information retrieval in such piled memory regions leads to prediction errors
more quickly, as already explained in Section 5.2.3.

5.3.4. Prediction Time

Prediction time is mainly determined by search effort and metrical calculation. In the current
implementation there is no search-space optimisation. For every prediction the algorithm
has to check every hard location for whether it is in the neighbourhood of the current sensory
input in order to consider it for output calculation.

6As happens in a random manner during learning and data distribution into memory.
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Due to their compact representational form, both arithmetic mode and bitwise mode
have fast prediction times. Moreover, the current implementation uses optimised built-in
operators for distance calculation (e.g. addition, potentiation and XOR, respectively) of the
used programming language. Whereas in sum code mode, the address vector of a hard
location is represented by 22320 bits, which is 26 times more than in the other modes. But,
concerning runtime, all the scenarios produce results in an admissible time.

5.3.5. Memory Size

An important parameter not listed in Tab. 5.3 is the memory size, which is the maximum
number of hard locations N ′ the memory possesses. A fixed value of 10000 was set prior
to the test, so that the learnt trajectories could entirely be represented by hard locations in
the memory. Reducing the maximum number of hard locations results in a poor associative
ability and yields a higher forgetting rate because the memory gets saturated faster. If it
reaches its maximum capacity, memory items will get lost by forgetting but with a graceful
degration. The maximum capacity has been extensively examined by Chou (1989).

5.3.6. Time

The date and time of events are neglected in an SDM. The reason is simple: The memory
allows that closely related situations could be stored into memory locations that already host
some information. The underlying mechanisms of memory storage and retrieval perform an
averaging of new and already learnt information. As a result, different dates of closely
related trajectories will influence each other and deny a reliable retrieval of any temporal
information.

5.4. Discussion

Kanerva’s model proposes to determine the similarity of memory items by using the Hamming
distance. Due to the correlation of the bit position to the represented value the natural binary
code showed problematic system behaviour when used with non-random data. Three varying
approaches that differ in their information coding scheme and also in their distance metrics
were discussed to assess the SDM performance. The bitwise implementation with Hamming
metric does not performs very well. The separability of memory items was insufficient and the
memory’s sensitivity to random bit flips in the distribution phase during the memory storage
process results in the highest prediction error rate of all tested modes. Note that the SDM
performance was mentioned to work best when used with random data. As mentioned before,
a robot’s environment is hardly random. Grouping of the bits as double sets and making use
of an Euclidean distance metric significantly improved the performance of the memory but
with the side effect of losing some characteristics of the original model. When swelling the
memory with large groups of thermometer style sum code mode the characteristics of binary
space still hold, while the performance is similar as or slightly better than in arithmetic
mode.

Nevertheless, the analogy to the brain’s behaviour to retrieve similar solutions to previous
problems from memory rather than to compute new ones inspired the current investigations
on a biologically plausible memory model for mobile robot arm manipulation. Though never
be intended as a biologically fully plausible model of short-term (working) or long-term
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memory (Hely, 2006), the SDM was considered alongside the eminent cerebellar models by
Marr (1969) and Albus (1971) (c.f. Sections 2.3.4.1 and 2.3.4.2).

A content-addressable, associative memory in the form of an SDM is capable of storing
and retrieving robot arm trajectories for manipulation tasks. The prediction of a residual
arm trajectory based on simple excitation of memorised information has been proven. If the
arm is placed somewhere close to a learnt trajectory, the robot is able to perform the motion
autonomously.

The distribution of data into several memory locations makes such a system robust against
memory loss. If physical memory locations are erased or lost by accident, the memory retains
its ability to predict motion sequences successfully up to a high amount of damage.

A central issue of memories that should remember action sequences are higher-order state
transitions. So called cross-sequences and higher-ordered state transitions, to a limited
degree, can be tackled by folding the memory and thus incorporating second-order, third-
order transitions et cetera in the memory. Unfortunately, this linearly raises the required
storage capacity and is just eligible as long as the number of folds exceeds the number of
concurrent states.

One of the major difficulties while working with systems based on binary space is the
appropriate encoding of the information representing the world. Which features are the most
important features to represent the world? Many approaches provide an exploratory data
analysis to reduce myriads of stochastic input variables to comparatively few salient features
for meaningful system outputs, e.g. exploratory data analysis approaches such as principle
component analysis (PCA). When, however, their classification parameters are fixed after
an extensive exploratory training phase, such systems lose their flexibility to progressive
learning. They become sensitive to the salient features only. If, however, additional input-
output relations should be learned continuously the system has to be retrained to derive a
conclusion again. The SDM, however, bears the possibility for online learning and adaption
of the memorised model of the world.

The SDM provides characteristics that makes it attractive for an application in cognitive
robotics research. The developed system provides a computational model to test the hypoth-
esis whether memory retrieval in humans is a convergent or non-convergent process. The
memory model can be used as a pattern recognition system that is immune to noise up to
a high degree and also robust to failure of individual memory locations. Memory structure
can be changed without explicit retraining and it supports one-shot learning, which is a
promising and worthwhile characteristic in modern robotics. It will come into sharper relief
in later chapters. If the memory reaches its maximum capacity or if memory locations are
damaged it degrades gracefully. Through the natural type of forgetting, motion sequences
that have not been recently used have a higher probability of being forgotten first. The SDM
provides a nice model to detect conceptual familiarity based on raw sensory data. Never-
theless, problems of the SDM model are that once learnt data cannot be selectively erased,
e.g. sequences that do not achieve a certain goal. Thus, undesired or unnecessary memory
contents may interfere more recent and important data. A disadvantage of the SDM model,
when used with counters, is its information capacity of just 0.1 bits per bit (Kanerva, 1988).
This disadvantage has been overcome by replacing the counters according to the approach
proposed by Furber et al. (2007). The non-modifiable a priori given random address space
has been eliminated by using a randomised reallocation algorithm for dynamic memory al-
location. The real-time allocation saves a lot of computational time for memory setup. For
tests that do not need all memory hard locations it is also much faster.
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Sparse Distributed Memory Compared
across Different Modalities

We need creativity in order to break free from the temporary structures that
have been set up by a particular sequence of experience.
(Edward de Bono, physician, author and inventor, born 1933)
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While the work of this book focuses on studying SDM-based manipulation, a more com-
prehensive study on SDM-based robot navigation is made in a yet unpublished PhD thesis
by Mateus Mendes (personal communication, Jan 3, 2009). The comparison outlined in this
chapter describes a short-term joint cooperation, resulting from two separate projects, that
finally engender a conference article (Jockel et al., 2009).

The power of using SDM for robotic manipulation applications has already been shown in
Section 5. The question arose if this power persists if transferred to other robotic domains,
particularly to other modalities. Hence, tests were performed on two different platforms,
designed for different purposes: one for navigation (LIZARD), the other for manipulation
(TASER). Both platforms together are shown in Figure 6.1. A comprehensive introduction
to both technical robot systems can be found in the particular sections of Chapter 4. In both
cases, the SDM is used to store sequences of events which are later to be repeated. The main
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purpose of this study is to show that the same SDM model can be applied to totally different
subfields of robotics that moreover use different modalities to sense the environment1.

6.1. Some Remarks on Robot Navigation

Localisation and recognition of the environment is a fundamental topic in mobile robotics.
According to Matsumoto et al. (2000) different techniques for image-based navigation can
be categorised as:

Model-based: These approaches utilise distinct objects such as edges, corners or (artificial)
landmarks in visual images to match them against learnt 3D models of objects.

View-based: These approaches consider the appearances of the environment, mostly in a
sequential order, rather than particular landmarks.

A major problem in model-based robot navigation is to structure the information to allow
for an efficient indexing of the objects especially when the model is rich in details. The latter
approaches can be used in unstructured environments, making any installation of artificial
landmarks becomes superfluous. Rather than working on 3D object shapes, they employ
the 2D image information of a view sequence that is memorised somehow. The information
of an environment in the memory is defined by the corresponding sensor patterns directly.
Nevertheless, requiring a huge memory and high computational costs for matching are some
of the disadvantages of view-based approaches. A general question concerning the latter
approach is: how to memorise views of the environment and how to realise the matching
between a currently sensed and memorised images?

Matsumoto et al. (2000); Ido et al. (2009) propose an approach that is based on a view se-
quence of static images of the environment and a corresponding control commands look-up ta-
ble. During a supervised learning stage, a view sequence and corresponding motor commands
are learnt while guided by a human instructor. Images are memorised as high-dimensional
vectors (x1, x2, . . . , xn) with n being the number of pixels. During an autonomous run, the
matching properties between current views and memorised ones constitute the localisation
of the robot. A simple block matching algorithm is used to compute the distance between
the current and all memorised views. Therefore, a central rectangle area of the memorised
view is considered as template and the current view is considered as the search area. The
memorised image with the smallest horizontal displacement of the template rectangle to the
current view defines the hypothesised position of the robot according to the image’s sequence
position. Thereafter, the related motor commands are retrieved to guide the robot through
the learnt path autonomously. The displacement of a current view and its correlating view
in the memory can be used to realign the robot when the displacement exceeds a certain
threshold.

The SDM theory provides a memory structure that seems to be made for such appear-
ence-based navigation techniques. It can memorise static views of the environment together
with the corresponding motor commands as bit patterns. Matching current sensations to

1This chapter outlines the result of a collaborative study between the CINACS Int’l. Research Training
Group, Dept. of Informatics, University of Hamburg, Germany and the ISR - Institute of Systems and
Robotics, Dept. of Electrical and Computer Engineering, University of Coimbra, Portugal and is mainly
based on the work presented in Jockel et al. (2009).
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Figure 6.1.: Platforms used in the experiments: TASER’s robotic arm is grasping the small
tank-style robot LIZARD.
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Figure 6.2.: LIZARD in its experimental environment. Figure adapted from Mendes et al.
(2008). The blue line depicts the path taught during a supervised learning stage. The
other lines result from autonomous runs of the robot guided by its memory.

experienced ones is realised while performing a normal storage and retrieval procedure via
its built in distance metric. An implementation of such an SDM-based navigation algorithm
is proposed by Mendes et al. (2008) and will be briefly described in the following section.

6.2. SDM-based Navigation Using a View Sequence

The LIZARD robot, a Surveyor SRV-1, is a tank-style mobile robot system. The robot is
equipped with an SDM to study its navigational capabilities based on viewing sequences
(Mendes et al., 2008). For comprehensive technical details of the hardware and software
the reader is referred to Section 4.1.2 and Section 4.2.2. Even if not bound to it, LIZARD
is operated in a testbed surrounded by a panoramic image shot on a famous mountain in
Portugal (see Figure 6.2). It is equipped with a small CCD camera and the navigation is
based on a sequence of images inspired by the above-mentioned approach of Matsumoto
et al. (2000).

During a supervised learning stage an instructor remotely guides the robot through its
environment. Images and additional information such as the motion that leads the robot to
the next image position are stored in the SDM. It is obvious that two images of the same real
world scene are hardly ever identical when dealing with digital image sensors. Ubiquitous
changes in the lighting conditions as well as the sensor noise are hard to avoid. Thus, some
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preprocessing has to be applied to the images before storing them into the memory. The
images are preprocessed by applying a conversion from JPEG to 8-bit PGM followed by a
brightness equalisation (Mendes et al., 2007). An illustration of alternative preprocessing
steps and their respective effects when used for SDM is detailed in Mendes (2009). The
gray-value images that will be stored in the memory have a resolution of 80px× 64px with
each pixel taking a value between [0, 255]. Thus the input and output patterns of the SDM
consist of arrays of bytes where each image pixel is represented as an 8-bit integer. The
composition of an SDM input vector is as summarised in Equation 6.1:

xi =< imi, seq id, i, timestamp,motion >, (6.1)

where imi is the last image2, seq id is an auto-incremented unique 4-byte integer for each
sequence. The seq id is used to identify the sequence to which the vector belongs. i is also
an auto-incremented unique 4-byte integer index for every vector in the sequence. It is used
to quickly identify the order of the images within a sequence. The timestamp is a 4-byte
integer to represent Unix timestamps. The timestamp is read from the operating system,
but is not used for navigation purposes yet. motion is a single character that represents the
movement the robot was performing when the associated image was grabbed. According
to the above-mentioned parameters they yield a vector size of 41064 bits consisting of 5120
bytes for the image of resolution 80px×64px and 13 bytes for the overhead information such
as motion, timestamp, sequence and vector id.

Before storing any information, the noise level is computed to dynamically adjust the
SDM’s access radius by comparing three images recorded at one and the same location3

(Mendes et al., 2007). In doing so, the noise level is defined by the mean distance between
the three resulting SDM input vectors that represent the images as bit patterns.

The SDM is used to store the input vectors as shown in Equation 6.1. However, addressing
the memory in an autonomous run is done by using just one image. During the autonomous
run, the robot grabs an image and identifies its position within the view sequence by recognis-
ing the closest image of the learnt sequence (imi). Afterwards, it performs the corresponding
motion to proceed to the next decision point. In an SDM, the closest image is defined by
the vector that provides the smallest distance with respect to the used distance metric. By
reaching the next decision point, the robot grabs a new image and so on. At each decision
point, if the robot detects a horizontal shift between the grabbed image and the stored one,
it tries to align itself iteratively by slightly turning to the left or to the right.

As mentioned above, addressing is done by using only imi−1 and not the whole vector. The
remaining bits could be set at random, as Kanerva suggests, but it was considered preferable
to tune the software to be able to calculate similarity between just parts of two vectors,
ignoring the remaining bits. This saves computational power and reduces the probability of
false positives being detected.

6.3. SDM-based Manipulation

TASER is a service-robot equipped with a 6 DoF robot arm. Manipulation is mainly based on
the same implementation as presented in Chapter 5. To avoid a redundancy here, the reader
is referred to Section 4.1.1 and Section 5.1 for a comprehensive discussion of the hardware

2This image is not available when only the first image has been captured.
3Without any environmental changes being applied.
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Figure 6.3.: The trajectory of the 6-DoF robot arm stored to the SDM. The graph only
represents the joint angles that correspond to j1, . . . , j6 of xi (see Equation 6.2).
Further information on xi, also stored to the SDM, is omitted for the sake of clarity.

and software aspects of the implementation. To refresh at least some details necessary for
the subsequent comparison, the implementation will be briefly summarised in the following
paragraphs.

In this experiment, manipulation is based on a sequence of 3D coordinates and roll, pitch,
and the corresponding yaw angles of the manipulation tool. Henceforth, it is also used as
arm configuration. During a learning phase, a sequence of robot arm joint angles and the
corresponding tool centre point (TCP) as well as the tool orientation are captured at discrete,
consecutive time steps. According to vector xi presented in Equation 6.2 (also cf. Equation
5.2, Section 5.1.2) the data is stored into the SDM.

xi =< j1, j2, j3, j4, j5, j6, x, y, z, χ, ψ, ω, seq id, i >, (6.2)

where at a particular point i in time each jn represents the angle of the corresponding arm
joint. The 3D coordinates of the tool centre mounted at the end of the robot arm in relation
to the robot coordinate system are depicted with x, y, z, and χ, ψ, ω describe the roll, pitch,
and yaw tool orientation. Each of the above-mentioned variables are represented as 8-byte
double precision value. Finally, the seq id is a unique 4-byte id for each sequence, and i is
a unique auto-incrementing index for each vector of a sequence to determine the order, also
4-byte long.

During an autonomous execution the robot is confronted with a particular arm configu-
ration. The robot retrieves the circumstances of the particular joint constellation from the
sequence of arm configurations stored in its memory. The associated arm constellation is used
to iteratively guide the robot to the next position of the memorised sequence. Accordingly,
the robot should follow the learnt trajectory (see Figure 6.3) autonomously. Addressing the
memory is done by only presenting a single arm configuration represented by the particular
joint angles (jn with n ∈ {1, 2, . . . , 6}) of time point t− 1. During an autonomous execution
the SDM will predict jtn through its association to jt−1

n .
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Table 6.1.: Comparison of the performance of the SDM in two different domains: navigation
and manipulation. The memory only contains one copy of each datum.

Operation Dist. to Dist. to 2nd Inc. % Aver. dist. Inc. % Errors Vector
mode closest HL closest HL to all HLs Bits

Manipulation domain (access radius: 10 )

Arithmetic 86.40 103.97 20.33 1797.54 1980.49 0 832
Bitwise 14.17 33.07 133.41 63.52 348.37 7 832

Sum Code 13.10 82.40 529.01 1274.55 9629.36 0 22320

Navigation domain (access radius: dyn.)

Arithmetic 35240 56511 60.36 172236.53 388.75 29.0 41064
Bitwise 7575 8195 8.18 9738.01 28.56 31.4 41064

Sum Code 1980 3155 59.34 9460.60 377.75 29.0 82024

6.4. Experiments and Comparison

Different tests were performed in order to assess the behaviour of both systems. In order
to find a better solution to the problem of non-random data encoding and its distance
calculation, different solutions are studied in both of the proposed domains. These are:
1) Natural binary code and arithmetic distance as proposed in Section 5.2.1.2 (arithmetic
mode), 2) the natural binary code with Hamming distance according to Section 5.2.1.1
(bitwise mode), 3) and the sum code with Hamming distance presented in Section 5.2.1.3
(sum code mode). The results are shown in Table 6.1 and Table 6.2 and will be discussed in
the following paragraphs.

Table 6.1 outlines the results that are obtained while the memory contains just one copy
of each datum. This means that there is no distribution of the data during the storage
procedure. In this special case, the SDM acts as a conventional random-access memory that
has the feature of being content-addressable while retrieving the closest physical address.
In turn, Table 6.2 represents the same values as Table 6.1, but this time obtained with five
copies of each datum stored to the memory.

The values shown in the tables are: the distance from the input address to the closest
hard location (the desired prediction), the distance from the input address to the second
closest hard location, and the average distance from the input address to all remaining hard
locations in the memory. There is also a measure of the increases, in percentage, which
expresses how successful the system is in separating the desired datum from the pool of
information in the SDM. The vector bits characterise the size of the input and output vector
applied to the SDM.

The tables also show the number of prediction errors. A prediction error occurs every time
there is a step back in the sequence. For instance, if at time t and t+ 1 the predictions are,
respectively, xt and xt−1, that is a prediction error, the robots are not expected to return in
a sequence.

6.4.1. Navigation

The results for the SDM-based navigation are obtained by using a sequence of 55 images,
which are equalised before processing. The tables show the average of 30 operations, except
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Table 6.2.: Comparison of the performance of the SDM in two different domains: navigation
and manipulation. The memory contains five copies of each datum.

Operation Dist. to Dist. to 2nd Inc. % Aver. dist. Inc. % Errors Vector
mode closest HL closest HL to all HLs Bits

Manipulation domain (access radius: 15 )

Arithmetic 12.35 14.4 17.32 1275.30 10227.33 0 832
Bitwise 2.87 6.03 110.47 62.83 2091.90 0 832

Sum Code 12.67 12.67 0.0 1271.31 9936.67 0 22320

Navigation domain (access radius: dyn.)

Arithmetic 35528 36467 2.64 172249.43 384.85 23.2 41064
Bitwise 7547 7831 3.77 9740.06 29.06 26.0 41064

Sum Code 1913 1968 2.90 9446.52 393.83 24.4 82024

for the navigation errors, which are the average of five autonomous runs. The tests are
performed using the arithmetic mode, the bitwise mode and the sum code mode. The
bitwise mode uses the natural binary code and the Hamming distance and uses 8 bits per
pixel to encode 256 graylevels. Furthermore, the sum code mode uses 16 bits per pixel such
that the dimensionality of the SDM input vector almost doubles. In this mode the encoding
is limited to 17 graylevels. In each case the access radius was computed dynamically in the
beginning of the sequence as described above and in Mendes et al. (2007) and hence has
been set to 20 % above the noise level. The offset was experimentally determined.

6.4.2. Manipulation

The results for the SDM-based manipulation are obtained by using a sequence that consists
of 190 arm configurations. The joint angles of this sequence are shown in Figure 6.3. The
trained memory is addressed by an initial arm position. Consequently, the memory iteratively
predicts the next associated arm configuration and guides the robot arm to the particular
positions autonomously. The average of 30 such predictions is shown in Tables 6.1 and 6.2.

