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Abstract. Different disciplines such as psychology and neuro-

science have been examining episodic memory (also referred to as

declarative memory) for more than three decades. Now, engineer-

ing and computer science are developing an increasing interest in

episodic memory for artificial systems. We propose a novel frame-

work EPIROME to develop and investigate high-level episodic mem-

ory mechanisms which can be used to model and compare episodic

memories of high-level events for technical systems. We demonstrate

how we applied the framework to the domain of service robotics.

High-level events emanate from basic skills, elementary operations,

sequences of elementary operations, environmental changes and the

detection of human interactions. The framework enables our service

robot TASER to collect autobiographical memories to improve ac-

tion planning based on past experiences. The framework provides the

robot with a life-long memory since past experiences can be stored

and reloaded. In practise, one main advantage of our episodic mem-

ory is that it provides one-shot learning capabilities to our robot. This

reduces the disadvantage of other learning strategies where learning

takes too long when used with a real robot system in natural environ-

ments and therefore is not feasible.

1 Introduction

Memory is central to the human condition and has been investi-

gated at many levels. Neuroscientists have studied the molecular and

cellular mechanisms of memory in animals and humans, and psy-

chologists have contributed to our understanding about the different

kinds of processes involved in memory through research with am-

nesic patients and normal subjects. Engelkamp [1] propose to dis-

tinguish memory systems based on the type of stored information

(e.g. episodic-semantic, verbal-nonverbal-imaginal), the type of pro-

cesses involved (e.g. declarative-procedural, implicit-explicit) and

such memory systems based on the length of time that information is

retained (e.g. short–term-long–term).

The study of episodic memory began in the early 1970s when

the psychologist Endel Tulving made a first distinction between

episodic and semantic memory [2]. At that time episodic memory

(EM) was defined in terms of materials and tasks. Tulving speci-

fied episodic memory as your experiences of certain, spatio-temporal

definite episodes (e.g. your last business trip) and our general knowl-

edge (language translations, facts like “what is a pen” et cetera.) as

the semantic memory (SM). However, his suggestion that episodic
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and semantic memory are two functionally different memory sys-

tems quickly became controversial. As a result of the criticism, the

episodic memory definition was refined and elaborated in terms of

its main ideas such as self, subjectively sensed time, and autonoetic

consciousness. Today, episodic memory is seen as one of the major

neurocognitive memory systems [3] that is defined in terms of its

special functions (what the system does or produces) and its proper-

ties (how it does that). It shares many features with semantic mem-

ory, which it grew out of, but it also possesses features that semantic

memory does not have [4]. Episodic memory is oriented towards the

past in a way in which no other kind of memory system is. It is the

only memory system that allows people to consciously re-experience

their past. It has a special and unique relationship with time [5]. Neu-

ropsychology took up the idea of episodic memory and tried to find

proofs for the concept in biological systems. Tests on amnesic pa-

tients (e.g. the famous hippocampal amnesic H.M. [6, 7]) suggested

that the episodic memory is mainly related to the medial temporal

lobe and hippocampal structures [8].

The brain uses vast amounts of memory to create a model of the

world. Everything a person knows and has learned is stored in this

model. The brain uses this memory-based model to make continuous

predictions of future events [9]. If those predictions are disproved, the

brain learns (e.g. by novelty detection [10]), and adjusts its memories

according to the new data. The memory seems to be organised in a

hierarchy, each level beeing responsible for learning a small part of

the overall model. Kanerva [11] proposed a sparse distributed mem-

ory (SDM) model that offers many of the characteristics that a human

memory posseses. He also developed a mathematical model for this

theory.

Over the last decade an increasing interest in episodic memory

mechanisms can be noticed in engineering and computer science. In

Section 2 these research ambitions are discussed. However, first we

must review the characteristics of episodic memory in humans that

evolve from psychology and neuroscience. Because psychology as-

sumes the automatic memory formation in humans to be an obliga-

tory process, it is not listed as a special characteristic below:

1. Autonoetic: Remembering episodic memory is characterised by a

state of awareness unlike that in semantic memory, that is noetic.

When one recollects an event autonoetically, one re-experiences

aspects of a past experience. Re-experiencing of an already learnt

episode is not necessary.