As in the SDM-based navigation experiment, the tests are performed by using three differ-
ent encoding modes: The arithmetic mode (cf. Section 5.2.1.2), the bitwise mode (cf. Section
5.2.1.1) and the sum code mode (cf. Section 5.2.1.3). The latter mode enlarges the vector
size from 832 bits to a total length of 22320 bits according to the maximal operational range
of the robot arm with respect to Equation 5.4. In contrast to the image-based navigation,
which has to deal with a lot of image noise, the access radius was chosen experimentally as
the noise level was reasonable.

6.4.3. Comparison

The random characteristics of the SDM, the structured environments in which the tests
were performed, suggest that the results obtained may be different even in very close cir-
cumstances. However, the robustness of the implemented models can be emphasised in
consideration of the consistent results that are obtained in two completely different domains:
the domain of vision-based navigation, in which the data is of very high dimensionality and
contains a high amount of noise, and in the domain of robot manipulation, in which the data
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contains small amounts of noise and the dimensionality is relatively small. The approach is
the same in both domains: Store sequences of events during a supervised learning stage, and
use them later to autonomously perform the same tasks again. In both cases, the models
proved adequate and behaved as the SDM theory (cf. Chapter 3) predicts.

In the case of vision-based navigation, the results show a higher number of sequence
prediction errors, which is probably due to the presence of noise in the images, but in no
way seemed to compromise the ability of the robot to successfully follow the sequences in
which the images were rich enough.

In the case of manipulation, the high precision of the robot arm shows—if at all—only a
very small level of noise. Robot arm trajectories are successfully learnt and followed.

The distribution of the data proves to be beneficial in regard to the robustness of the
system, improving its ability to retrieve the right datum from the pool of data and reducing
the number of prediction errors. Additionally, the bitwise mode performs slightly below the
arithmetic and the sum code operational modes in both domains.

An interesting characteristic of this approach is that regardless of the initial position, the
robot is able to converge to the closest point in the sequence, thus always executing the
assigned task with success. This happens in manipulation, because we are using absolute
positioning of the joints, but not in navigation, where the robot has no information on
absolute positioning.

6.5. Discussion

This comparing study, too, unveils the most difficult problem of the SDM theory for robots.
The SDM theory is best suited to deal with random data, but real world sensorial inputs
are hardly random. The performance of the memory is significantly affected. The results of
both domains show, as already mentioned in Section 5.4, that the performance of the system
depends on the method of encoding the information. The arithmetic and sum code modes
show better results in both domains. However, those methods require additional processing
and the former may weaken some characteristics of the original SDM. It was proven that the
distribution of data stored in the memory makes the system more robust by reducing the
number of prediction errors.

Besides the already shown SDM capability of storing and retrieving robot arm motion
trajectories, the same SDM model can successfully accomplish tasks of various domains.
Input data that originate from a totally different type of sensor, a CCD camera, has been
successfully applied to the memory. It is possible to navigate a robot based on its memory
of experience which contains motion commands and view sequences. With the proposed
mechanism the kidnapped robot problem could be solved. A robot that is kidnapped from
one place and repositioned anywhere else in or close to the sequence can use its SDM to realise
the abduction. What matters is just its current view that is matched against memorised
views. If replaced within any known sequence the robot will be able to proceed along its
path according to its memory content.

Compared to the proposal of Kanerva, who suggested an SDM with n = 1000 dimensions,
we realised a software implementation that is suitable to work with up to n = 82000 dimen-
sional vectors. This, at least to some extent, shows how good the model scales to problems
of higher dimensionality.
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Sparse Distributed Memory for User
Intention Detection and Learning

A retentive memory may be a good thing, but the ability to forget is the true
token of greatness.
(Elbert Hubbard, American editor, publisher and writer, 1856-1915)

Contents

7.1. Intention Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2. Learning by Demonstration . . . . . . . . . . . . . . . . . . . . . . 99

7.3. Telemanipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4. The Multi-SDM Architecture . . . . . . . . . . . . . . . . . . . . . 100

7.4.1. Multiple SDM Instances . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.2. Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.3. Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.4. Predicting User Intention . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5.1. Experiment A: Skilled Teacher–Unskilled Users . . . . . . . . . . . . 112

7.5.2. Experiment B: Skilled Teacher–Skilled User . . . . . . . . . . . . . . 112

7.5.3. Experiment C: Unskilled Teachers–Unskilled Users . . . . . . . . . . 112

7.5.4. Experiment D: Unskilled Teachers–Skilled User . . . . . . . . . . . . 112

7.5.5. Experiment E: Unskilled Teacher–Unskilled Users (Mutually Exclu-
sive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.7. Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A major goal of robotics is that robots become a part of everday human life. A key
challenge is to provide robots with human-like capabilities, e.g. sophisticated motor skills
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for flexible and precise motions to interact and cooperate with the environment and human
users. Most robot interfaces do not support easy and natural interaction nor an easy teach-
ing of robot skills. An alternative is to use learning and adaption techniques for online and
offline learning of low-level motor behaviours. A favoured approach is to teach robots by
demonstration without explicitly programming and reprogramming new motor skills. Learn-
ing by demonstration (Billard et al., 2008), also known as imitation learning, is the ability
to recognise and reproduce the actions of others.

Within this study the SDM will be used to learn motion sequences of a remotely controlled
robot arm. Remote operation is realised by employing a telemanipulation system. Human
operators use a haptic force-feedback device with similar DoF as the robot arm and a stylus-
like manipulandum for an interactive control. It will be shown that SDMs are suitable to
model teleoperative tasks with the advantage of fast learning and generalisation of motion
trajectories.

The strongest motivation for this work is to recognise the intention of a human operator
and to improve the task execution by allowing the system to adapt to the operator’s need,
e.g. take over a task, offer help wittingly. To offer the operator a certain aid, it is funda-
mental to successfully interpret the desired goal behind his actions. The system for learning,
representing, modelling and transferring skills have to deal with highly nonlinear relation-
ships between the stimuli and responses (sensor/actuator systems). In the area of nonlinear
control, neural network techniques show great potential by eliminating the need for solving
difficult nonlinear mathematical models. Neural networks can learn from examples online
and can continuously optimise the system’s performance.

7.1. Intention Recognition

Intention recognition, also-called intention detection, is an important research issue in human-
computer interaction (HCI) and human-robot interaction (HRI). Our understanding of other
people’s behaviour relies significantly on assumptions about their intentions. Thus, identi-
fying underlying intentions is an essential functionality of a technical system, e.g. a robot,
to provide adequate support to a human user when engaged in a collective activity.

Humans understand each other’s intentions by interpreting information received by the
senses and communication. Several authors propose probabilistic models based on Basian
networks for intention detection of a human user (Horvitz et al., 1998; Schrempf et al., 2007;
Rößler, 2009). Further models are based on Hidden Markov Models (HMM) (Yu et al.,
2004; Kelley et al., 2008) or Layered Hidden Markov Models (LHMM) (Aarno and Kragic,
2008) to classify decomposed sets of complex human actions. HMMs are widely used for
pattern classification. Among several features they have some disadvantages regarding the
classification of noisy input trajectories. Furthermore, they need sufficiently large training
sets (Yu et al., 2004) and their performance diminish when assessing high-dimensional prob-
lems. Bayesian networks have the disadvantage that they are strongly dependent on the
domain knowledge and their computational time is rather slow. A problem of both statisti-
cal approaches, HMM and Bayesian networks, is to get the initial assignment of transition
probabilities between system states. The domain knowledge, e.g. all possible motions, have
to be completely specified a priori.

Humans, additionally, have a vast capability to predict an arbitrary intention under a high
degree of uncertainty and ambiguity. Since the SDM is particularly suitable to deal with
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high degrees of noise and just requires a small amount of a priori knowledge, it will be used
to identify the intention of a human teleoperator that remotely controls a robot arm.

7.2. Learning by Demonstration

Learning by demonstration (LbD), also known as programming by demonstration, teaching
by showing and imitation learning has become a key research topic in robotics for motor
learning and control, gesture recognition and visuo-motor integration. LbD can be seen as
a technique that develops policies from example states to action mappings (Argall et al.,
2009). The main purpose is to replace time-consuming manual programming of a robot by
an automatic programming processes where an expert shows the robot how to solve a task.

The quality of a learned LbD policy depends heavily on the quality of the provided demon-
strations. In reality, however, teacher demonstrations may be ambiguous, unsuccessful or
suboptimal in certain areas of the state space. Suboptimality is most common in demonstra-
tions of low-level tasks, such as movement trajectories for robot arms. Here, demonstrations
rather serve as guidance to solve particular tasks than offering a complete or best solu-
tion. Some approaches remove actions that do not contribute to solutions, other approaches
smooth or generalise suboptimal demonstrations to improve the teacher’s performance. This
can be done with training data from multiple repeated demonstrations by a single user or
from multiple teachers.

Research in the area of robot LbD was initially driven by symbolic AI approaches to seg-
ment demonstrations into primitive actions by an expert to enable a technical system to
reason about them in later steps. More recent research was driven by including multiple
example inductive learning, case-based learning and its special form of memory-based learn-
ing and analytical methods such as explanation-based learning (Nicolescu, 2003). Inductive
learning uses multiple example demonstrations to make predictions of future ones. Case-
based learning stores and generalises a set of given training instances, which is also-called lazy
learning . Memory-based learning techniques operate on a more detailed level of experiences
as case-based methods do. Explanation-based learning techniques usually act on symbolic
domain models that are analytically refined with each new observation of a given example.

A key challenge in learning manipulation tasks is the curse of dimensionality that arises
from having several DoF causing a large state and action space. The perception of the
demonstration itself, which typically involves making a good data capture of what is shown
to the robot, is also a challenging problem. The demonstrations can be performed by e.g.
manually guiding a robot, by teleoperating it with a remote control device, by visually
capturing the motion of an instructor (Hüser et al., 2006) or by directing the robot on
the basis of a common language (Zhang and Knoll, 2003). More recent approaches study
biological approaches to provide imitation learning based on neural networks (Billard and
Matarić, 2001; Billard, 2002; Kuniyoshi et al., 2003).

In this chapter we investigate ambiguous demonstrations by multiple teachers that will
be learnt by a multi-SDM architecture. The performance of predicting intended high-level
actions based on multiple and single teacher training data will be evaluated in detail with the
multi-SDM operating as a task approximator. The training data consists of low-level motion
trajectories that originate from interactive high-level task demonstrations via a teleoperation
system. The LbD policy which will be learnt is a mapping function from a robot’s state,
particularly its arm configuration, to an action sequence.
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7.3. Telemanipulation

Telemanipulation is part of telerobotics. It generally refers to robotics at a distance (Greek:
tele) mostly with a human operator involved in a control-loop. Usually the human operator
accomplishes high-level tasks such as cognitive decisions, planning, et cetera while the robot
is responsible for the mechanical implementation. Teleoperation stresses the task-level, while
telemanipulation highlights object-level manipulation (Siciliano and Khatib, 2008).

Telerobotic applications are split into a master and a slave side that are connected over a
teleconnection, e.g. computer networks such as WAN, LAN, WLAN. At the system’s local
side (master) a human operator usually has input devices, e.g. mouse, keyboard, joystick,
haptic device, glove, exoskeleton et cetera, and output devices, e.g. feedback device, monitor,
and so forth, to control the remote robot side (slave) including all its sensors and actuators.

Current architectures vary from direct control to supervisory control . Though a bit older,
a comprehensive summary of latter ones can be found in Sheridan (1992). The former control
method operates at the motion level without automated help while the latter requires some
basic system intelligence and autonomy to interpret and execute high-level commands.

Applications have been motivated by the issue of human safety in hazardous environments,
reaching remote environments, and for power and position scaling. To mention just a few
of the most advance telerobotic systems: the DaVinci1 robot for minimal invasive surgery,
the ROKVISS system (Preusche et al., 2006) for space telerobotics, and remotely operated
underwater vehicles (Amat et al., 2001).

The study discussed in this chapter uses a bilateral2 telemanipulation architecture (Bruder
(2009) and Section 4.2.3) that provides direct control of the MHI PA10-6C robot arm (Sec-
tion 4.1.1.2) by using a PHANTOM R© DesktopTM, mouse, keyboard and monitor as input
and output devices3. Through an extension of the telemanipulation system with the SDM
a shared control architecture will be obtained that is able to provide automated help to a
human operator and provides some degree of autonomy. A rough structure of the telema-
nipulation system is depicted in Figure 7.1 and 7.2. For a more detailed description of the
telemanipulation system and its structure confer Section 4.2.3 and Figure 4.10. The SDM
is used as a classifier that relates remotely executed actions to already experienced action
sequences.

7.4. The Multi-SDM Architecture

An extension of the SDM architecture becomes necessary when using it as classifier to com-
pute the task membership of varying action sequences. To distinguish between different
actions, the sequences have to be labelled or tagged. If the action labels would be encoded
in the memory’s content vector, e.g. each character is represented as a set of UTF-8 octets,
some problems will arise. Considering the SDM characteristic that several locations partici-
pate in storing information from similar but unequal sequences: Locations that participate in
storing information of more than one sequence bear the consequence that the encoded char-
acter set (the action description) will be interfered by another character set. Later, when

1http://www.intuitivesurgical.com/index.aspx
2In a bilateral telerobotic system the slave robot does not only measure forces, but also displays forces to

provide the operator with virtual instead of simple remote environments.
3A video of the TASER robot being teleoperated can be found at http://tams-www.informatik.

uni-hamburg.de/research/robotics/service_robot/videos/

http://www.intuitivesurgical.com/index.aspx
http://tams-www.informatik.uni-hamburg.de/research/robotics/service_robot/videos/
http://tams-www.informatik.uni-hamburg.de/research/robotics/service_robot/videos/
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Figure 7.1.: TASER being teleoperated with a PHANTOM R© DesktopTM haptic interface.
A detailed schema of the telemanipulation architecture can be found in Section 4.2.3.
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Figure 7.2.: Rough structure of the distributed telemanipulation architecture. Lines between
oval boxes depict network connections. The left side shows the remote workstation
to control the robot arm (upper right). Moreover, an arbitrary number of clients can
also display the actions performed by the physical robot. For more details see Figure
4.10

reading information from overlapping memory regions the string that describes the mem-
bership of a certain arm configuration to a specific action sequence may not be retrieved
accurately. Thus, the SDM architecture is extended with a higher hierarchical layer that
maintains multiple SDM instances.

7.4.1. Multiple SDM Instances

Implementing a top layer that maintains several SDMs leads to an introduction of semantical
context information into the memory framework. A number of SDM instances l will be used
according to the number of tasks that should be distinguished. Let the memory be trained
with several action sequences that belong to an arbitrary number of different tasks. During
an initialisation phase the user has to define the number of different high-level tasks and the
appropriate task titles that should be learnt by the memory. Then the respective number of
SDMs will be generated and entitled with a given task description. Furthermore, the user
has to assign a small number of training sequences to each SDM with respect to the task
the trajectory belongs to. This can be seen as a supervised learning step. The Multi-SDM
architecture can be extended with further SDM instances easily at any time. The multi-SDM
architecture is shown in the left box of Figure 7.3. A multi-SDM class diagram is given in
Figure 7.4 to illustrate the static structure of the system by its main objects, relationships,
operations and attributes.

7.4.2. Generalisation

Let us consider a number of trajectories belonging to a certain task and the respective SDM
instance. As described above, the robot arm motion sequence is no longer preprogrammed
but rather originates from a human operator. Instead of going to much into detail—a precise
description of the tasks will be given later—hardly none of the trajectories will be identical to
any other. The human operators follow different strategies to solve tasks. They use the haptic
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Figure 7.3.: The multi-SDM architecture consists of several SDMs, whereas each SDM is
responsible for and entitled with a certain high-level task (left box). During training,
task trajectories are assigned to the corresponding SDM instance. During predic-
tion, consecutive snapshots of arm configurations of a yet unknown motion trajectory
Tcurr are presented as trigger to all SDMs continuously. Within given intervals,
the quadratic distance between individual SDM predictions and the input trajectory
are compared. The SDM that provides the least relative error over all intervals is
the winner and the respective SDM title describes the intended action of the human
operator.
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sdm.SDM.manager

sdm.SDM.core

Predict ion

-results: ArrayList<Result>

-trigger: SDMVector

SDMVector

-content: double[]

-bitSet: BitSet[]

-index: ArrayList<Integer>

-seq_id: ArrayList<Integer>
+arithmeticUpdate(vector:SDMVector,learningRate:double,
                  round:boolean): void

+binaryUpdate(vector:SDMVector,mode:SDMMode): void

+arithmeticSimilarity(vector:SDMVector,start:int,
                      stop:int,sampleRate:int): double

+hammingDistance(vector:SDMVector,start:int,
                 stop:int,sampleRate:int,
                 mode:SDMMode): int

S D M M a n a g e r

-sdmList: ArrayList<SDM>

Mul t iLayerSDM

-sdmManager: SDMManager
+calcPredictionsForNextStep(trigger:SDMVector,
                            horizon:int,start:int,
                            stop:int): ArrayList<Prediction>

+calcWinnerLayer(predictions:ArrayList<Prediction>,
                 trigger:SDMVector,start:int,
                 stop:int,sampleRate:int): int

+calcLayerDistances(predictions:ArrayList<Prediction>,
                    trigger:SDMVector[],time:int,
                    start:int,stop:int,sampleRate:int,
                    quadratic:boolean): double[]

Hardlocat ion

-address: SDMVector

-data: SDMVector

M e m o r y

-hardlocations: ArrayList<Hardlocation>
+learn(address:SDMVector,data:SDMVector)

+predict(trigger:SDMVector,start:int,stop:int)

Neighbourhood

-hardlocations: ArrayList<HLocation>

S D M

-mode: SDMMode

-memory: Memory
+predict(trigger:SDMVector,start:int,stop:int): Result

+learn(address:SDMVector,data:SDMVector): void

Result

-activeHLs: Neighbourhood

-predictionData: SDMVector

<<Interface>>

I S D M M a n a g e r

+learn(vectors:SDMVector[],sdm:SDM)

+predict(trigger:SDMVector,sdm:SDM,horizon:int,
         start:int,stop:int)

<<enum>>

S D M M o d e

+ARITHMETIC

+NATURAL_BINARY

+SUM_CODE

Figure 7.4.: A UML diagram of the multi-SDM architecture that illustrates the main rela-
tions and functionalities.
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1

2

Several robot arm trajectories of a certain task Generalised into a single SDM

Figure 7.5.: Miscellaneous trajectories from several telemanipulation executions to solve a
certain task are learnt into a single sparse distributed memory (SDM).

interface in diverse fashions to move the robot arm from one to another position. Further,
the inverse kinematics is computed according to the given situations and thus contributes to
the diversity of the resulting trajectories.

Figure 7.5 shows how different action sequences are generalised into a single SDM. If
several executions are stored to a single SDM the information stored in the hard locations
express a kind of mean execution of a certain task.

7.4.3. Abstraction

Humans often recall a datum that represents a group of experiences, but not exactly any
specific instance. They produce a mental representation that is a composite of all those
instances belonging to a group. Using a single datum, a representative prototype, to represent
a large group vastly boosts the human intellectual ability. Consider how inefficient it would
be to recall every trajectory you have ever executed to solve a certain task. The multi-SDM
architecture provides the ability to produce a representative prototype for various action
sequences executed by a single or many operators.

7.4.4. Predicting User Intention

This section will give some more details about the algorithms used to identify the intention
of a human operator. During a training phase several (or at least few) trajectories are stored
in the particular SDM that corresponds to the processed task. Each SDM is titled with the
corresponding task name. After training, the multi-SDM architecture can be triggered with
a yet unknown and interactive trajectory and will predict the most probable task from its
experience. The whole process is illustrated by Algorithm 2.