2. Autobiographical: A person remembers an episode from his or

her own perspective. There is no possibility to change the view-

point in AI systems. To put oneself in someone else’s place is the

highest achievement of human intelligence. Moreover, there are

studies proving that autobiographical and episodic memory are

separate memory systems [12].

3. Variable Duration: The time period that is spanned by an episode

is not fixed.
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4. Temporally Indexed: The rememberer has a sense of the time at

which the remembered episode occurred.

5. Imperfect: Our memory is incomplete and can have errors. New

sensations are forced to satisfy already experienced concepts.

6. Primed: Recall occurs more quickly when it is primed by repeti-

tion, recall of related information, or similar states.

7. Forgetting: It is still not clear if forgetting is a problem of actual

information loss in long-term memory (LTM), or rather a problem

of recall of the memory traces. Currently, mechanisms of active

forgetting are being discussed [13].

8. Level of Activation: Exposure frequency and recency affect the

speed and probability of recall. The level of activation mainly de-

scribes the primacy & recency effect where the former is based on

LTM effects and the latter is based on the contents of the working

memory.

This paper is structured as follows: After this brief introduction

to episodic memory from the psychological and neuropsychological

point of view, we present some related work in Section 2, particu-

larly from the field of engineering and computer science. Section 3

describes the domain of our multimodal service robot TASER. Our

novel EPIROME framework is introduced in Section 4. We conclude

with an outline of our future work in Section 5 and give a general

conclusion on our EPIROME framework and episodic memory in

robotics in Section 6.

2 Literature Review – An Excerpt

Mechanisms of episodic memory can be used to develop new learn-

ing algorithms and experience-based prediction systems. Agents that

do not remember their past are bound to repeat both the previous mis-

takes and the reasoning efforts behind them. Thus, using an episodic

memory helps to save time by remembering solutions to previously

encountered problems and by anticipating undesirable states. In lit-

erature several important approaches to creating episodic memory

in artificial systems have been explored. Computational models of

episodic memory can be devided into two categories: abstract an

biological. Abstract models make claims about the “mental algo-

rithms” that support recall and recognition judgments, without ad-

dressing how these algorithms might be implemented in the brain.

Biological models make claims about the computation that support

recall and recognition judgments, the main difference being that they

also make specific claims about how the brain gives rise to these

computations. While the former models account for challenging pat-

terns of behavioural recall and recognition data from list learning

paradigms, the brain-model mapping of the latter models provides

an extra source of constraints on the model’s behaviour. Even if Nor-

man, Detre & Polyn [14] outline a comprehensive overview on com-

putational models for episodic memory, only few robotic systems

exist that make use of such models for learning.

2.1 Biological Models

2.1.1 Neural models

An episodic memory model using spiking neurons was presented in

[15]. The author describes a model that meets requirements for real-

world robotics applications. Requirements were: (a) learn quickly

and on-line, (b) recall patterns in their original order and with pre-

served timing information and (c) complete sequences from any posi-

tion even in the presence of ambiguous transitions upon cueing. The

author proposes a two-layer feed-forward neural network architec-

ture based on SAM (spike accumulation and δ-modulation) neurons

that are capable of categorising the continuous stream of sensorimo-

tor patterns from a robotic system interacting with its environment.

A learning-by-doing task was evaluated were the robot was taught to

draw a circle by guiding its hand. By using a revised Hebbian tempo-

ral learning rule with synaptic history [15], the network took about

50 epochs to stabilise.

Regrettably, the network is very sensitive to noise and the range of

recorded episodes is very small. In our point of view this approach is

not considered as episodic memory rather than nondeclarative proce-

dural memory according to the definition of LTM by [8].

2.1.2 Novelty mediated autobiographical memory

Barakova & Lourens [10] focus their research on memory-

determined behaviour that relies on the neural mechanisms under-

lying episode formation. They use the term episodic memory as in-

cluding event information within its temporal relatedness and direc-

tionality. They propose a computational model inspired by the hip-

pocampal system of rats that aims at novelty-driven encoding and

recall that facilitates inferential reuse of old memories [10].