The multitude of SDM instances are maintained and governed by an SDM Manager that
handles the distribution of a trigger trajectory to all SDM instances. A multi-SDM prediction
is done by continuously presenting the arm configuration during the execution of an action
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Algorithm 2 MultiSDM Prediction
1: h ← horizon
2: multiResultList ← list of lists of all prediction results (contains entire prediction-history)

{SDMManager Prediction}
3: startAddress ← current measurement
4: for i = 0 to number of SDMs do
5: trigger ← startAddress
6: sdmResultList ← () {list of prediction results}

{SDM Predictions}
7: for j = 0 to horizon do
8: Active hard locations X ′

A ← hard locations x′ within the activation radius r centred by
trigger within the i-th SDM

9: SDMPrediction← zero initialised vector
10: for k = 0 to size of content vectors in the SDM do
11: for l = 0 to cardinality of X ′

A do
12: SDMPrediction[k]+=X ′

A[l][k]/|X ′
A|

13: end for
14: end for
15: trigger ← SDMPrediction
16: Append SDMPrediction to sdmResultList
17: end for
18: Append sdmResultList to multiResultList[i]
19: end for

{Computing Square Error}
20: distancesList ← list of list of distances between predicted and observed trajectory
21: observedTrajectory ← list of all observations (contains entire observation-history)
22: for i = 0 to the length of multiResultList do
23: for j = 0 to the length of multiResultList[i] do
24: distancesList[i][j] = (observedTrajectory[j]−multiResultList[i][j])2
25: end for
26: end for

{Classification}
27: sumList← list of aggregated distances
28: bestSum← Max-Value
29: classification← null
30: for i = 0 to the length of distancesList do
31: currentSum← 0
32: weight← 0
33: for j = 0 to the length of distancesList[i] do
34: if j (mod) h == 0 then
35: weight+ +
36: end if
37: currentSum+=weight · distances[i][j]
38: end for
39: if currentSum < bestSum then
40: bestSum← currentSum
41: classification← i
42: end if
43: end for
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to the memory module—to the SDM Manager to be correct. The SDM Manager provides
each of the l SDMs consecutive snapshots of arm configurations of the yet unknown motion
trajectory Tcurr as input vector (cf. line 4 of Algorithm 2). This input pattern is used to
query a prediction for the next few steps of the trajectory, the so-called horizon h (lines
7-12). Each SDM will commit the resulting, partial prediction of the next h configurations
back to the SDM Manager, such that it assambles them to a single result list consisting of l
predictions of length h (line 16).

Line 24 computes the square distances between the trigger trajectory and the l SDM
predictions for a given interval [t, t + h]. The current implementation of the multi-SDM
architecture uses an offline classification mechanism. Thus, the horizon h is defined in terms
of the percentage of a trigger trajectory, whose length is known. This is due to handle
sequences of different length4.

The learnt task that best resembles the current trajectory Tcurr is given by that SDM
for which the sum of the quadratic distances is minimise over time. To determine the
winning SDM, we include the temporal context of a trajectory in a weighting function. In
that weighting function, the influence of previous predictions decreases linearly with their
distance in time (cf. line 37).

Contrary to the offline classification as shown above, the online classification (Algorithm 3)
will directly process the data provided by the PHANTOM R© DesktopTM after translating it
into the kinematic chain of the robot arm. At discrete time steps, the multi-SDM is triggered
with an input vector containing the configuration of the PHANTOM R© DesktopTM. The data
is used to predict the next assumed movement as in the offline case. The results of all SDMs
are compared, and the particular SDM that exhibits the smallest square distance to the
haptic data list, is assumed to be the intended goal of the current action.

Algorithm 3 Online Classification
1: h← horizon
2: c← 0
3: hapticDataList ← ()
4: predictionList← temporary prediction
5: currentClassification← null
6: repeat
7: hapticData ← fetchDataFromPhantomDevice()
8: Add hapticData to hapticDataList
9: if c mod h is 0 then

10: Compute a MultiSDM prediction with hapticData as trigger
11: Add this result to predictionList
12: end if
13: Compute the winning SDM {namely the SDM with the overall least quadratic distance to

hapticDataList}
14: Store this result to currentClassification
15: c← c+ 1
16: until termination

Let us consider the underlying telemanipulation system as described in Section 4.2.3 and
depicted by Figure 4.10. This last issue of triggering a classification with either input patterns
provided by the robot arm or the PHANTOM R© DesktopTM makes clear that it is irrelevant

4Since the sampling rate of arm trajectories during task execution follows time constraints, memorised
sequences of particular tasks can differ in their length.
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whether the multi-SDM is implemented on the master or slave side of the telemanipulation
system. This statement holds as long as the type of the input patterns are the same as during
learning. Since the telemanipulation client (cf. Section 4.2.3) transfers the joint constellation
of the PHANTOM R© DesktopTM into the kinematic chain of the robot arm before sending
it to the robot’s server side, an ambilateral linkage to the multi-SDM architecture becomes
possible. Figure 7.6 exemplifies the possible connection points for an integration into the
telemanipulation system presented in Section 4.2.3.
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Figure 7.6.: Structure of the telemanipulation systems with the server application (top) and
client application (bottom). The SDM (right) can either be connected to the client
or the server side.
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(a) Side view. (b) Top view.

Figure 7.7.: Virtual dynamic views of the robot provided to the subjects while performing
the remotely operational tasks. The tasks are to touch the spheres from a certain,
given side.

7.5. Experiments and Results

Five male subjects had to solve 5 different tasks and thus act as a set of individual trainers
for the SDM system. The subjects had to use the PHANTOM R© DesktopTM to move a
virtual MHI PA10-6C5 to touch different virtual objects with the tip of a tool mounted at
the end of the robot arm. Only the orientation how to touch the object, e.g. from the front,
from the side or from the top of the object was given to the subjects. The decision on how
to move the robot arm to reach the object was ceded to the subjects.

Figure 7.7 shows four virtual objects that constitute the different tasks. The object at the
height of the robot’s head and both objects at the height of a table must be touched from
the front. The object on the floor must be touched at its top. The fifth task is to touch
the left object at the height of the table also from the left side. Involving a single object
in two tasks is used to test the classification accuracy of the multi-SDM when both final
end-effector positions are closely related.

Due to the gradient descent optimisation used for the inverse kinematics6 and the many
degrees of freedom, hardly any user ever uses exactly the same trajectory twice to solve a
certain task. Additionally, the operational range of the PHANTOM R© DesktopTM is scaled

5For security reasons and to avoid damage to the physical robot arm the experiments were conducted on a
virtual robot model of TASER. As shown earlier in this chapter, it makes no difference if the SDM module
is linked to the server or the client side of the telemanipulation systems. Merely it must operate in the
same joint space, the teleoperation system does right before sending the control command to the slave
robot.

6The inverse kinematics for the robot arm is computed by the master client that provides the virtual robot
model (cf. Section 4.2.3). That is the reason why it does not matter whether the SDM is linked to the
server or client side.
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Table 7.1.: The number of recorded sequences per task and subject. The total number of
200 sequences represents the test set for the forthcoming multi-SDM experiments.

Runs per subject

skilled unskilled Sequences

Task descrition Abbreviation A B C D E per task

Touch object at the height of
the robot’s head at its front

Top object 20 5 5 5 5 40

Touch left object at the height
of a table from its front

Middle object 1 a 20 5 5 5 5 40

Touch left object at the height
of a table from its left side

Middle object 1 b 20 5 5 5 5 40

Touch right object at the
height of a table from its front

Middle object 2 20 5 5 5 5 40

Touch object lying on the floor
at its top

Bottom object 20 5 5 5 5 40

Sequences in total 200

with regard to the robot’s manipulation space and thus responds very sensitively to any
movement of the stylus which makes it impossible to exactly repeat any trajectory.

The subjects can be grouped into two skill levels: experienced and inexperienced, hereafter
also addressed as skilled and unskilled. The experienced user is the designer of the telema-
nipulation system and gathered a lot of of experience on how to use the PHANTOM R©
DesktopTM and how to avoid critical arm configurations7. The four remaining test sub-
jects have not used the telemanipulation system nor have they ever used a PHANTOM R©
DesktopTM interface before. On account of this, the inexperienced users got some trials to
practice the different tasks. The subjects just needed one to three trails to feel confident with
the handling of the interface. That indicates the ease of use and the natural way for giving
demonstrations to a robot system as mentioned in the beginning of this chapter. Five execu-
tions per task were recorded from each of the unskilled users while the skilled user recorded
twenty executions per task. The different tasks and the corresponding number of recorded
sequences are summarised in Table 7.1. The resulting 200 action sequences represent the
data set used for the forthcoming multi-SDM experiments.

The multi-SDM experiments—with regard to learning by demonstration—are subdivided
into five different experiments according to the teacher–user relation. The term teacher is
used for all those individuals, that contribute trajectories to the multi-SDM learning phase.
The term user concerns those people whose intention should be classified by the multi-SDM
system based on the data that has been taught by the teacher(s). This division is made to
appropriately judge different aspects of the multi-SDM system for the purpose of intention

7Some arm configurations are called critical when the gradient descent method showed problematic state
change control.
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detection.
During a learning phase, the SDM system is trained with a proper subset of motion

sequences out of the set of recorded task sequences. During an evaluation phase, all remaining
sequences are presented to the memory successively. The multi-SDM has to classify the task
the particular sequence belongs to, and thus identify the user’s intention behind the execution
of such a trajectory. The training and evaluation subsets are mutually exclusive.

7.5.1. Experiment A: Skilled Teacher–Unskilled Users

All task executions of the experienced user are considered as training set for the multi-SDM
system. The robot arm motion trajectories of the four remaining, inexperienced users are
used as a test set. This yield a training-to-test ration of 100:100 trajectories with a well-
balanced training of the various tasks. The teacher–user relation can be described as logical
XOR. This experiment studies how well the system classifies unknown trajectories when taught
by a single expert.

7.5.2. Experiment B: Skilled Teacher–Skilled User

A randomly chosen subset, 75%, of task executions of the experienced user are considered as
training set for the multi-SDM system. The remaining 25% of the set of robot arm motion
trajectories from the same, experienced user are applied as a test set. The motion trajectories
provided by the inexperienced users are neglected within this experiment. The training-to-
test ration is about 75:25 trajectories. The teacher–user relation can be described as logical
AND. This experiments studies the ability of the multi-SDM system to predict the intention
of a user when he initially provides some training.

7.5.3. Experiment C: Unskilled Teachers–Unskilled Users

A randomly chosen subset, 60%, of the task executions provided by the four inexperienced
users are considered as training set for the multi-SDM system. For this purpose, three of the
five executions per task of each inexperienced user are randomly chosen to gain a balanced
training of each SDM instance. The remaining 40% of the set of trajectories from the
inexperienced user are applied as a test set. The motion trajectories of the experienced user
are not considered in this experiment. The training-to-test ration is about 60:40 trajectories.
The teacher–user relation can be described as logical AND. The purpose of this experiment
is to study the systems predictive behaviour when undergoing a community-based training
without any experts.

7.5.4. Experiment D: Unskilled Teachers–Skilled User

All task executions of the four inexperienced users are considered as training set for the SDM
system. The robot arm motion trajectories of the remaining, experienced user are used as
a test set. This yields a training-to-test ration of 100:100 trajectories. The teacher–user
relation can be described as logical XOR. This experiment studies how well the intention
of an expert, who may have specialised task solving strategies, can be predicted when the
system is trained by a community of laymen.
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7.5.5. Experiment E: Unskilled Teacher–Unskilled Users (Mutually Exclusive)

In this experiment, four evaluations are made where each inexperienced user is considered as
trainer for the SDM system separately. The respective unskilled teacher does not contribute
any trajectories to the test set. Several robot arm motion trajectories of the remaining
inexperienced users are used as a test set. Each user, except for the trainer, contributes
2 trajectories per task to the training set. This yields a training-to-test ration of 25:30
manipulation trajectories per run. The difference to the above-mentioned experiment is
that the trainer–user relation is mutually exclusive and thus can be described as logical XOR
rather than a logical AND. Accordingly, each SDM instance in the multi-SDM just learns 5
trajectories per task.

The disadvantage of experiment C is that at least a few trajectories of each subject are
considered both during learning and testing. Consequently, peculiar sequences that may be
caused by a single user influence the SDM learning and may facilitate the recognition of
similar peculiar action sequences later on.

This experiment considers the goal to test the SDM ability for classifying unknown motion
trajectories just based on a small amount of learnt experience. Furthermore, the learnt data
stems from a single person chosen randomly from a community of non-experts, but still might
act as teacher to gain appropriate classification behaviour. This is like in the real world,
where people also learn from each individual and not only from experts. This is particularly
related to the one-shot learning mechanism which denotes a fundamental characteristic of
human memory. Even if not a single shot is used here, five trajectory excitations per task
consitute a rather small training set compared to the amount of training data needed in
common classification algorithms.

7.5.6. Evaluation

All diagrams in Figures 7.8, 7.9, 7.10 show the relative error of each SDM that contributes to
the prediction process. The trigger trajectory is portioned into several intervals q of length
h. An SDM is the winner of a multi-SDM prediction, and thus defines the task membership
after q intervals, if the error Θ is lower than the error of the predictions provided by all
remaining SDMs at that particular time step (see Equation 7.1):

Θq,SDM =
q∑
i=1

i∗h∑
t=(i−1)∗h

i ∗ (pt − at)2 (7.1)

for each SDM ∈ {1, . . . , l} where pt is the prediction at a particular timepoint t provided by
the SDM and at the value of the trigger trajectory at timepoint t. The factor i weights the
influence of the respective intervals such that younger ones have a more pronounced effect
on the error computation.

A trajectory is defined as correctly classified after q intervals, if and only if the winning
SDM represents the task the user currently solves. This is indicated by the particular title
of the recorded sequence and the title of the arbitrary SDM instance. The quality of a
particular task classification is judged by the moment when the respective SDM classifies
the intended task correctly for the rest of the trigger sequence. Thus, the duration until
correct classification is defined by the above-mentioned time point. Figure 7.8 illustrates
this scheme and classifies the trigger trajectory to task bottom object, denoted by .
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Figure 7.8.: Illustrating a multi-SDM discrimination between five tasks with the winning
prediction denoted by . The trajectory is classified correctly after presenting 55%
of the trigger trajectory to the multi-SDM (the lower the better).

Figure 7.9 shows several correct predictions that result from triggering the trained multi-SDM
architecture with a yet unknown trajectory. The subfigures show a digest of predictions from
Experiments A-E (Sections 7.5.1-7.5.5). Please note that the subfigure captions give more
detailed information about the corresponding teacher–user skill levels, the trigger trajectory
and the duration till classification. The interested reader is referred to Appendix C for a
more comprehensive version of the multi-SDM prediction diagrams. Some diagrams show
quite fast and/or conspicuous classifications (see Figures 7.9(b), 7.9(c)). The winning SDM
just contributes to the relative error Θ marginally. The confusions in nearly every diagram
in the beginning 10%-20% of the trigger trajectory result from the fact that each tasks starts
with the same robot arm default configuration. Thus, the first few steps of an arbitrary task
execution are somehow similar and hard to distinguish.

Figure 7.10 illustrates some of the misclassified trajectories and such trajectories that
just scrape a correct classification. Figure 7.10(a), for instance, exemplifies a multi-SDM
prediction where the trigger trajectory is categorised equally to two task classes for a longer
period. But finally, the trajectory is correctly classified after 80%, although with a narrow
margin. Figures 7.10(b)-7.10(d) show misclassification of the trigger trajectory. In the
case of misclassification, it can mostly be seen that at least the correct task is outclassed
marginally. All multi-SDM classification diagrams that constitute the data set for evaluation
are presented in Chapter C.

Table 7.2 summarises the success rates for correct classifications of interactive manipula-
tion trajectories. In the case of Experiment B (the S–S cell of Table 7.2), where the SDM
was trained with 50% of the trajectories produced by the skilled user, all of the remaining
100 test trajectories are correctly classified. The S–S group of the box-and-whisker diagram
shown in Figure 7.11 depicts the distribution of the duration needed until correct task clas-
sification. The mean duration for a task assignment is about 15% of a trigger trajectory.
75% of the trajectories are assigned correctly when 25% percent of the trigger trajectory has
been presented.
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(a) Teacher–User setup: S–S. Trigger:
Bottom object (7). Classification: 25%.
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(b) Teacher–User setup: S–S. Trigger: Top

object (7). Classification: 20%.
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(c) Teacher–User setup: S–S. Trigger:
Bottom object (16). Classification:
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(d) Teacher–User setup: S–U. Trigger:
Middle object 2 (7). Classification: 30%
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(e) Teacher–User setup: S–U. Trigger:
Middle object 1b (5). Classification: 25%.
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(f) Teacher–User setup: S–U. Trigger:
Bottom object (4). Classification: 65%
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(g) Teacher–User setup: U–S. Trigger:
Bottom object (6). Classification: 30%
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(h) Teacher–User setup: U–S. Trigger:
Middle object 2 (11). Classification: 30%
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(i) Teacher–User setup: U–S. Trigger:
Middle object 1a (15). Classification: 25%
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(j) Teacher–User setup: U–U. Trigger: Top
object (2). Classification: 50%
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(k) Teacher–User setup: U–U. Trigger:
Middle object 2 (5). Classification: 45%
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(l) Teacher–User setup: U–U. Trigger:
Middle object 1a (5). Classification: 20%

Figure 7.9.: Excerpt of correct multi-SDM predictions (the lower the better). Each subfigure
gives some more information on the teacher–user category, the task membership of
the trigger and the duration until successful classification.
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(a) Teacher–User setup: S–U. Trigger:
Middle object 1b (1). Classification: 80%.
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(b) Teacher–User setup: U–S. Trigger:
Middle object 1b (15). Classification: false.

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or

Θ
in

%

(c) Teacher–User setup: U–S. Trigger:
Middle object 1b (19). Classification: false.
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(d) Teacher–User setup: S–U. Trigger:
Middle object 2 (1). Classification: false.
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(e) Teacher–User setup: U–U. Trigger:
Middle object 2 (4). Classification: 60%.
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(f) Teacher–User setup: S–U. Trigger:
Middle object 1a (4). Classification: 80%.

Figure 7.10.: Excerpt of late and false multi-SDM predictions. Each subfigure gives some
more information on the teacher–user category, the task membership of the trigger
and the duration until successful classification.



118 Chapter 7 Sparse Distributed Memory for User Intention Detection and Learning

Table 7.2.: Success rates of correct task classification when presenting unknown motion tra-
jectories to the multi-SDM (according to Experiments A–E, Sections 7.5.1–7.5.5). The
skill levels of teachers and users are denoted with S (skilled) and U (unskilled). The
percentage in front of the slash represents the classification success rate of Experiment
D and Experiment E respectively.

aaaaaaaa
Teacher

User S U

S 100% 93%

U 90% 97,50%/80%
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Figure 7.11.: Relative duration until correct classification of arm trajectories by the multi-
SDM architecture. The letters describe the teacher(s)–user(s) skill levels (skilled–
unskilled). The middle line within the boxes indicates the median. The upper and
lower quartile (boxes around median) denote the highest and lowest 25% of the recog-
nition duration. The sample maximum and minimum whiskers show the largest and
smallest observed duration for correct classification. Misclassifications are not con-
sidered in this figure!
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According to Experiment A (Section 7.5.1), where the skilled user acts as teacher and the
memory is tested against all motion trajectories of the unskilled users, 93% of the motion
sequences are classified correctly. In turn, when all unskilled users act as teachers and the
memory is tested with the data of the skilled user (Experiment D, Section 7.5.4), 90% of
the motion sequences are classified correctly. Of particular interest in these two experiments
(S–U, U–S) is that the trajectory test set originates from a yet unknown user. The multi-
SDM system has no prior information on how the unknown user might solve the tasks and
just assumes his intentions by the generalised information taught by the other users. The
box-and-whisker diagram (Figure 7.11) shows the mean duration for the task assignment,
too.

Interestingly, 97,5% of the test trajectories are correctly classified, according to Experiment
C, when a bunch of unskilled people act as trainer. Additionally, the U–U box of Figure
7.11 proves that the duration until correct task classification is comparable to the duration
when the multi-SDM has to classify the motion trajectory of one and the same person (S–
S). Contrary to learning trajectories of a single teacher, the U–U experiment learns and
generalises trajectories provide by many users.

According to Experiment E (Section 7.5.5), an arbitrary unskilled user was randomly
chosen to act as exclusive teacher. All of its five trajectories per task have been taught
to the multi-SDM. In the test phase the memory was triggered with all trajectories of the
remaining users. This experiment consists of four runs such that each of the unskilled users
once acts as exclusive teacher. The reason for making this series of experiments that depict
a modified version of Experiment C and D are: to test the SDM’s predictive capability
when just trained with a few example trajectories (related to one-shot learning), to test the
system’s robustness when triggered with motion trajectories of skilled and unskilled persons
and avoiding the logical AND teacher–user relation of Experiment C. Here, an unskilled
person acts either as teacher or as user, but does not provide motion trajectories to either
the training or test set. This series of experiments yields admirable results. Considering
the small amount of training data, the rate of 80% of correct classifications is surprisingly
high as shown in Table 7.2. Table 7.3 illustrates that two of the tasks are always correctly
classified even with such a small training set. Merely the middle object 2 task (Table 7.3(e))
shows a strongly low classification rate.

The box-and-whisker diagram in Figure 7.12 shows the mean recognition duration until
correct classifications according to the arbitrary teacher. This figure, however, demonstrates
which of the unskilled users is the best teacher for the multi-SDM system. We can infer that
users with an early mean recognition rate produce the most universal or most generalised
trajectory set that best matches the task solving strategy of the remaining users.

Table 7.3 is a more detailed version of Table 7.2 that outlines the classification accuracy
of particular tasks. As seen in Table 7.3(a), classifying the motion trajectory at which a
user virtually touches the object at the height of the robot’s head always succeeds. This
indicates that either the stored (memorised) generalised trajectory for this particular task is
fundamentally different from those of the other tasks stored in the competing SDMs. It then
would be easy to separate them from the other tasks. Alternatively, all users may apply very
similar motion trajectories with regard to the stored one to solve that task. In our opinion
the high success rate is caused by the fact that the task is fairly different to all other tasks.

Touching objects that lie on or close to the x − z − plane of the robot’s shoulder joint
caused users to use quite different motion strategies. Some moved the robot’s elbow up first
(comparable to an excavator boom) and solved the task in such a way, others preferred to
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Table 7.3.: Success rates for classifying particular tasks with regard to the skill levels of
teachers and users. In case of unskilled teacher and unskilled user (UU) the first
number depicts the success rate with a mixture of unskilled teachers, while the second
number shows the success rate when the multi-SDM is trained by an individual, single
unskilled teacher.

(a) Task: Top object.
aaaaaaaa

Teacher
User S U

S 100% 100%

U 100% 100%/100%

(b) Task: Bottom object.
aaaaaaaa

Teacher
User S U

S 100% 100%

U 100% 100%/79,17%

(c) Task: Middle object 1a.
aaaaaaaa

Teacher
User S U

S 100% 95%

U 100% 100%/100%

(d) Task: Middle object 1b.
aaaaaaaa

Teacher
User S U

S 100% 95%

U 60% 87,50%/75%

(e) Task: Middle object 2.
aaaaaaaa

Teacher
User S U

S 100% 75%

U 90% 100%/45,83%
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Table 7.4.: Success rates ordered by tasks. The second column summarises the success
rates for Experiments A,B,C,D while the third column summarises for Experiments
A,B,D,E.

Individual Mixture of
Task unskilled teachers unskilled teachers

Top object 100,00% 100,00%
Middle object 1 a 99,29% 98,75%
Middle object 1 b 79,29% 85,63%
Middle object 2 64,05% 91,25%
Bottom object 88,10% 100,00%

keep the elbow down (like a swanlike neck) or oriented it to the left or right to accomplish
the task.

Contrary, the left object on the height of a table caused users to either use an elbow up
or elbow to the left strategy. This holds for the task of touching it from the front (Table
7.3(c)), while users preferred arm configurations where the elbow is oriented to the left if
they should touch the same object from the left side (Table 7.3(d)).

From all of the misclassified middle object 1 b tasks (Table 7.3(d)), 87.5% were erroneously
assigned to task middle object 1 a. Moreover, 12.5% have been erroneously assigned to the
tasks bottom object or middle object equally pronounced, with 6.25%. The success rate is
affected by the close relation to the middle object 1 a task. Most classification errors occur
when unskilled users act as teachers and the system is tested against the trajectories of an
expert. This proves that the skilled user developed his own specific strategy to solve partic-
ular tasks, such that the strategy does not really match the common approach. However,
even if the task middle object (Table 7.3(d)) shows the worst predictability along all studied
tasks, in the worst case the multi-SDM was still able to classify 60% of the test set correctly
(U–S combination).

Interestingly, an inversion of the close relation argument above cannot be drawn for task
middle object 1 a. Although many of the middle object 1 b tasks are misclassified as middle
object 1 a, the classification of the latter trajectories still retains a high success rate across
all teacher–user combinations (cf. Table 7.3(c)).

The differences between the presented success rates in Tables 7.3 and 7.4 are as follows.
Table 7.4 summarises the classification accuracy comprising all teacher–user combination
while Table 7.3 also considers the skill levels of different teacher–user combinations. Thus,
the former table presents the overall recognition rate of the particular tasks in the scope of
the presented experiments. What can be seen in Table 7.4 is that training the multi-SDM
by a number of individual teachers results in a reduced predictability compared to using
many different teachers. As a result, it can be concluded that a community-based teaching
performs better even with many moderately skilled teachers than when being taught by a
single expert.

7.5.7. Robustness to Noise

Due to the theory that predicts a low sensibility of the SDM concept to noisy inputs, some
tests have been conducted to prove this feature. Table 7.5 shows the mean of ten trials
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Figure 7.12.: Duration until correct task classification by the multi-SDM architecture with
regard to the individual unskilled teacher. Misclassifications are not considered in this
figure! The middle line within the boxes indicates the median. The upper and lower
quartile (boxes around median) denote the highest and lowest 25% of the recognition
duration. The sample maximum and minimum whiskers show the largest and smallest
observed duration for correct classification.
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Table 7.5.: Success rates if operated with a noisy trigger. Mean of ten trials according to the
multi-SDM prediction of a particular sequence in which an unskilled user had to touch
the object on the ground. Exactly n% of white noise is added to each component of
the trigger vector.

Noise Prediction Error
in % success % rate %

0 30,0 0
10 45,0 0
20 57,0 0
30 62,0 0
40 77,0 0
50 83,0 0
60 87,5 0
70 88,0 0
80 82,7 10
90 83,1 20

100 87,7 30

of classifying a certain trajectory of a certain user. Column prediction success shows at
which progress level of the trajectory it is classified correctly as a member of a task. Each
component of the input vector is modified with a variable percentage of white noise. The
noisy version of the input vector is then used as trigger for the multi-SDM to detect the
intention behind the particular action and to predict the next step of the trajectory. Table
7.5 shows that with 0% noise, the trajectory is classified correctly after presentation of 30% of
the trigger. When the trigger vector contains 10% noise, the trajectory is correctly classified
after 45%. When the trigger contains 80% noise, prediction errors occur for the first time.
In this case, 10% of the runs used for evaluation (1 of 10 trajectories) could not be classified
correctly. In turn, the remaining 9 trajectories have been classified correctly after 82,7%.

The important point of this test is that the predictability of a task remains stable until
the input vector contains 80% of noise. First prediction errors occur with equal and more
than 80% of noise. The more noise is added, the later the trajectory is classified correctly.
Although the results will certainly differ for all remaining trajectories of the test set, this
simple evaluation showed that the multi-SDM architecture is able to handle noise tremen-
dously well. Experiments that consider effects caused by memory loss have already been
presented in Section 5.2.2.

7.6. Discussion

The multi-SDM architecture exhibits very strong predictive capabilities in the recognition
of an operator’s intention during interactive guidance of a robot arm. The SDM concept
provides a congenial mechanism to reduce the input address space onto a smaller subset.
Especially in the case of applications with high-dimensional problems and address spaces
with a huge number of possible states—such as in the learning by demonstration through
telemanipulation domain. Current neural network architectures lack the amount of data
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needed to train such a system appropriately. Even if the multi-SDM is trained with few
training examples, it provides proper classification capabilities. Particularly its fundamental
characteristic to deal with incomplete and noisy input patterns makes its usage favourable
for robotic applications when dealing with various operators that act as teachers. Achieving
this results with a single SDM would be hard or nearly impossible. The multi-SDM approach
can be seen as a kind of specialisation that also happens in the brain.

The telemanipulation experiments confirm the hypothesis that SDMs can be used to dy-
namically classify high-dimensional robot sensor patterns to high-level actions and to act
as a suitable memory mechanism for interactive demonstrations. Contrary to statistical
approaches that need huge training sets to identify salient features of the input domain,
the multi-SDM architecture provides a basic memory mechanism that allows for learning of
much smaller training sets. The multi-SDM architecture establishes a linkage of low-level
sensor perceptions to high-level symbolic concepts, which is commonly known as the symbol
grounding problem.

Applications that may result from using the current or a slightly modified version of the
multi-SDM architecture may primarily give rise to context-driven assistance systems. If
the system recognises a certain intention of a user, it can provide purposeful assistance
such as taking over the task execution, providing additional information with respect to the
particular task and so forth.

The robot’s memory of experience is extendable to new tasks easily. Such an extension,
for instance, is to append another SDM to the multi-SDM when a new task is to be learnt.
In the beginning, an additional SDM instance might be filled with just few demonstrations
of a new task. If the system classifies a yet unknown trajectory to the newly learnt task, the
current trigger trajectory can be used to train the particular SDM instance to form a more
general representation of the task. The system does not have to be retrained completely
to find another proper set of salient features that influence the system’s implications. The
current problem in doing this automatically is to appropriately determine a trajectory as a
“new”, yet not learnt task. Due to the associative nature of the SDM, it will always provide
a prediction. This might be accomplished through a decision function to gain the technical
system with a proper decision capability of judging tasks as yet unknown and unlearnt.
Furthermore, especially the end of a manipulation sequence should receive special attention
since the fine positioning and fine motor skills can be considered more important than the
rough approaching procedure8. An initial idea to determine about a supplementary SDM is
as follows:

addSDM =
{
true if (θi ∗ δi) ≤ ξ,
false otherwise

(7.2)

where θ is the mean error contribution of SDM i ∈ {1, .., l} over the whole sequence and δ
depicts the tendency of the error contribution over time. Finally these parameters should
not cross a certain threshold ξ. When parameters such as relative error are involved in the
decision of additional SDMs, a threshold ξ has to be dynamically determined because of its
dependency on the number of participating SDMs. However, implementing an appropriate
decision function remains a challenging problem.

8Gallese and Lakoff (2005) propose to structure a grasp schema into role, phase, manner and value param-
eters. The phases consist of an initial condition defining the object’s location, an approaching phase, and
a central phase at which the particular object is grasped with a gripper.
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Another useful study is to not train the multi-SDM architecture with complete manipula-
tion tasks but rather with sets of motion primitives. Various approaches for deriving motor
primitives and atomic actions are proposed by Jenkins and Mataric (2004); Williams et al.
(2006); Wu (2008); Weser (2009). These should be represented by separate SDM instances,
e.g. lifting the elbow up, stretch the forearm, lifting an object, fine positioning et cetera.
The advantage of such a trajectory decomposition is that a multi-SDM can be used to iden-
tify the chronological order of primitive action elements that constitute a certain high-level
action. Additional layers can subsume the identified motion primitives into high-level action
snippets and so forth, which would lead to a hierarchical architecture. Also, reasoning on
the level of motion primitives will become possible.

The multi-SDM model can be integrated within a comprehensive perception system of a
robot, consisting of subsymbolic and symbolic layers. Features of an arbitrary input, so-called
microfeatures, can be extracted within a low-level sensoric layer. The state of the world at
a particular point in time, described by such microfeatures, constitutes the SDM address
vector. Triggering the multi-SDM with such an address vector results in a classification of
input data into symbols represented in a high-level semantic layer. If the sensors are read
periodically, the multi-SDM is able to classify sequential data into symbols represented in
a semantic layer. The system might be able to distinguish between approaching an object
and manipulating an object. If so, the system could, for instance, adjust the mapping of
the PHANTOM R© DesktopTM operational range to a more fine-scaled positioning resolution
of the robot’s manipulation tool. Furthermore, currently perceived and classified sequences
can be learnt online as a new experience to influence future behaviour of the multi-SDM.



126 Chapter 7 Sparse Distributed Memory for User Intention Detection and Learning



8
Crossmodal Interactions in Sparse
Distributed Memory

All thought is a feat of association; having what’s in front of you bring up
something in your mind that you almost didn’t know you knew.
(Robert Frost, American poet, 1874–1963)
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Natural cognitive systems benefit from combining different sensory inputs. Different
modalities provide information and judgements about different aspects of the world and
jointly encode particular aspects of events, e.g. the location or meaning of an event.

The CINACS project1 investigates principles of crossmodal interactions in natural and
artificial cognitive systems. As part of this project, this chapter describes how to use SDM
to combine perceptions of different sensory systems into a multisensory representation. Fur-
thermore, it studies advantages of multimodal perception compared to unimodal perceptions
on the basis of a localisation task of a robot.

1Research training group on Crossmodal Interactions in Natural and Artificial Cognitive Systems: http:

//www.cinacs.org

http://www.cinacs.org
http://www.cinacs.org
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8.1. Crossmodal Interactions

One of the most ubiquitous features of biological systems, from the simplest to the most
complex, is an ability to combine and synthesise information from the different senses. This
synthesis is highly adaptive in that it allows the creation of a “multisensory” view of the
world, one in which information from the different senses can be compared, integrated,
and evaluated to form an accurate and meaningful representation of the external world
(Wallace, 2004). In everyday life, object perception benefits from the coordinated interplay
of vision, audition, and touch. The different sensory modalities provide both complementary
and redundant information about objects, which facilitates the improvement of recognition
speed and accuracy in many circumstances (Amedi et al., 2005).

Most research on perception considers each sense in isolation, e.g. hearing, vision, touch,
olfaction and so on. It approaches the senses as being entirely separate modules. However, in
many situations the different senses receive information about the same external events and
objects simultaneously. The brain combines these stimuli to create multimodally determined
percepts of the external world (Driver and Spence, 2000).

In natural systems, the term crossmodal integration2 describes that particular external
properties often stimulate several senses simultaneously and that the information from mul-
tiple modalities is combined into a convergent percept (Driver and Noesselt, 2008). Ex-
amples for crossmodal integration are the McGurk effect (McGurk and MacDonald, 1976)
and the ventriloquism effect (Bertelson, 1999). In the McGurk effect, for instance, a seen
lip-movement can alter which phoneme is heard for a particular sound. McGurk and Mac-
Donald (1976) reported that on being showing a film of a young woman’s talking head, in
which repeated utterances of the syllable “ba” had been dubbed on to lip movements for
“ga”, normal adults reported hearing “da”. With the reverse dubbing process, a majority
reported hearing “baba” or “gaba”. In the ventriloquism effect, a seen lip-movement can
influence the apparent location of speech sounds. These effects are called crossmodal effects.

In case of convergent and concurrent information provided by two ore more modalities,
the biological system has to discriminate such cases from those where stimuli are entirely
unrelated. Several authors proposed simple heuristics for crossmodal integration of infor-
mation, most of which are spatio-temporal correlations. Stimuli that occur at the same or
similar time and/or place tend to be treated as referring to the same external event (Driver
and Spence, 2000). Another crossmodal interaction is that judgements of one modality can
be influenced by a second modality even when the latter modality cannot provide any in-
formation about the judged property itself. The multisensory nature of our perceptions has
several behavioural advantages—for example, quicker response and improved recognition in
noisy environments (Newell, 2004).

Since the end of the 1990’s, the use of sensor fusion—also known as multi-sensor fusion—
has been growing in popularity in engineering to increase the reliability, accuracy, com-
pleteness and range of individual sensors by combining the resulting information of various
sensors. Recent approaches to sensor fusion differ in their provided functionality, e.g. by
providing complementary, concurrent, cooperative or independent information. The most
popular techniques for fusing information of multiple sensory sources are: stochastics, clas-
sifiers, Kalman filter, fuzzy-logic, logic and rule-based algorithms.

2The terms crossmodal and multimodal are used interchangeably by researchers of different disciplines. Thus,
both terms are used in this work interchangeably, too.
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Figure 8.1.: A distinction of crossmodal (A+V) effects.

Human multimodal abilities give a framework for the development of artificial intelligent
systems. Nevertheless, this does not necessarily mean that the underlying computational
nature of a natural multimodal system must be the same as in an artificial system. It
rather serves as an inspiration. Crossmodal interactions in robots is a very young field.
One task of this thesis is to establish a robot memory that is useful for understanding
crossmodal integration. Thus this chapter merely presents an approximation of natural
intelligence according to crossmodal integration regarding the developed memory system but
currently does not replicate the natural system. Multimodal perception in humans is still
not understood enough to permit making a clear definition of the underlying mechanisms.

The question to be answered in this chapter is: Can a unified percept originating from
various sensors improve the robustness and accuracy of memory-based room classification.
To analyse this research question, the crossmodal effects are considered in more detail.

The term crossmodal effects comprises a set of alternative effects that may occur. Let us
consider an exemplified repetition task to illustrate the different forms of such crossmodal
effects. The task is divided into three subexperiments. In the first experiment a subject is
confronted with a number of words that each are presented visually to the subject on a screen
for several seconds consecutively. Afterwards, the subject is asked to recite the presented
words. The second experiment consideres an auditory presentation of the words by reading
them out loud, thus stimulating the subject’s aural sense. Again, the subject is asked to
repeat the words afterwards. In a third experiment the words are presented on a screen and
are read out loud at the same time, thus stimulating the subject’s visual and aural senses
likewise. The number of correct word repetitions is shown in Figure 8.1 to illustrate the
three types of possible crossmodal effects.

When the subject is just able to recite less words in the multimodal test than in the poorest
of both unimodal cases, the crossmodal effect is defined as being totally inhibitory . If the
subject is able to recite more words in the multimodal domain than the poorest unimodal
one, but still less than in the best unimodal domain, this is referred to as partially inhibitory
and similarly as partially facilitatory effect . When the results of the crossmodal recitation
exceeds all accomplished results of the participating modalities, it is referred to as fully
facilitatory effect , in psychology also termed supramodal effect .
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8.2. Experiment: Crossmodal Robot Localisation

In order to study crossmodal interactions with an SDM, the robot was tested for a localisation
task. The robot acquired data of several rooms in a real world office domain via laser range
finders and an omnidirectional vision system. During a learning phase the robot stored the
data of each room into a separate SDM of a multi-SDM architecture. Each SDM of the
multi-SDM was labelled with a unique room identifier during a supervisory learning phase.
Subsequently, a multi-SDM prediction was triggered with yet unlearnt data of an arbitrary
room to establish a localisation based on subjective experience. Thus, the robot establishes a
localisation based on the currently sensed situation and context. The experiment comprised
three different sub-tests for analysing crossmodal influences. The tests are as follows:

Unimodal laser-based localisation: The robot learns data that is acquired through its laser
range finders. Each SDM learns a vector that consists of a set of distance values. A
multi-SDM is triggered with a yet unknown laser scan and predicts the most likely
room it believes to be in.

Unimodal vision-based localisation: The robot learns data that is acquired through its om-
nidirectional vision system. Each SDM learns a vector that consists of a set of micro-
features, which are a number of pixels that result from edges in the input image. A
multi-SDM is triggered with a yet unknown omnidirectional image and predicts the
most likely room it believes to be in.

Crossmodal localisation: The robot learns data from both sensors, laser range finders and
omnidirectional vision system. Each SDM learns a vector that consists of a set of
distance values and a number of edge pixels. A multi-SDM is triggered with a yet
unknown laser scan and image and predicts the most likely room it believes to be in.

While capturing the laser range and vision data at a given time, the robot also captures
its orientation η from a virtual compass3. Its orientation η is used to determine the data
sampling starting point to finally construct an appropriate input vector for the memory.
These preprocessing steps that are used before creating an SDM input vector are detailed in
the subsequent sections.

The office environment includes a long hallway, several offices, a kitchen, two laboratories
and a workshop. Sensor data of the robot is recorded at 18 different locations inside the
office domain. Table 8.1 summarises the number of acquired training samples per room. The
positions of the bars in Figure 8.6 approximately illustrate the different locations for data
capture. Several data acquisition runs have been made. The capture position and respective
orientation of the robot varies among different runs and is hardly identical to any previous
run. Since data acquisition was accomplished across different dates and times, the captured
scenes may possess variations, e.g. changed lighting conditions, rearranged scenes and scene
objects such as closed or opened doors, people present and so forth. It becomes obvious that
the training set for SDM-based robot localisation includes differences even for one and the
same room. Nevertheless, it is expected that the multi-SDM architecture is suited to deal
with these variations and to successfully accomplish a robot localisation.

3Though the robot is not equipped with a magnetic compass its orientation is computed from the robot’s
navigation system.
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Table 8.1.: The amount of training data per room.

Room Training samples

Archive 1 6
Archive 2 6
Elevator 6
Hallway 1 6
Hallway 2 6
Hallway 3 3
Hallway 4 6
Hallway 5 3
Hallway 6 5
Kitchen 6
Lab 1 4
Lab 2 6
Office 1 3
Office 2 3
Office 3 6
Office 4 7
Office 5 4
Workshop 5

Note that these experiments are not used to process sequentially ordered sets of world
states to predict any residual motion trajectory as described in previous chapters. These
experiments are rather used to determine the robot’s belief of where it currently is located
within an office environment based on its past experience.

8.2.1. Laser Range Scans for SDM

The robot captures a 360◦ 2D laser scan of its environment via two SICK Laser Measurement
Systems (LMS). Each scanner covers 180◦ of either the space ahead or behind the robot with
an angular resolution of 0.5◦. This yields a number of 722 distance values in total. Figure
8.2 shows a laser range scan in the laboratory.

In order to compensate for the robot’s orientation during data acquisition, the conversion
of the distance arrays provided by the laser scanners to an SDM input vector follows a
certain algorithm. The first value of the SDM input vector is defined by the distance value
of the range scan that corresponds to the robot’s current orientation. Hence, the robot’s
orientation η is treated as an offset for the initial reading position of the laser range scan.
The subsequent values are directly transferred to the SDM input vector. If the end of the
distance array is reached, it continues from its beginning. The conversion finally ends with
the distance element for η − 0.5◦ and the corresponding last element of the input vector. In
an SDM input vector such that:

x =< d1, d2, . . . , di >, (8.1)

each distance value di, i ∈ {1, . . . , 722} is expressed by a 64-bit double precision value. The
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Figure 8.2.: A laser range scan of the robot standing in the laboratory. Each red line shows
a laser beam and its distance of reflection.

resulting SDM vector thus has a size of n = 46208 bits. This vector is used for the first
unimodal SDM-based localisation experiment. Such vectors are learnt by all SDMs of a
multi-SDM architecture with respect to the particular room where they have been acquired.
The trigger vectors for an arbitrary multi-SDM prediction are similar. Figure 8.3 shows
another laser scan of the laboratory that illustrates the perceived distances.
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Figure 8.3.: The robot’s laser range scan of the laboratory.

8.2.2. Omnidirectional Feature Images for SDM

Capturing image data with conventional cameras or a stereo system is impractical for com-
prehensive environment perception due to the dependency on the robot’s viewing direction.
To avoid this dependency, the robot captures images through an omnidirectional vision sys-
tem (see Section 4.1.1.3). It thus achieves an omnidirectional view of the entire environment
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around the robot. Nevertheless, the particular orientation of the robot yields a circular shift
in the captured omni-image.

A circular band that contains the projections of the hyperboloid mirror is extracted from
the source image. A resulting image of the robot’s environment is shown in Figure 8.5(a).
A filter that uses a convolution with a Gaussian function is applied for image smoothing.
This is done to establish a low-pass filtering of the input image and to remove noise and high
frequency parts of the image. The smoothed image is converted into an 8-bit grey image.
Then, a Sobel edge detector is used to highlight sharp changes in image intensity. Figure
8.4 illustrates two 3× 3 convolution kernels that are used to generate vertical and horizontal
derivatives. The final edge image is produced by combining the two derivatives using the
square root of the sum of the squares. Due to the low-pass filtering, only prominent edges
will remain in the image. Figure 8.5(b) shows the resulting edge image which is the basis
for further processing regarding the SDM-based learning.
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Figure 8.4.: Two 3× 3 convolution kernels of the Sobel operator.

To create the microfeatures for the SDM input vector, the edge image is divided into
equally sized slices. Each slice is sampled from the centre of the image to the outer ring
limited by r. A slice, denoted by s, is further limited by the angles φ and φ + τ , where τ
defines the size of the slice. The number P of edge pixels within a slice si that exceed a
certain threshold is given by:

Psi = |{(r, ω) : (φ ≤ ω < φ+ τ) ∧ (grayV alue(r, ω) ≤ threshold)}| (8.2)

The above-mentioned unimodal experiment uses a slice size of τ = 10◦. The number of
edge pixels P in a particular slice si constitutes the corresponding SDM vector element and
is presented as double precision value4. To compensate for the robot’s orientation, which
yields a circular shift of the captured omnidirectional image, the limit of the first slice is
derived from the robot’s orientation η during data acquisition. The first slice s1 ranges from
φ = η to φ = η + τ . The red lines in Figure 8.5(b) exemplify such a slice. The SDM input
vector shown in Equation 8.3 follows from the above-mentioned construction process.

x =< P1, P2, . . . , P 360
τ
>, (8.3)

Such vectors of size n = 2304 bits are learnt by all SDMs of a multi-SDM architecture with
respect to the particular room where they have been acquired. The trigger vectors for an
arbitrary multi-SDM prediction are similar.

4Though just representing integers.
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(a) Omnidirectional source image. (b) Edge image, an one sector.

Figure 8.5.: Illustration of image-preprocessing applied to the omnidirectional views. A
spherical image is cut-out from the source image (Figure 8.5(a)). Further steps are
Gaussian blur, image conversion and edge detection.

8.2.3. Crossmodal Integration of Sensoric Percepts

The two above-mentioned sections detail how particular sensory-based percepts are prepro-
cessed before storing them into an SDM. In order to study a crossmodal integration of both
modalities, both SDM vectors presented in Equation 8.1 and 8.3 are combined to a single
SDM vector:

x =< d1, d2, . . . , di, P1, P2, . . . , Psj >, (8.4)

where each di, i ∈ {1, . . . , 722} represents the distance value sensed through the laser scan-
ners, and the number of edge pixels P in the particular slices sj , j ∈ {1, . . . , 360

τ } represent
the microfeatures of an omnidirectional image.

Storing this kind of vector in the memory yields a unified multimodal representation of
a particular state of the world, in this case rooms. This experiment comprises just two
modalities but the vector can be extended with further modalities easily if necessary.

As mentioned in Chapter 5, the SDM implementation of this work is able to handle partial
cues. This makes it possible to train a multi-SDM with the multimodal vectors presented in
Equation 8.4 for all experiments. In the case of the unimodal experiments, the multi-SDM is
triggered with a crossmodal vector where just the modality-specific vector portion contains
any values. The memory will reply with the most similar experience.

In case of the multimodal perception, it can be inferred that the vector portions of Equa-
tion 8.4 have different lengths. The portion provided by the laser data shows a length of
46208 bits while the portion provided by the vision sensor features only consists of 2304 bits.
This implies that the distance values of the laser scanners influence the relative error (the
used distance metric) of a crossmodal multi-SDM prediction approximately 20 times more
strongly than the image-based portion. Thus, a variable weighting factor has been intro-
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duced to optionally strengthen the influence of each sensoric component during a multi-SDM
prediction separately. In case of the experiments presented in Section 8.3, a weighting factor
of 60 is applied to the portion that contains the edge pixels computed from the images. Ac-
cordingly, the image-based portion thus influences the relative error 3 times more strongly
than the laser range portion.

8.2.4. Belief Value

For the purpose of memory-based robot localisation, the multi-SDM model is used to classify
the position which the robot believes to currently be in. As shown in Section 7.4, the SDM
that provides the smallest amount to the entire error wins. Since a low value should not
be taken as a representative for any winning score, a belief value is computed according to
Equation 8.5. For the sake of clarity, the belief value is used to avoid possible misinterpreta-
tions by the reader. For the belief score Ψ of SDMi the sum of the distances to the closest
hard locations of each SDM depicted by

∑l
j=1 θ(SDMj) is subtracted from the distance of

the particular SDM denoted by θ(SDMi). Afterwards, the result is divided by the sum of
all such individual distance computations.

Ψ(SDMi) =

∑l
j=1 θ(SDMj)− θ(SDMi)∑l

k=1

∑l
j=1 θ(SDMj)− θ(SDMk)

(8.5)

8.3. Results

Figure 8.6 shows the robot’s belief values based on several multi-SDM predictions across the
entire office environment. Subsequent bar charts illustrate the robot’s belief values regarding
a particular room of the office environment when it is placed in that room. Further charts are
presented in Chapter D. Figure 8.6 shows that the number of correct classifications can be
increased by using a crossmodal representation. In the case of the crossmodal classification,
14 patterns have been identified correctly while in unimodal classifications each modality
identified 12 rooms correctly.

Note that the underlying map of the hallway in Figure 8.6 is unknown to the robot and
is only presented for the sake of clarity. The robot’s localisation algorithm presented in this
chapter relies only on sensorial data it has perceived and stored in its memory before.

8.3.1. Advantages of Crossmodal Classification

As mentioned above, using more than a single modality can increase the classification accu-
racy. Therefore, four rooms will be considered in more detail. The rooms Hallway 6, Hallway
4, Office 3 and the Workshop presented in Figures 8.6, 8.7, 8.8, 8.9 and 8.10 illustrate that
one of both unimodal classifications fails.

In this particular cases, a crossmodal classification—where the world is represented by sev-
eral modalities—can compensate for the unimodal misclassifications. Thus, a more reliable
localisation of the robot can be accomplished. Unfortunately, this is not generally valid for
all cases. Examining Figure 8.10 in more detail reveals that the robot’s crossmodal belief of
being in Hallway 6 strongly competes with Hallway 5 (Figure 8.13). However, both rooms
finally win the predictions due to the same belief values but still yield an inconclusive predic-
tion result. It can be seen that for most of the data samples the multi-SDM provides similar
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Figure 8.7.: The robot’s belief if triggered with pattern Hallway 4.
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Figure 8.8.: The robot’s belief if triggered with pattern Office 3.
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Figure 8.9.: The robot’s belief if triggered with pattern Workshop.

beliefs for rooms that look similar, e.g. for the hallways. Looking at the misclassification of
Hallway 3 and Hallway 5 shows that the robot preferably beliefs to be located in any of the
other hallway rooms.

Contrary to what has been expected, the crossmodal classification is not reliable for iden-
tifying the robot’s position correctly when both unimodal classifications fail. Examples for
this are rooms such as Archive 2, Hallway 3 and Hallway 5 presented in Figures 8.11, 8.12
& 8.13 respectively.
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Figure 8.10.: The robot’s belief if triggered with pattern Hallway 6.
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Figure 8.11.: The robot’s belief if triggered with pattern Archive 2.
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Figure 8.12.: The robot’s belief if triggered with pattern Hallway 3.

8.3.2. Classifying Rooms with Variations

The data acquisition was accomplished across different dates and day-times. Figures 8.14(a)–
8.14(c) illustrate that the training data possess variations in the robot’s position, lighting
and arrangements of the scene. By using image features such as edges, most of the variations
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Figure 8.13.: The robot’s belief if triggered with pattern Hallway 5.

in the scene’s illumination conditions become irrelevant5.
Note that image sampling follows Equation 8.2 and the angle of the first slice correlates to

the angle of the robot during data acquisition. Thus, the image orientation is compensated
while the robot’s position slightly varies across the different images of the test set. Looking
at the trigger image shown in Figure 8.14(d) reveals that several persons are located in
the office, too. Nonetheless, the robot’s location can be successfully determined by its past
experience of the room (cf. Figure 8.15). Such particular examples show the high flexibility
of a multi-SDM robot localisation.

Other triggers, for instance with an open door, also showed that the multi-SDM is suitable
to locate the robot’s position correctly although the doors were closed in all of the training
patterns. It can be concluded that the multi-SDM provides a flexible mechanism for robot
localisation whose accuracy can be improved through the integration of different modalities.

8.3.3. Separability of Particular Rooms

Several rooms show similar characteristics with respect to their size and the amount of
furniture. The latter leads to laser range scans that comprise major and sudden changes
in the measured depth values. Compared to all the other rooms of the office environment,
the laboratories and the workshop are relatively large rooms. The offices are of comparably
small size. The multi-SDM mostly provides comparable beliefs for rooms that look similar
with respect to their proportions, e.g. for hallways, laboratories and the offices. But what
may be the reason for this?

In some cases, the multi-SDM computes comparatively high beliefs for a group of rooms,
e.g. offices in Figure 8.15. It can be seen that most of the offices’ belief values exceed the
values of all remaining rooms. This effect is considerably large for Lab 1. Figure 8.16 shows
that the robot’s belief of being in one of the large rooms with a lot of free space and less
furnishing considerably exceeds the low belief levels for the remaining rooms of the office
environment. This illustrates that the multi-SDM is able to find certain high-level relations
within low-level sensory data patterns without explicitly teaching them.

5Small variations of the images’ brightness are manageable. Please note that this statement does not include
vigorous changes, e.g. a dark room at night without any room illumination as opposite to a bright room
during a sunny day.
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(a) (b)

(c) (d)

Figure 8.14.: Source images of the training set for the visual modality for Office 1 (a-c) and
source image of the trigger for the multi-SDM classification (d).

8.3.4. In Search of Crossmodal Effects

The multimodal localisation experiment presented in this chapter was carried out to check
whether crossmodal effects occur in a multi-SDM prediction like in human perception. It
was anticipated that a crossmodal belief exceeds the beliefs achieved by the unimodal per-
ceptions, thus yielding a supramodal effect. According to the operational definition given in
Section 8.1, the research question of whether crossmodal prediction can be advantageous for
memory-based robot localisation has been answered. Figure 8.6 shows that the crossmodal
prediction predominantly reveals a partially facilitatory effect with respect to the unimodal
classifications. However, a supramodal effect in the current configuration of the memory
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Figure 8.15.: The robot’s belief if triggered with pattern Office 1.
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Figure 8.16.: The robot’s belief if triggered with pattern Lab 1.
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system can be as little observed as totally inhibitory effects. The particular belief figures
demonstrate that a crossmodal prediction forms a kind of average of both of the unimodal
predictions.

Let us consider the crossmodal input vector of a multi-SDM again. As already mentioned,
the laser-based portion of the vector is 20 times larger than the visual-based portion. Thus,
when comparing any crossmodal input vector to memory hard locations, the laser-based
perception of a room has a stronger influence on the errors of the distance metric. An
empirical analysis was conducted to determine the average influence of each modality on
the error rates of a multi-SDM prediction. It reveals that the laser-based error is 130 times
higher on average than the vision-based error. Considering the circumstance that the laser-
based vector portion is 20 times larger than the vision-based vector portion, the former
portion causes 6.5 times more errors on average than the latter portion. Paradoxically, it
was empirically observed that weighting the vision-based portion by a factor of 60 yields a
proper localisation behaviour for the robot. But currently it is not clearly evident why a
weighting factor of 6.5 does not perform comparably well.

However, this experiment clarifies that weighting particular modalities in a crossmodal
classification task has a considerable influence on the computed results. It would be of great
interest for this study to know which senses dominate in human crossmodal perception6.
More thorough investigations on cognitive neuroscience are necessary to resolve the modality-
specific weighting in crossmodal perception. The outcomes of such studies may help to
determine appropriate weighting factors for further studies on multi-SDM-based crossmodel
perception, particularly if further sensors are involved in future.

8.4. Discussion

Previous chapters considered the implementation of the SDM and multi-SDM concept for
unimodal robotic experiments. The experiments of this chapter reveal the feasibility of using
a multi-SDM architecture for multimodal studies in artificial cognitive systems. The multi-
SDM was used to achieve a localisation of a robot within an office environment based on past
experience. The integration of various sensoric modalities led to a more reliable localisation
than achievable by unimodal SDM-based classification. These experiments proved that the
multi-SDM architecture is suitable to deal with input vectors that integrate several unimodal
percepts into a unified crossmodal representation of the world at a particular time. The
multi-SDM offers a computational method for unification-based crossmodal interactions7

that exhibit partially facilitatory effects. Future research may close the gap between natural
intelligent and artificial intelligent systems by further developing the proposed system.

The robustness of a perception can be increased by the combination and integration of
multiple sources of sensory information. Using multiple sensory sources helps to achieve
disambiguation of similar perceptions. The above-mentioned experiment outlined that a
multi-SDM crossmodal perception can obtain disambiguation. The proposed architecture

6Indeed, it can be assumed that the visual modality dominates in human perception under consideration
of the size of the modality-specific regions in the brain. The visual cortex is considerably larger than all
the brain regions used for other sensoric modalities. This is not only caused by the complexity of the
respective modality.

7Note that it is not claimed that the proposed method replicates human intelligence regarding crossmodal
interactions.
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constitutes an appropriate platform for additional studies on crossmodal perception and
integration.

Future work may involve the integration of further modalities or microfeatures of the
world. Such features could comprise a colour histogram, lines, corners and so forth. Several
computed beliefs vigorously compete for the winning prediction, e.g. the robot’s crossmodal
beliefs of being either in Hallway 6 or Hallway 5 when triggered with the pattern presented
in Figure 8.10. Future work may comprise studies where competitive predictions yield a
fuzzy robot localisation such that the multi-SDM indicates the top three classifications as
most probable. Examining different permutations of several involved modalities8 followed
by a comparison and majority decision regarding the sets of predictions may lead to more
reliable predictions. It has been shown that the multi-SDM provides a flexible architecture
for studying the crossmodal fusion of low-level sensory-based patterns.

8If more than just two modalities are concerned in crossmodal classification.
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9
Conclusion

Memory itself is an internal rumour.
(Jorge August́ın Nicolás Ruiz de Santayana, American philosopher, 1863–1952.
The Life of Reason or The Phases of Human Progress)
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9.1. Summary

In this work, an autobiographical associative memory system has been developed for the
purpose of learning and predicting low-level sensor and actuator patterns of an autonomous
service robot. The following topics have been addressed in the course of this work:

• Development of an associative memory structure based on a connectionist approach to
learn and predict robot arm motion sequences for an autonomous task execution.

• Association of new input patterns to already learnt contexts with the goal to generate
an appropriate output even when modified or noisy contexts are presented to the
memory.

• Development and analytical investigation of alternative information encoding methods
for an optimisation of the memory model.
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• Comparison of the memory model’s performance when transferred to other robotic
modalities and domains, such as vision-based robot navigation.

• Extension of the architecture and evaluation for the purpose of learning, generalising
and classifying interactive manipulation sequences. Human instructors with different
skill levels demonstrate complex manipulation tasks to the robot via a telemanipulation
system.

• Comparison of uni- and multimodal perception for rough robot localisation in an office
domain based on the developed autobiographical robot memory.

Learning is part of intelligent behaviour and is based on building and operating on an
internal model of the world. Besides just observing and learning physical aspects of the
world through sensors, a system also acts within the world and learns from its interactions.
Learning to perform actions relies on learning to reproduce sequences of motion patterns. The
predictive power of a memory is given by its ability to retrieve sequences and to generalise.
The presented work has described a memory system to store an autobiographical past of
a robot system. It memorises sequences of discrete robot motion patterns in an SDM.
Even if not intuitively compelling, Kanerva’s mathematical-statistical SDM approach made a
major contribution by exploring the nonintuitive properties of high-dimensional binary space.
Patterns representing the current moment can be used to address and retrieve consequences
of similar moments in the past. Retrieving consequences of similar moments from a memory
of autobiographical experiences constitutes an important aspect of an autonomous, mentally
developing robot system to choose appropriate actions, e.g. to avoid danger, to seek reward
and to re-use solution strategies for similar tasks.

Several modifications have to be applied to the SDM model to learn non-random sensor-
based perceptions of a robot. The drawback of an a priori selected and non-modifiable
address space has been eliminated by using a randomised reallocation algorithm. Memory
locations are dynamically added based on the observed data rather than being restricted to
a fixed address space. New hard locations are allocated randomly in the neighbourhood of
an input address if the data cannot be stored into enough existing hard locations. Further,
the memory capacity of the autobiographical robot memory has been increased by replacing
the counters of the contents matrix by single bits. As a result of the replacement the efforts
for computing the counter’s values could be reduced and the operational speed of the entire
system was increased.

The bitwise implementation with the Hamming metric does not perform very well, and
thus, alternative coding schemes were developed. The performance of three encoding modes
have been compared and analysed in Section 5.3 and showed that the model can be signif-
icantly increased when operated with an arithmetic mode and Euclidean distance metric.
The sum code mode exhibited a robust behaviour, too. Its performance corresponds approx-
imately to the arithmetic mode, but at the expense of a longer runtime due to the increased
vector size and corresponding distance computation. Note that the increase in runtime only
occurs when the SDM is implemented in software rather than in a parallel hardware archi-
tecture. Since this work is primarily concerned with an implementation for robots whose
control PC usually operates at performance limits, runtime and the required memory space
cannot be disregarded. In Chapter 5 it has been shown that robot arm motion sequences
can be learnt by a modified SDM. One of the main advantages for a robot system is that
the property of iterative prediction of consequences for certain situations enables the robot
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to re-execute sequences autonomously. The problem of predicting higher than first order
associations has been partially solved by using the folding concept. Additional SDMs also
represent second-, third- and up to kth-order state transitions, however, at the expense of
higher computational costs. Within the multi-SDM architecture, the context of a sequence
state has been considered by weighting the preceding sequence predictions. Nevertheless,
temporal dependencies still remain a significant issue in sequence learning, especially in the
case of long-range dependencies.

Chapter 6 showed that the developed memory model also supports other sensory modali-
ties. It was empirically shown that the three proposed encoding modes yield a similar per-
formance according to the predictive property of the memory even when applied to different
fields, such as vision-based navigation and manipulation. The arithmetic mode achieved
the most robust behaviour in the domain of view sequence-based robot navigation, too.
It further became clear that the memory model is suitable for working with considerably
larger memory spaces than presented in the manipulation cases of this work and a lot of the
preceding work on the SDM.

The developed memory model was mainly used as a flexible pattern recognition and predic-
tion system. Different sensor-based and actuator-based patterns, captured during interactive
manipulation task demonstrations performed by several human teleoperators, had to be pro-
cessed by the memory system. It was therefore very important to develop a memory that
is content-addressable, such as in human memory. A linkage of various low-level sensory
percepts and several high-level semantic task descriptions has been achieved by an extension
referred to as multi-SDM architecture, detailed in Section 7.4. This linkage, in parts, refers
to the symbol grounding problem (Harnad, 1993; Coradeschi and Saffiotti, 2003).

Various robot arm motion trajectories of different tasks have been learnt and generalised by
the multi-SDM architecture. The memory model proved its ability to relate yet unknown and
vague motion trajectories to high-level tasks and to predict consequences of given situations
based on past experience, cf. Section 7.5. The multi-SDM can infer high-level events from
sequences of states that describe the world at a definite point in time. By means of a
detailed analysis it has been shown that the proposed system is able to classify vague and
non-identical trajectories correctly with high accuracy. It has to be emphasised that the
multi-SDM model obtains comparable results regardless of the teacher’s skill level. The
system does not show a significant difference when trained by a single expert or a set of
laymen. The generalisation and local Hebbian learning property together with the sparse and
distributed memory characteristic yields a good possibility to learn from numerous teachers.
Moreover, the autobiographical robot memory is able to compensate for memory damage and
spontaneous loss of arbitrary memory locations through its redundant information storage
mechanism.

Chapter 8 showed the feasibility of using a multi-SDM architecture for multimodal studies
in artificial cognitive systems. The proposed architecture constitutes an appropriate platform
for additional studies on crossmodal perception and integration. Training the multi-SDM ar-
chitecture with unification-based crossmodal percepts led to partially facilitatory crossmodal
effects with respect to a robot that has to localise itself in an office environment based on
its past perceptions.

Kanerva (1988) concludes his seminal work with the hypothesis that SDMs are partic-
ularly suitable for robotics, which has been partially proven by this study. Nevertheless,
some criticism still arose during the implementation proposed in this work. Since the SDM
is a parametric model, the learning rate and activation radii have to be determined with
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respect to the application purpose. When closely related values are stored in an SDM, large
activation radii yield high error rates. Decreasing the activation radii to gain better results
reduces the distributive characteristic of the model and thus constitutes a conflict between
generalisation of input patterns and reproduction accuracy of sequences.

For encoding a world in an SDM, the representative features heavily depend on the avail-
able sensors and the particular domain. An SDM always represents the entire context of the
world, regardless of whether each entity is of particular interest or not. The entire context is
treated equally. Chapter 8 shows that any weighting of involved modalities requires empiri-
cal analysis. The SDM always relates input patterns to the closest stored concepts. Defining
decision functions for detecting new concepts are again domain-specific. As all PDP models,
the SDM is not transparent to the user concerning the representation of the stored data.

9.2. Contributions of this work

It was shown that the SDM model as a mathematical model of certain apparent properties
of real neural systems yields a good mechanism to deal with high-dimensional problems
of low-level robotics. This work presents the first transfer of the SDM concept to mobile
robot manipulation and further robotic applications. Moreover, this work presents the first
application of an SDM-based multimodal integration for a catadioptric vision system and
laser range finders. It demonstrates that the SDM model can be applied to several of the
current challenges in robotics but also reveals certain practical problems when transferring
the SDM’s elaborated theory to robotic applications. Nevertheless, the presence of noise in
sensor data is nearly inevitable and a challenging problem when dealing with sensors. The
developed model enhances a robot with elementary cognitive processes to determine proper
response functions and actions to perceived situations by finding the best corresponding
output to an imperfect input vector. The resulting autobiographical memory provides the
robot with simple storage and retrieval mechanisms for maintaining subjective experiences.
The distributed data storage and retrieval yield a more robust information storage with
respect to failure and damage of individual memory locations. Although heavily dependant
on an appropriate selection of parameters, as shown in Section 5.3, the model provides good
capabilities for trajectory learning based on simple learning rules.

This project has been part of the CINACS Graduate Research Training Group on Cross-
modal Interactions in Natural and Artificial Cognitive Systems1. The main contributions of
this work are as follows.

9.2.1. Robotics

Content-addressable memories such as the developed autobiographical robot memory bear
great potential to access stored information based on the information itself. The main
achievement of this work is to show that a context-based and self-organising memory with
localised Hebbian learning can be successfully applied as a content-addressable autobiograph-
ical robot memory for past events. The implementation is suitable for both one-shot online
and offline learning and furthermore supports natural forgetting.

Another important characteristic shown is the memory’s robustness against damage and
loss of individual locations. It was shown that a robot equipped with an SDM does not nec-

1http://www.cinacs.org

http://www.cinacs.org
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Atomic Events

Complex Events I

Complex Events II

Semantic Layer

Sensoric Layer

Mediating Layer

Multi-SDM

Trigger

Raw Sensor Data

Figure 9.1.: Putting SDM into a frame: Taxonomy of an entire perception system for robots.
The multi-SDM is suitable to mediate between low-level sensory-based and high-level
semantic layers.

essarily lose information irrevocably when some memory locations are injured, and remains
capable of retrieving action consequences. The autobiographical memory enables a robot to
learn on the fly and to dynamically adapt its model of the world. The developed system has
been successful in retrieving appropriate actions from its past according to similar situations.
The robot is able to autonomously complete a motion sequence by retrieving the associated
actions of a current situation from its experience. The proposed model provides a valuable
alternative for robot learning-by-demonstration and is particularly attractive because of its
simple learning and generalisation mechanism as well as its integrated memory storage and
retrieval procedures.

A multi-SDM can be integrated in the framework of a comprehensive perception system of
a robot (see Figure 9.1). A still challenging problem of cognitive robotics is the sensorimotor
transduction problem, the representation of sensory information within a symbol system. A
solution to this problem is a prerequisite for a mapping of perceptions to semantic knowledge
(Hertzberg and Saffiotti, 2008). Numerous research activities in robotics and computer vision
approach this problem, e.g. Chella et al. (2000); Coradeschi and Saffiotti (2000); Coradeschi
et al. (2001); Coradeschi and Saffiotti (2003); Gärdenfors (2004).

Most approaches model the mapping of sensor values to symbols manually, which is any-
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thing but simple. Obviously, the perception of the world is totally different in robots and
humans. It is a promising approach to base this mapping on the subjectively learnt experi-
ence of a robot. In contrast to the above-mentioned approaches, the developed multi-SDM
mediates between the sensory and semantic layer as follows: (a) The mapping of sensor-based
patterns to semantic entities is learnt by the robot based on its experience while acting in
its environment. (b) Learning is online and can be carried out for a robot’s entire lifecy-
cle. Changes in the world cause changes in the behaviour of the multi-SDM, and thus of
the robot’s behaviour. This gives rise to a plasticity analogous to the one accomplished by
natural cognitive systems.

Figure 9.1 summarises the integration of a multi-SDM model within the perception system
of a robot. Features of an arbitrary input, so-called microfeatures, are extracted within a
sensoric layer. Those microfeatures constitute the SDM address vectors. Triggering the
multi-SDM with such address vectors yields a classification of (sequential) input data to
symbols represented in the semantic layer. Furthermore, currently perceived and classified
sequences can be learnt online as new experiences to influence future behaviour of the multi-
SDM.

9.2.2. Modelling Cognitive Functionalities & Multimodal Integration

High-dimensional spaces and randomness constitute valuable concepts concerning the mod-
elling of cognitive mechanisms. Hyperdimensional representations may explain some illusions
in the future that let us doubt our perception. Mathematical considerations can suggest how
circuits need to work to achieve certain cognitive functionalities.

Neuroscience can benefit from mathematical approaches to representation and perception.
Experimental psychology and neuroscience emphasise the crucial influence of multimodal
perception and representations though focusing mostly on unimodal perception in the past.
Further studies on connectionist approaches in close collaboration with experimental psy-
chology and neuroscience have a high potential for contributing to the decipherment of
mechanisms of multimodal cognitive processes. The analogous and associative nature of the
brain to retrieve solutions to similar previous problems from memory rather than to compute
new solutions has to be transferred to robot applications to gain genuinely intelligent be-
haviour. To be able to constantly adapt and extend a world model, a robot with a grounded
memory needs plasticity for processing dynamic events and a possibility to learn online.

The multi-SDM presents a first bottom-up approach to assess simple storage and recall
mechanism to provide robots with mathematically inspired but biologically plausible mem-
ories. Though not entirely solved, the developed autobiographical memory is a step towards
grounded memories for robots based on biological plausible mechanisms. Rather than focus-
ing on single modalities that highlight different aspects of the world, different sensors can
jointly encode particular aspects of it. The sparse and distributed memory concept offers a
good foundation to study such jointly encoded aspects. The developed system provides a
basis for further investigations on cognitive influences based on multimodal robot perception.

9.3. Directions for Future Work

The following options for extension and improvement to this model of memory have been
identified.
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9.3.1. Potential Improvements Concerning Task Representations

Transforming the input signal into a form useful for modelling the world is still a challenging
problem. The encoding problem plays a crucial role when dealing with connectionist models.
It already arises in the initial developing stages with design decisions such as using binary
or continuous feature descriptors. Furthermore, it is crucial to decide which features should
be used to represent the world, concepts, tasks and objects appropriately. In case of mo-
tion trajectories, Wu (2008) developed signature descriptors based on Euclidean differential
invariant features to describe raw trajectories. Using such invariant features may improve
the task descriptions within the robot’s autobiographical memory. Other approaches for
deriving motor primitives and atomic actions have been proposed by Jenkins and Mataric
(2004); Williams et al. (2006).

The developed multi-SDM architecture links an entire motion sequence to a high-level
semantic task descriptor. An improvement would be to represent a complex task by a set of
atomic actions (Weser, 2009). The multi-SDM system can then be used with quantitative
predicates and information in the following way: each SDM instance represents an atomic
robot action, e.g. bend arm, unbend arm, open hand, twist wrist clockwise, and so forth,
rather than representing complex tasks. Thus, the multi-SDM can categorise portions of
more complex robot arm motion trajectories online over time. An additional hierarchical
layer may record the temporal occurrences and relations of robot actions and perceptions as a
sequence of high-level events. Such a recording mechanism has already been developed in the
context of an preliminary study on episodic robot memory called EPIROME in Jockel et al.
(2007b, 2008b). Apart from that, another SDM can be implemented as a higher cognitive
layer that deals with symbolic descriptions to represent higher-order concepts, e.g. analogous
to a hierarchical composition of complex actions.

9.3.2. Potential Improvements Concerning the Overall System

The developed SDM and its extension referred to as autobiographical robot memory have
been implemented in software. For pragmatic reasons, the robot’s memory is maintained
on a workstation within a distributed software architecture. This saves processing resources
for major control tasks of the robot. But, as shown by many authors, the SDM concept is
eminently eligible for being realised in a parallel hardware architecture that can be directly
connected to the robot. A workstation would thereby become superfluous and only few
resources of the robot’s control PC would be needed to maintain the memory inputs and
outputs. Implementation in hardware would also considerably speed up the processing time
of the memory, which is still challenging in a software implementation with growing memory
size. Since the multi-SDM extension deals with an arbitrary number of separate SDMs, it
necessitates either to have a number of SDM hardware modules or to extend the addressing
mode and the content matrix to provide a number of virtual SDMs, e.g. identified by a
unique index number.

Inclusion of all available robot sensors and actuators would yield a multimodal and more
detailed world model that provides a comprehensive context database for more reliable com-
putation of certain actions. The proposed system is ideally suited for classifying vague and
noisy low-level sensor and actuator patterns with respect to their context. Adding more than
a single layer as proposed in the multi-SDM architecture would yield a hierarchical network
that may enable the system to achieve a symbolic description of a perceived situation. With
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appropriate feature detectors, the systems may also be used for the arbitrary association of
high-level symbols (cf. Figure 9.1).

9.3.3. Open Issues According to Sequence Learning

In sequence learning, temporal dependencies are still a significant issue, at least in case of
non-Markovian sequences. Most current models have problems to handle dependencies that
are not just related to what has happened right before a current situation, but might have
happened a long time ago. Long-range dependencies are hard to learn for neural network
models as well as heuristic models and even harder for reinforcement learning (Sun and Giles,
2001).

Although Kanerva proposed the k-folded SDM to overcome temporal dependencies, it
remains a challenge to apply this idea to long-range dependencies of sequence elements.
However, the reported experiments focused on motion trajectories with a limited sequence
length. Experiments showed (cf. Section 5.2.3) that most of the prevailing dependencies
became manageable. Nevertheless, long-range dependencies cannot be completely overcome
with the folding concept due to the resulting expansion of storage capacity and increase of
prediction time, and thus, improved approaches are required.

Another issue is hierarchical structuring of sequences. A sequence may consist of numerous
subsequences which in turn consist of subsubsequences and so forth. The problem is to
identify the boundaries of such subsequences. If found, hierarchical structuring might help
to reduce temporal dependencies.

Even if this work does not solve the hierarchical structuring issue completely, the developed
multi-SDM architecture provides a hierarchical extension to the SDM concept. The SDM
is used as an autobiographical robot memory to recognise interactive and noisy motion
trajectories of teleoperators. By combining several labelled SDMs, it becomes possible to
ground or assign physical properties gathered via sensors to symbols or semantic units.
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Signs, Symbols and Acronyms

Sign or symbol Denotation

O(r, x) Circle of radius r and centre x
A Address matrix of an SDM
C Content matrix of an SDM
d(x, y) Distance of two points x and y
E Energy of a Hopfield network
K Storage capacity
k Number of folds, see k-folded memory
n Dimension of a space
2n Number of points in space
N High-dimensional space, here N = {0, 1}n, also referred to 2n

N ′ Physical subspace of N
0 Origin
S State
s Number of current and past sensory inputs
x Point in space N , a memory address represented by an n-tuple
′x Complement of x
x′ A hard-location
|x| Norm—number of ones—of a vector
x : y : z A point y between points x and z
ξµ Binary pattern
wij Weight between two synapses
Z2 Boolean space Z2 = {0, 1}
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Acronym Denotation

ANN Artificial neural network
BC Binary code
DC Direct-current electricity
DHT Denavit-Hartenberg-Transformation
DoF Degrees of freedom
GC Gray code
HN Hopfield network
LAN Local area network
LbD Learning by demonstration
LTD Long-term depression
LTM Long-term memory
LTP Long-term potentiation
MHI Mitsubishi Heavy Industries, Ltd.
NBC Natural binary code
NN Neural network
PA10-6C Model number of used robot arm by Mitsubishi Heavy Industries, Ltd.
RCCL Robot-Control-C-Library
RL Reinforcement learning
SC Sum code
SDM Sparse distributed memory
STM Short-term memory
TCP Tool centre point
TCP/IP Transmission control protocol/internet protocol
UDP/IP User datagram protocol/internet protocol
UTF Unicode transformation format
WAN Wide area network
WLAN Wireless local area network
WM Working memory
WN Willshaw network



B
Technical Details: The Telemanipulation
System

Some more technical details of the telemanipulation system will be presented in this chapter.
Further details can be found in Bruder (2009). First, some details of the communication
protocol between client and server are given. After this, the gradient descent optimisation
is outlined.

B.1. Transmission Protocol

The quite simple and flexible transmission protocol that is used for server–client communica-
tion is based on UDP/IP. In quick succession the server sends ~st-packages to notify a client
about the current state of its hardware. The structure of these ~st-packages is as follows.

After the usual IP and UDP headers, the first two bytes of the own header give information
about the package type and carry the id of the manipulator. This id is used to keep the
system as flexible as possible for future use with respect to alternative manipulator hardware.
The following three integers inform about the amount of information within a package and
hold the timestamp in seconds and microseconds. The timestamp is used to re-identify the
ordering of the packages and to discard outdated information. Next, the payload data with
a set of 4-byte floating point numbers carries the information of the system state. This
structure is illustrated in Figure B.1.

Such a package structure is easy to handle and the variables of ~st can directly be put into
the data section without any conversion. By switching the first byte of the own header, the
protocol can be used to transmit the command vectors ~ct from the client to the server.

B.2. Gradient Descent Optimisation

Normally, a task specification for an arbitrary trajectory of a manipulator is given in Carte-
sian space while the controllers work in joint space. The mapping of the joint space onto the
Cartesian space is commonly known as kinematics. If the Cartesian space is mapped onto
the joint space it is referred to as inverse kinematics. When working with kinematically un-
derconstrained, redundant manipulators, the inverse kinematics provides an infinite number
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Bit 1 8 16 24 32

Destination IP
0

              

Type 

              
              

Data
               

IP header Source IP

Protocol type Length 

UDP header Source port Target port
Length Checksum

Own header Manipulator id Amount of data
Seconds

Microseconds

Figure B.1.: Package structure of the client-server transmission protocol for the telemanipu-
lation system. By courtesy of Jan Bruder.

of solutions for the mapping between both spaces. To solve the redundancy, it is necessary
to choose one of the provided solutions by some criterion.

The Gradient descent , also known as steepest descent , is a optimisation method for redun-
dancy resolution. It is a first-order optimisation algorithm to find a local minimum of a cost
function. It is an interactive method that uses the derivate of a function to reduce the value
of it iteratively by taking steps proportional to the negative of the gradient.

During a heuristic search all joint angles ji of a manipulator will be consecutively improved
by the gradient of the error-function ~∇e. The following equation where t refers to the
iteration number illustrates this procedure:

~jt+1 = ~jt + c~∇e(~jt) (B.1)

To allow for continuation in case of ~∇e(~jt) = 0, a pseudo-random number rt ∈ [−ε, ε] with
ε ∈ R is introduced such that:

~jt+1 = ~jt + c~∇e(~jt) + rt (B.2)

The value c ∈ R defines the speed of the descent. The goal is to minimise the ab-
beration of the position and orientation by e(~j) = dist(DHT(~j) − Tgoal(R, ~p)) with the
Denavit-Hartenberg-Transformation DHT(~j) and the orientation and position of the tool
centre point, described by R ∈ R3×3 and ~p ∈ R3 respectively. The Denavit-Hartenberg-
Transformation DHT : Rn 7→ R4×4 maps the vectors of the joint space into a three-
dimensional Cartesian space.

To improve the speed of convergence, values c and ε can be modified depending on the
iteration step t or ~∇e(~jt). To stop at a stable solution for ~∇e(~jt) = 0 must ε = 0. To search
for a global minimum the method of simulated annealing would be used when ε remains
variable.



B.2 Gradient Descent Optimisation 157

The fact that a gradient descent method can take many iterations to converge to a local
minimum is one of the disadvantages of such an algorithm. Furthermore, a dynamic compu-
tation of the step size rather than choosing a fixed one can entail high computational costs.
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C
Multi-SDM Predictions

This appendix complements Chapter 7 by presenting the diagrams of all predictions made by
the multi-SDM architecture that have been used for evaluation. This appendix is subdivided
in consideration of the experimental setup as described in Sections 7.5.1–7.5.5. As a reminder,
the particular descriptions of the experiments are given once more.

The set of results of each experiment are portioned into two main figures. One presents
all successful classifications, while the other figure shows all failed task classifications of the
multi-SDM architecture. Due to the potentially large number of tested trajectories, figures
comprise a large number of subfigures. The main figure caption will then be given at the
end of the figure that may range over several pages.

C.1. Experiment A: Skilled Teacher–Unskilled Users

All task executions of the experienced user are considered as training set for the multi-SDM
system. The robot arm motion trajectories of the four remaining, inexperienced users are
used as test set. This yields a training-to-test ration of 100:100 manipulation trajectories
with a well-balanced training of the various tasks. The teacher–user relation can be described
as logical XOR. This experiment studies how well the system classifies unknown trajectories
when taught by a single expert. Figure C.1 shows all successful classifications while Figure
C.2 summarises all failed classifications.
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C.1.1. Successful Classifications
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C.1.34: S–U2; Middle obj.2(5);
35%
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C.1.35: S–U2; Middle
obj.1a(1); 50%
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C.1.36: S–U2; Middle
obj.1a(2); 40%
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C.1.37: S–U2; Middle
obj.1a(3); 55%
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C.1.38: S–U2; Middle
obj.1a(4); 75%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.1.39: S–U2; Middle
obj.1a(5); 45%
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C.1.40: S–U2; Middle
obj.1b(1); 70%
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C.1.41: S–U2; Middle
obj.1b(2); 70%
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C.1.42: S–U2; Middle
obj.1b(3); 60%
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C.1.43: S–U2; Middle
obj.1b(5); 40%
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C.1.44: S–U3; Bottom obj.(1);
45%
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C.1.45: S–U3; Bottom obj.(2);
30%
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C.1.46: S–U3; Bottom obj.(3);
45%
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C.1.47: S–U3; Bottom obj.(4);
35%
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C.1.48: S–U3; Bottom obj.(5);
0%
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C.1.49: S–U3; Top obj.(1);
20%
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C.1.50: S–U3; Top obj.(2);
20%
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C.1.51: S–U3; Top obj.(3);
35%
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C.1.52: S–U3; Top obj.(4);
35%
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C.1.53: S–U3; Top obj.(5);
55%
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C.1.54: S–U3; Middle obj.2(1);
40%
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C.1.55: S–U3; Middle obj.2(2);
45%
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C.1.56: S–U3; Middle obj.2(3);
50%
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C.1.57: S–U3; Middle obj.2(4);
30%
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C.1.58: S–U3; Middle obj.2(5);
45%
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C.1.59: S–U3; Middle
obj.1a(1); 35%
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C.1.60: S–U3; Middle
obj.1a(2); 80%
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C.1.61: S–U3; Middle
obj.1a(3); 80%
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C.1.62: S–U3; Middle
obj.1a(4); 55%
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C.1.63: S–U3; Middle
obj.1a(5); 80%
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C.1.64: S–U3; Middle
obj.1b(1); 25%
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C.1.65: S–U3; Middle
obj.1b(2); 30%
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C.1.66: S–U3; Middle
obj.1b(3); 20%
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C.1.67: S–U3; Middle
obj.1b(4); 10%
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C.1.68: S–U3; Middle
obj.1b(5); 25%
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C.1.69: S–U4; Bottom obj.(1);
45%
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C.1.70: S–U4; Bottom obj.(2);
30%
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C.1.71: S–U4; Bottom obj.(3);
70%
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C.1.72: S–U4; Bottom obj.(4);
30%
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C.1.73: S–U4; Bottom obj.(5);
35%
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C.1.74: S–U4; Top obj.(1);
15%
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C.1.75: S–U4; Top obj.(2);
30%
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C.1.76: S–U4; Top obj.(3);
35%
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C.1.77: S–U4; Top obj.(4);
15%
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C.1.78: S–U4; Top obj.(5);
50%
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C.1.79: S–U4; Middle obj.2(1);
50%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.1.80: S–U4; Middle obj.2(2);
60%
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C.1.81: S–U4; Middle obj.2(3);
55%
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C.1.82: S–U4; Middle obj.2(4);
70%
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C.1.83: S–U4; Middle obj.2(5);
50%
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C.1.84: S–U4; Middle
obj.1a(1); 70%
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C.1.85: S–U4; Middle
obj.1a(2); 10%
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C.1.86: S–U4; Middle
obj.1a(3); 70%
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C.1.87: S–U4; Middle
obj.1a(4); 75%
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C.1.88: S–U4; Middle
obj.1a(5); 55%
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C.1.89: S–U4; Middle
obj.1b(1); 80%
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C.1.90: S–U4; Middle
obj.1b(2); 25%
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C.1.91: S–U4; Middle
obj.1b(3); 20%
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C.1.92: S–U4; Middle
obj.1b(4); 20%
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C.1.93: S–U4; Middle
obj.1b(5); 30%

Figure C.1.: All successful classifications of the multi-SDM architecture for the skilled teacher
– unskilled user setup (S–Ui). The subfigure captions give additional information
about (a) the teacher–user setup with respect to the particular user (subscript); (b)
the task and index of the trigger cue; and (c) the duration until correct classification
of the test sequence.
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C.1.2. Failed Classifications
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C.2.1: S–U1; Middle obj.2(1);
failed
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C.2.2: S–U1; Middle obj.2(2);
failed
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C.2.3: S–U1; Middle obj.2(3);
failed
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C.2.4: S–U1; Middle obj.2(4);
failed
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C.2.5: S–U1; Middle obj.2(5);
failed
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C.2.6: S–U1; Middle obj.1a(2);
failed
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C.2.7: S–U2; Middle obj.1b(4);
failed

Figure C.2.: All erroneous classifications of the multi-SDM architecture for the skilled teacher
– unskilled user setup (S–Ui). The subfigure captions give additional information
about (a) the teacher–user setup with respect to the particular user (subscript); (b)
the task and index of the trigger cue; and (c) the duration until correct classification
of the test sequence.
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C.2. Experiment B: Skilled Teacher–Skilled User

A randomly chosen subset, 75%, of task executions of the experienced user are considered as
training set for the multi-SDM system. The remaining 25% of the set of robot arm motion
trajectories from the same, experienced user are applied as test set. The motion trajectories
provided by the inexperienced users are neglected within this experiment. The training-
to-test ration is about 75:25 manipulation trajectories. The teacher–user relation can be
described as logical AND. This experiment studies the ability of the multi-SDM system to
predict the intention of a user when he initially provides some training. Figure C.3 shows
all successful classifications, none of the test trajectories failed in this experiment.

C.2.1. Successful Classifications
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C.3.1: Bottom obj.(7); 25%
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C.3.2: Bottom obj.(15); 25%
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C.3.3: Bottom obj.(16); 0%
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C.3.4: Bottom obj.(20); 25%
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C.3.5: Top obj.(7); 25%
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C.3.6: Top obj.(15); 5%
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C.3.7: Top obj.(16); 5%
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C.3.8: Top obj.(20); 15%
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C.3.9: Middle obj.2(7); 5%
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C.3.10: Middle obj.2(15); 15%
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C.3.11: Middle obj.2(16); 5%
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C.3.12: Middle obj.2(20); 5%
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C.3.13: Middle obj.1a(7); 15%
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C.3.14: Middle obj.1a(15);
20%
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C.3.15: Middle obj.1a(16); 0%
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C.3.16: Middle obj.1a(20);
40%
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C.3.17: Middle obj.1b(7); 35%
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C.3.18: Middle obj.1b(15);
15%
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C.3.19: Middle obj.1b(16);
55%
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C.3.20: Middle obj.1b(20);
20%

Figure C.3.: All successful classifications of the multi-SDM architecture for the skilled teacher
– skilled user setup (S–S). The subfigure captions give additional information about
(a) the task of the trigger cue; and (b)the duration until correct classification of the
test sequence.
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C.3. Experiment C: Unskilled Teachers–Unskilled Users

A randomly chosen subset, 60%, of the task executions provided by the four inexperienced
users are considered as training set for the multi-SDM system. For this purpose three
of the five executions per task of each inexperienced user are randomly chosen to gain a
balanced training of each SDM instance. The remaining 40% of the set of robot arm motion
trajectories from the inexperienced user are applied as test set. The motion trajectories
of the experienced user are not considered in this experiment. The training-to-test ration
is about 60:40 manipulation trajectories. The teacher–user relation can be described as
logical AND. The purpose of this experiment is to study the system’s predictive behaviour
when undergoing a community-based training without any experts. Figure C.4 shows all
successful classifications while Figure C.5 illustrates the only failed classifications.

C.3.1. Successful Classifications
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C.4.1: U–U1; Bottom (3); 30%
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C.4.2: U–U1; Bottom (4); 15%
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C.4.3: U–U1; Top obj.(2); 20%
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C.4.4: U–U1; Top obj.(3); 10%
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C.4.5: U–U1; Middle obj.2(3);
0%
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C.4.6: U–U1; Middle obj.2(4);
50%
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C.4.7: U–U1; Middle
obj.1a(4); 35%
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C.4.8: U–U1; Middle
obj.1a(5); 25%
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C.4.9: U–U1; Middle
obj.1b(2); 35%
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C.4.10: U–U1; Middle
obj.1b(3); 15%
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C.4.11: U–U2; Bottom obj.(4);
20%
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C.4.12: U–U2; Bottom obj.(5);
0%
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C.4.13: U–U2; Top obj.(1);
20%
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C.4.14: U–U2; Top obj.(2);
50%
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C.4.15: U–U2; Middle
obj.2(2); 25%
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C.4.16: U–U2; Middle
obj.2(3); 35%
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C.4.17: U–U2; Middle
obj.1a(4); 45%
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C.4.18: U–U2; Middle
obj.1a(5); 25%
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C.4.19: U–U2; Middle
obj.1b(3); 50%
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C.4.20: U–U2; Middle
obj.1b(4); 20%
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C.4.21: U–U3; Bottom obj.(1);
15%
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C.4.22: U–U3; Bottom obj.(2);
15%
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C.4.23: U–U3; Top obj.(2); 5%
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C.4.24: U–U3; Top obj.(3);
10%
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C.4.25: U–U3; Middle
obj.2(3); 50%
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C.4.26: U–U3; Middle
obj.2(4); 40%
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C.4.27: U–U3; Middle
obj.1a(3); 15%
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C.4.28: U–U3; Middle
obj.1a(4); 50%
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C.4.29: U–U3; Middle
obj.1b(2); 15%
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C.4.30: U–U3; Middle
obj.1b(3); 15%
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Top obj. Middle obj. 1a Middle obj. 1b Middle obj. 2 Bottom obj.
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C.4.31: U–U4; Bottom obj.(2);
20%
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C.4.32: U–U4; Bottom obj.(3);
45%
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C.4.33: U–U4; Top obj.(4); 0%
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C.4.34: U–U4; Top obj.(5); 0%
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C.4.35: U–U4; Middle
obj.2(4); 60%
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C.4.36: U–U4; Middle
obj.2(5); 45%
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C.4.37: U–U4; Middle
obj.1a(4); 5%
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C.4.38: U–U4; Middle
obj.1a(5); 20%
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C.4.39: U–U4; Middle
obj.1b(4); 10%

Figure C.4.: All successful classifications of the multi-SDM architecture for the unskilled
teacher – unskilled user setup (U–Ui). The subfigure captions give additional infor-
mation about (a) the teacher–user setup with respect to the particular user (sub-
script); (b) the task and index of the trigger cue; and (c) the duration until correct
classification of the test sequence.
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C.3.2. Failed Classifications

Top obj. Middle obj. 1a Middle obj. 1b Middle obj. 2 Bottom obj.
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C.5.1: U–U4; Middle
obj.1b(5); failed

Figure C.5.: All erroneous classifications of the multi-SDM architecture for the unskilled
teacher – unskilled user setup (U–Ui). The subfigure captions give additional infor-
mation about (a) the teacher–user setup with respect to the particular user (sub-
script); (b) the task and index of the trigger cue; and (c) the duration until correct
classification of the test sequence.
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C.4. Experiment D: Unskilled Teachers–Skilled User

All task executions of the four inexperienced users are considered as training set for the SDM
system. The robot arm motion trajectories of the remaining, experienced user are used as
test set. This yields a training-to-test ration of 100:100 manipulation trajectories. The
teacher–user relation can be described as logical XOR. This experiment studies how well the
intention of an expert, that may have specialised task solving strategies, can be predicted
when the system is trained by a community of laymen. Figure C.6 shows all successful
classifications while Figure C.7 summarises all failed classifications.

C.4.1. Successful Classifications
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C.6.1: Bottom obj.(1); 80%
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C.6.2: Bottom obj.(2); 55%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.3: Bottom obj.(3); 70%
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C.6.4: Bottom obj.(4); 75%
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C.6.5: Bottom obj.(5); 60%
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C.6.6: Bottom obj.(6); 30%
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C.6.7: Bottom obj.(7); 15%
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C.6.8: Bottom obj.(8); 20%
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C.6.9: Bottom obj.(9); 60%
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C.6.10: Bottom obj.(10); 40%
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C.6.11: Bottom obj.(11); 70%
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C.6.12: Bottom obj.(12); 40%
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C.6.13: Bottom obj.(13); 25%
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C.6.14: Bottom obj.(14); 65%
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C.6.15: Bottom obj.(15); 5%
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C.6.16: Bottom obj.(16); 20%
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C.6.17: Bottom obj.(17); 65%
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C.6.18: Bottom obj.(18); 15%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.19: Bottom obj.(19); 65%
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C.6.20: Bottom obj.(20); 55%
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C.6.21: Top obj.(1); 0%
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C.6.22: Top obj.(2); 0%
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C.6.23: Top obj.(3); 40%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.24: Top obj.(4); 0%
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C.6.26: Top obj.(6); 15%
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C.6.31: Top obj.(11); 35%
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C.6.32: Top obj.(12); 45%
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C.6.33: Top obj.(13); 40%
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C.6.34: Top obj.(14); 35%
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C.6.35: Top obj.(15); 25%
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C.6.38: Top obj.(18); 50%
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C.6.39: Top obj.(19); 30%
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C.6.40: Top obj.(20); 15%
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C.6.41: Middle obj.2(2); 45%
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C.6.42: Middle obj.2(3); 65%
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C.6.43: Middle obj.2(4); 70%
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C.6.44: Middle obj.2(5); 75%
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C.6.45: Middle obj.2(6); 85%
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C.6.46: Middle obj.2(7); 85%
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C.6.47: Middle obj.2(8); 65%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.48: Middle obj.2(10); 85%
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C.6.49: Middle obj.2(11); 35%
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C.6.50: Middle obj.2(12); 15%
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C.6.51: Middle obj.2(13); 50%
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C.6.52: Middle obj.2(14); 0%
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C.6.53: Middle obj.2(15); 40%
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C.6.54: Middle obj.2(16); 25%
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C.6.55: Middle obj.2(17); 40%
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C.6.56: Middle obj.2(18); 45%
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C.6.57: Middle obj.2(19); 65%
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C.6.58: Middle obj.2(20); 35%
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C.6.59: Middle obj.1a(1); 30%
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C.6.60: Middle obj.1a(2); 55%
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C.6.61: Middle obj.1a(3); 55%
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C.6.62: Middle obj.1a(4); 65%
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C.6.63: Middle obj.1a(5); 60%
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C.6.64: Middle obj.1a(6); 60%
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C.6.65: Middle obj.1a(7); 60%
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C.6.66: Middle obj.1a(8); 65%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.67: Middle obj.1a(9); 60%
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C.6.68: Middle obj.1a(10);
65%
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C.6.69: Middle obj.1a(11);
70%
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Top obj. Middle obj. 1a Middle obj. 1b Middle obj. 2 Bottom obj.
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C.6.70: Middle obj.1a(12);
60%
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C.6.71: Middle obj.1a(13);
60%
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C.6.72: Middle obj.1a(14);
55%
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C.6.73: Middle obj.1a(15);
25%
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C.6.74: Middle obj.1a(16);
60%
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C.6.75: Middle obj.1a(17);
45%
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C.6.76: Middle obj.1a(18);
45%
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C.6.77: Middle obj.1a(19);
50%
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C.6.78: Middle obj.1a(20);
35%
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C.6.79: Middle obj.1b(1); 45%
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C.6.80: Middle obj.1b(4); 25%
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C.6.81: Middle obj.1b(5); 65%
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C.6.82: Middle obj.1b(8); 55%
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C.6.83: Middle obj.1b(11);
30%
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C.6.84: Middle obj.1b(12);
15%
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C.6.85: Middle obj.1b(13);
35%
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C.6.86: Middle obj.1b(14);
70%
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C.6.87: Middle obj.1b(16);
10%
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C.6.88: Middle obj.1b(17);
15%

0 20 40 60 80 1000

20

40

60

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.6.89: Middle obj.1b(18);
55%
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C.6.90: Middle obj.1b(20);
20%

Figure C.6.: All successful classifications of the multi-SDM architecture for the unskilled
teacher – skilled user setup (Uall–S). The subfigure captions give additional informa-
tion about (a) the task and index of the trigger cue; and (b) the duration until correct
classification of the test sequence.
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C.4.2. Failed Classifications
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C.7.1: Middle obj.2(1); failed
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C.7.2: Middle obj.2(9); failed
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C.7.3: Middle obj.1b(2); failed
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C.7.4: Middle obj.1b(3); failed
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C.7.5: Middle obj.1b(6); failed
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C.7.6: Middle obj.1b(7); failed
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C.7.7: Middle obj.1b(9); failed
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C.7.8: Middle 1b(10); failed
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C.7.9: Middle 1b(15); failed
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C.7.10: Middle 1b(19); failed

Figure C.7.: All erroneous classifications of the multi-SDM architecture for the unskilled
teacher – skilled user setup (Uall–S). Subfigure captions inform about the task of the
trigger cue and classification result of the test sequence.
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C.5. Experiment E: Unskilled Teacher–Unskilled Users (Mutually
Exclusive)

In this experiment, four evaluations are made where each inexperienced user is considered as
trainer for the SDM system separately. The respective unskilled teacher does not contribute
any trajectories to the test set. Several robot arm motion trajectories of the remaining
inexperienced users are used as test set. Each user, except for the trainer, contributes
2 trajectories per task to the training set. This yields a training-to-test ration of 25:30
manipulation trajectories per run. The difference to the above-mentioned experiment is that
the trainer–user relation is mutually exclusive and thus can be described as logical XOR rather
than a logical AND.

Due to the potentially large number of diagrams obtained from this experiment, the result-
ing figures are summarised into two classes according to the preceding sections. Figure C.8
illustrates the successful classifications while Figure C.9 shows all misclassifications. Note
that the particular indices indicate which unskilled user acted as teacher and user respec-
tively. The total number of multi-SDM predictions for this test consists of 120 trajectories
(4 runs × 30 test trajectories) that have been used as trigger cue.

C.5.1. Successful Classifications
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C.8.1: U1–U2; Bottom obj.(4);
20%
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C.8.2: U1–U2; Bottom obj.(5);
15%
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C.8.3: U1–U2; Top obj.(1);
10%
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C.8.4: U1–U2; Top obj.(2);
50%
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C.8.5: U1–U2; Middle
obj.1a(4); 65%
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C.8.6: U1–U2; Middle
obj.1a(5); 45%
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C.8.7: U1–U2; Middle
obj.1b(3); 50%
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C.8.8: U1–U2; Middle
obj.1b(4); 45%
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C.8.9: U1–U3; Bottom obj.(1);
80%
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C.8.10: U1–U3; Top obj.(2);
15%
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C.8.11: U1–U3; Top obj.(3);
40%
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C.8.12: U1–U3; Middle
obj.1a(3); 15%
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C.8.13: U1–U3; Middle
obj.1a(4); 55%
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C.8.14: U1–U3; Middle
obj.1b(3); 40%
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C.8.15: U1–U4; Bottom
obj.(2); 85%
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C.8.16: U1–U4; Top obj.(4);
30%
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C.8.17: U1–U4; Top obj.(5);
20%
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C.8.18: U1–U4; Middle
obj.1a(4); 55%
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C.8.19: U1–U4; Middle
obj.1a(5); 25%
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C.8.20: U1–U4; Middle
obj.1b(4); 40%
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C.8.21: U1–U4; Middle
obj.1b(5); 35%
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C.8.22: U2–U1; Bottom
obj.(3); 75%
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C.8.23: U2–U1; Bottom
obj.(4); 10%

0 20 40 60 80 1000

10

20

30

40

Progress in %
R

el
at

iv
e

E
rr

or
ε

in
%

C.8.24: U2–U1; Top obj.(2);
15%
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C.8.25: U2–U1; Top obj.(3);
0%
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C.8.26: U2–U1; Middle
obj.2(4); 90%
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C.8.27: U2–U1; Middle
obj.1a(4); 60%
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C.8.28: U2–U1; Middle
obj.1a(5); 80%
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C.8.29: U2–U1; Middle
obj.1b(2); 40%
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C.8.30: U2–U1; Middle
obj.1b(3); 20%
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C.8.31: U2–U3; Bottom
obj.(1); 50%
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C.8.32: U2–U3; Bottom
obj.(2); 55%
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C.8.33: U2–U3; Top obj.(2);
0%

0 20 40 60 80 1000

10

20

30

40

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.8.34: U2–U3; Top obj.(3);
20%
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C.8.35: U2–U3; Middle
obj.2(3); 95%
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C.8.36: U2–U3; Middle
obj.2(4); 55%
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C.8.37: U2–U3; Middle
obj.1a(3); 85%

0 20 40 60 80 1000

10

20

30

40

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.8.38: U2–U3; Middle
obj.1a(4); 35%
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C.8.39: U2–U3; Middle
obj.1b(2); 30%
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C.8.40: U2–U3; Middle
obj.1b(3); 45%
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C.8.41: U2–U4; Bottom
obj.(2); 30%
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C.8.42: U2–U4; Bottom
obj.(3); 45%
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C.8.43: U2–U4; Top obj.(4);
0%
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C.8.44: U2–U4; Top obj.(5);
40%
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C.8.45: U2–U4; Middle
obj.2(4); 80%
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C.8.46: U2–U4; Middle
obj.2(5); 75%
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C.8.47: U2–U4; Middle
obj.1a(4); 50%
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C.8.48: U2–U4; Middle
obj.1a(5); 45%
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C.8.49: U2–U4; Middle
obj.1b(4); 70%
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C.8.50: U2–U4; Middle
obj.1b(5); 75%
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C.8.51: U3–U1; Bottom
obj.(4); 95%
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C.8.52: U3–U1; Top obj.(2);
10%
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C.8.53: U3–U1; Top obj.(3);
10%
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C.8.54: U3–U1; Middle
obj.1a(4); 50%
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C.8.55: U3–U1; Middle
obj.1a(5); 45%
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C.8.56: U3–U1; Middle
obj.1b(2); 50%
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C.8.57: U3–U1; Middle
obj.1b(3); 50%
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C.8.58: U3–U2; Bottom
obj.(4); 80%
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C.8.59: U3–U2; Top obj.(1);
10%
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C.8.60: U3–U2; Top obj.(2);
35%
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C.8.61: U3–U2; Middle
obj.1a(4); 45%
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C.8.62: U3–U2; Middle
obj.1a(5); 25%
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C.8.63: U3–U4; Bottom
obj.(2); 10%
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C.8.64: U3–U4; Bottom
obj.(3); 50%
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C.8.65: U3–U4; Top obj.(4);
20%
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C.8.66: U3–U4; Top obj.(5);
45%
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C.8.67: U3–U4; Middle
obj.1a(4); 30%

0 20 40 60 80 1000

10

20

30

40

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%

C.8.68: U3–U4; Middle
obj.1a(5); 25%
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C.8.69: U3–U4; Middle
obj.1b(4); 35%
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C.8.70: U3–U4; Middle
obj.1b(5); 15%
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C.8.71: U4–U1; Bottom
obj.(3); 95%
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C.8.72: U4–U1; Bottom
obj.(4); 90%
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C.8.73: U4–U1; Top obj.(2);
0%
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C.8.74: U4–U1; Top obj.(3);
0%
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C.8.75: U4–U1; Middle
obj.2(3); 85%
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C.8.76: U4–U1; Middle
obj.2(4); 75%
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C.8.79: U4–U1; Middle
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C.8.81: U4–U2; Bottom
obj.(4); 90%
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C.8.82: U4–U2; Top obj.(1);
85%

0 20 40 60 80 1000

10

20

30

40

Progress in %

R
el

at
iv

e
E

rr
or
ε

in
%
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35%
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C.8.84: U4–U2; Middle
obj.2(2); 30%
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C.8.85: U4–U2; Middle
obj.2(3); 40%
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C.8.86: U4–U2; Middle
obj.1a(4); 65%
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C.8.87: U4–U2; Middle
obj.1a(5); 45%
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C.8.88: U4–U3; Bottom
obj.(1); 10%
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C.8.89: U4–U3; Bottom
obj.(2); 15%
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0%
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C.8.91: U4–U3; Top obj.(3);
0%
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C.8.92: U4–U3; Middle
obj.2(3); 70%
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C.8.93: U4–U3; Middle
obj.2(4); 50%
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C.8.94: U4–U3; Middle
obj.1a(3); 25%
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C.8.95: U4–U3; Middle
obj.1a(4); 60%
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C.8.96: U4–U3; Middle
obj.1b(2); 65%
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C.8.97: U4–U3; Middle
obj.1b(3); 80%

Figure C.8.: All successful classifications of the multi-SDM architecture for the mutually
exclusive unskilled teacher – unskilled user setup (Ui–Uj , with i 6= j). The subfigure
captions give additional information about (a) the teacher–user setup with respect to
the particular teacher and particular user; (b) the task and index of the trigger cue;
and (c) the duration until correct classification of the test sequence.
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C.5.2. Failed Classifications
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C.9.1: U1–U2; Middle obj.2(2)
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C.9.2: U1–U2; Middle obj.2(3)
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C.9.3: U1–U3; Middle obj.2(3)
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C.9.4: U1–U3; Middle obj.2(4)
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C.9.5: U1–U3; Middle
obj.1b(2)
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C.9.6: U1–U4; Bottom obj.(3)
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C.9.7: U1–U4; Middle obj.2(4)
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C.9.8: U1–U4; Middle obj.2(5)
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C.9.9: U2–U1; Middle obj.2(3)
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C.9.10: U3–U1; Bottom
obj.(3)
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C.9.11: U3–U1; Middle
obj.2(3)
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C.9.12: U3–U1; Middle
obj.2(4)
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C.9.13: U3–U2; Bottom
obj.(5)
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C.9.14: U3–U2; Middle
obj.2(2)
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C.9.15: U3–U2; Middle
obj.2(3)
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C.9.16: U3–U2; Middle
obj.1b(3)
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C.9.17: U3–U2; Middle
obj.1b(4)
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C.9.18: U3–U4; Middle
obj.2(4)
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C.9.19: U3–U4; Middle
obj.2(5)
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C.9.20: U4–U2; Bottom
obj.(5)
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C.9.21: U4–U2; Middle
obj.1a(4)

Figure C.9.: All erroneous classifications of the multi-SDM architecture for the mutually
exclusive unskilled teacher – unskilled user setup (Ui–Uj , with i 6= j). The subfigure
captions give additional information about (a) the teacher–user setup with respect to
the particular teacher and particular user; (b) the task and index of the trigger cue.
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D
Crossmodal Robot Localisation

This appendix complements Chapter 8 by presenting the remaining diagrams for the multi-
SDM-based crossmodal robot localisation. The diagrams illustrate the robot’s belief of where
it is located in an office environment. The localisation is based on past experience stored in
a multi-SDM architecture.
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Figure D.1.: The robot’s belief if triggered with pattern Archive 1.
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Figure D.2.: The robot’s belief if triggered with pattern Elevator.
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Figure D.3.: The robot’s belief if triggered with pattern Hallway 1.
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Figure D.4.: The robot’s belief if triggered with pattern Hallway 2.
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Figure D.5.: The robot’s belief if triggered with pattern Kitchen.



199

A
rc

hi
ve

1

A
rc

hi
ve

2

E
le
va

to
r

H
al
lw

ay
1

H
al
lw

ay
2

H
al
lw

ay
3

H
al
lw

ay
4

H
al
lw

ay
5

H
al
lw

ay
6

K
it
ch

en

Lab
1

Lab
2

O
ffi

ce
1

O
ffi

ce
2

O
ffi

ce
3

O
ffi

ce
4

O
ffi

ce
5

W
or

ks
ho

p

5.2

5.4

5.6

5.8

B
el

ie
f

Unimodal laser Unimodal vision Crossmodal

Figure D.6.: The robot’s belief if triggered with pattern Office 2.
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Figure D.7.: The robot’s belief if triggered with pattern Office 4.
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Figure D.8.: The robot’s belief if triggered with pattern Office 5.
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Bouchard-Côté, A. (2004a). A faster implementation of a sparse distributed memories ar-
chitecture. Technical report, McGill University, Montreal, Quebec, Canada.

Bouchard-Côté, A. (2004b). Sparse distributed memories in a bounded metric state space:
Some theoretical and empirical results. Technical report, McGill University, Montreal,
Quebec, Canada.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14–23.



214 Bibliography

Brooks, R. A. (1991). Intelligence without representation. In Artificial Intelligence, vol-
ume 47, pages 139–159.

Brown, A. S. (2008). Why hands matter. Mechanical Engineering Magazine.

Bruder, J. (2009). Praktische Realisierung einer haptischen Telerobotik-Steuerung für eine
interaktive Nutzung. Diploma thesis, Department of Informatics, University of Hamburg,
Germany.

Chella, A., Frixione, M., and Gaglio, S. (2000). Understanding dynamic scenes. Artificial
Intelligence, 123(1-2):89–132.

Chou, P. A. (1989). The capacity of the Kanerva associative memory. IEEE Transactions
on Information Theory, 35(2):281–298.

Clarke, T., Prager, R., and Fallside, F. (1991). The modified Kanerva model: Theory and
results for real-time word recognition. IEE Proceedings of Radar and Signal Processing,
138(1):25–31.

Cohen, N. and Squire, L. (1980). Preserved learning and retention of pattern-analyzing skill
in amnesia: Dissociation of knowing how and knowing that. Science, 210(4466):207–210.

Coradeschi, S., Driankov, D., Karlsson, L., and Saffiotti, A. (2001). Fuzzy anchoring. In
Proceedings of the 10th IEEE Conference on Fuzzy Systems, pages 111–114.

Coradeschi, S. and Saffiotti, A. (2000). Anchoring symbols to sensor data: Preliminary
report. In Proceedings of the 17th AAAI Conference, pages 129–135, Menlo Park, CA.
AAAI Press.

Coradeschi, S. and Saffiotti, A. (2003). An introduction to the anchoring problem. Robotics
and Autonomous Systems, 43(2-3):85–96.

Craik, F. and Lockhart, R. (1972). Levels of processing. A framework for memory research.
Journal of Verbal Learning and Verbal Behaviour, 11:671–684.

Danforth, D. G. (1990). An empirical investigation of sparse distributed memory using dis-
crete speech recognition. Technical report 90.18, Research Institute for Advanced Com-
puter Science, NASA Ames Research Center.

Dawkins, R. (1976). The selfish gene. Oxford University Press, UK.

D’Mello, S. and Franklin, S. (2009). Computational modeling/cognitive robotics compliments
functional modeling/experimental psychology. New Ideas in Psychology, pages 1–11.

D’Mello, S., Franklin, S., Ramamurthy, U., and Baars, B. J. (2006). A cognitive science
based machine learning architecture. In AAAI Spring Symposium Series, Palo Alto, CA,
USA. Stanford University, American Association for Artificial Intelligence.

D’Mello, S., Ramamurthy, U., and Franklin, S. (2005). Encoding and retrieval efficiency of
episodic data in a modified sparse distributed memory system. Proceedings of the 27th
Annual Meeting of the Cognitive Science Society.



Bibliography 215

Driver, J. and Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on
sensory-specific brain regions, neural responses, and judgments. Neuron, 57(1):11–23.

Driver, J. and Spence, C. (2000). Multisensory perception: Beyond modularity and conver-
gence. Current Biology, 10(20):R731–R735.

Edelman, S. and Vaina, L. M. (2001). David Marr (a short biography). In Smelser, N. J.
and Baltes, P. B., editors, International Encyclopedia of the Social & Behavioral Sciences,
Oxford. Elsevier.

Fan, K.-C. and Wang, Y.-K. (1997). A genetic sparse distributed memory approach to the
application of handwritten character recognition. Pattern Recognition, 30(12):2015–2022.

Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6(4):559–601.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence: Theories, methods,
and technologies. The MIT Press, Cambridge, MA, USA.

Fowler, D. (1991). A neural network as an instrument of prediction. PhD thesis, Graduate
College, University of Nebraska, Lincoln, USA.

Franklin, S. (1995). Artificial minds. The MIT Press, Cambridge, MA, USA.

Franklin, S. (2005). Perceptual memory and learning: Recognizing, categorizing, and relat-
ing. In Symposium on Developmental Robotics, American Association for Artifical Intel-
ligence (AAAI), Palo Alto, CA, USA.

Furber, S. B., Bainbridge, W. J., Cumpstey, J. M., and Temple, S. (2004). Sparse distributed
memory using n-of-m codes. Neural Networks, 17(10):1437–1451.

Furber, S. B., Brown, G., Bose, J., Cumpstey, J. M., Marshall, P., and Shapiro, J. L. (2007).
Sparse distributed memory using rank-order neural codes. IEEE Transactions on Neural
Networks, 18(3):648–659.

Fuster, J. M. (1998). Distributed memory for both short and long term. Neurobiology of
Learning and Memory, 70(1-2):268–274.

Gabora, L. (1996). A day in the life of a meme. Philosophica, 57:901–938.

Gabora, L. (2002). Cognitive mechanisms underlying the creative process. In Proceedings of
the 4th Conference on Creativity & Cognition, pages 126–133, New York, USA. ACM.

Gallese, V. and Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor
system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4):455–479.

Garalevicius, S. J. (2007). Memory-prediction framework for pattern recognition: Perfor-
mance and suitability of the Bayesian model of visual cortex. In Wilson, D. and Sutcliffe,
G., editors, Proceedings of the 20th International Florida Artificial Intelligence Research
Society Conference, pages 92–97, Key West, Florida. AAAI Press.

Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. The MIT Press, Cam-
bridge, MA, USA.



216 Bibliography

Golomb, D., Rubin, N., and Sompolinsky, H. (1990). Willshaw model: Associative memory
with sparse coding and low firing rates. Physical Review A, 41(4):1843–1854.

Haikonen, P. O. A. (2009). The role of associative processing in cognitive computing. Cog-
nitive Computation, 1(1):42–49.
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Mendes, M., Crisóstomo, M., and Coimbra, A. (2008). Robot navigation using a sparse
distributed memory. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 53–58, Pasadena, CA, USA.

Newell, F. N. (2004). Cross-modal object recognition. In G., C., C., S., and B.E., S., editors,
The handbook of multisensory processes, pages 123–139, Cambridge, MA, USA. The MIT
Press.

Nicolescu, M. N. (2003). A framework for learning from demonstration, generalization and
practice in human-robot domains. PhD thesis, Faculty of the Graduate School, University
of South California, Los Angeles, USA.

Olshausen, B. A. and Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion
in Neurobiology, 14:481–487.

Palm, G. (1980). On associative memory. Biological Cybernetics, 36(1):19–31.

PDP Research Group, C. (1986a). Parallel distributed processing: explorations in the mi-
crostructure of cognition, volume 1: Foundations. The MIT Press, Cambridge, MA, USA.

PDP Research Group, C. (1986b). Parallel distributed processing: explorations in the mi-
crostructure of cognition, volume 2: Psychological and biological models. The MIT Press,
Cambridge, MA, USA.

Plate, T. A. (1994). Distributed representations and nested compositional structure. PhD
thesis, Department of Computer Science, University of Toronto, Canada.

Prager, R. (1993). Networks based on Kanerva’s sparse distributed memory: Results showing
their strengths and limitations and a new algorithm to design the location matching layer.
IEEE International Conference on Neural Networks, 2:1040–1045.

Prager, R. W. and Fallside, F. (1989). The modified Kanerva model for automatic speech
recognition. Computer Speech and Language, 3(1):61–81.

Preusche, C., Reintsema, D., Landzettel, K., and Hirzinger, G. (2006). Robotics component
verification on ISS ROKVISS–Preliminary results for telepresence. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4595–4601.

Raaijmakers, J. and Shiffrin, R. (1981). Search of associative memory. Psychological Review,
88:93–134.

Rao, R. and Fuentes, O. (1998). Hierarchical learning of navigational behaviors in an au-
tonomous robot using a predictive sparse distributed memory. Machine Learning, 31(1-
3):87–113.

Ratitch, B., Mahadevan, S., and Precup, D. (2004). Sparse distributed memories in reinforce-
ment learning: Case studies. In de Farias, D. P., Mannor, S., Precup, D., and Cochairs),
G. T. P., editors, Papers from the AAAI Workshop on Learning and Planning in Markov
Processes: Advances and Challenges, pages 85–90.



Bibliography 221

Ratitch, B. and Precup, D. (2004). Sparse distributed memories for on-line value-based
reinforcement learning. Lecture Notes in Computer Science (LNCS), 3201:347–358.

Reinhart, R. F. and Steil, J. J. (2008). Recurrent neural associative learning of forward
and inverse kinematics for movement generation of the redundant PA-10 robot. ECSIS
Symposium on Learning and Adaptive Behaviors for Robotic Systems, pages 35–40.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R., Gobet, F., and Baxter, G. D. (2003).
Techniques for modeling human and organizational behaviour in synthetic environments:
A supplementary review. Wright-Patterson Air Force Base, Human Systems Information
Analysis Center.

Rogers, D. (1988). Kanerva’s sparse distributed memory: An associative memory algorithm
well-suited to the connection machines. RIACS report 88.32, Research Institute for Ad-
vanced Computer Science, NASA Ames Research Center.

Rogers, D. (1990). Predicting weather using a genetic memory: a combination of Kan-
erva’s sparse distributed memory with Holland’s genetic algorithms. Advances in Neural
Information Processing Systems, 2:455–464.

Rojas, R. (1996). Neural networks: A systematic introduction. Springer.
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