Three neural structures are used to form a representation that

is further used for navigation. Two simultaneous active neural net-

works, corresponding to the Cornu Ammonis 1 & 3 areas (CA1 and

CA3) perform the major computations. The neurons in the CA3 area

account for the temporal aspect and the formation of episodes. The

representation in the CA1 area is prone to detect novelty. The third

structure, entorhinal cortex (EC) provides the input patterns to both

areas by projecting it onto CA1 and CA3 within a short time interval.

Events that have been learnt as an episode will tend to be recalled to-

gether and after each other, even if the presentation order is changed

[16].

Although the proposed model is one of the most biologically in-

spired robotics implementations of emergent behaviours based on

episodic memory encoding, it relies mainly on spatial navigation

tasks.

2.1.3 SMRITI

SMRITI is a computational model of episodic memory that illustrates

the role of the hippocampal system in the acquisition, maintenance

and retrieval of episodic memory, and proposes a detailed circuit-

level explanation of how the hippocampal system realizes this func-

tion in concert with cortical representations. The model demonstrates

how a cortically expressed transient pattern of rhythmic activity rep-

resenting an event or a situation can be rapidly transformed into a

persistent and robust memory trace as a result of long-term potentia-

tion and long-term depression [17].

2.2 Abstract Models

2.2.1 MINERVA 2

MINERVA 2 [18] focus on schema abstraction, recognition, and

frequency judgments and is best described as an existence proof:

MINERVA 2 proves that it is possible to account for many aspects

of memory for individual experiences (i.e., episodic memory) and

memory for abstract concepts (i.e., generic or semantic memory)

within a single system. MINERVA 2 does not prove that there is only

a single system; rather, it proves it can be done.
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In MINERVA 2, an item is represented as a vector of features in

which each component is represented by the numbers 1, 0, or -1.

Memory for an episode (e.g., for learning of a list of words) is a

set of encoded vectors, with each event (word) being represented in

a separate memory vector. The global similarity of a test item to a

memory trace is determined by the sum of the product of each fea-

ture in a probe vector and the feature in the corresponding position in

the memory trace vector divided by the number of features for which

either the probe or the memory trace are nonzero. Accordingly MIN-

ERVA 2 has to compare a test item to all items in memory.

In this model each item will be stored in an continually growing

matrix of memory traces. Together with the implausible presumption

that a biological memory increases linearly, prototype and exemplar

stimuli theory are not capable to model and explain human sensitivity

to changing frequency of occurence and the influence of the sample

size [19]. Adaptability to robotics seemed to be questionable.

2.2.2 An Episodic-memory approach to the problem of
pattern capture and recognition

Tecuci et. al [20] simply outline the following characteristics as re-

quirements for episodic memory: The memory organises temporally

ordered events, that are dynamic (i.e., they change the status of the

world) and are observed incrementally. Capture and recognition of

past events are the basic processes of an episodic memory [20]. An

episode is defined as a sequence of actions with a common goal.

Their main goal is to achieve a retrieval algorithm that can deal with

incrementally available data to make predictions dynamically in a

fast and accurate manner. They evaluate their approach on a goal

schema recognition task in the Linux Plan Corpus. The task was to

predict the type of goal an agent (Linux user) has without exact pa-

rameters. Linux users were given a goal (e.g. find a file with “exe”

extension) and were instructed to achieve it using simple Linux com-

mands.

Even if they proved that memory retrieval is scalable, they

achieved only the same level of performance as statistical ap-

proaches. Unfortunately, the system is not able to recognise subgoals

of long period plans and is sensitive to noise. A benefit of the system

is the reduction of search space by only storing relevant episodes.

2.2.3 SOAR-EM

Nuxoll & Laird extend the CBR paradigm by integrating episodic

memory with a general cognitive architecture and developing task in-

dependent mechanisms for encoding, storing, and retrieving episodes

[21]. They extend SOAR, one of the major cognitive architectures

based on production rules [22]. SOAR has two types of knowl-

edge, working memory (short-term, declarative) and production rules

(long-term, procedural) and has been extended with episodic mem-

ory mechanisms into SOAR-EM.

In previous articles they propose a Pacman-like domain to wander

around in a limited grid and collect the most food-points in the least

amount of time. Their goal was for the agent to use its episodic mem-

ory in place of its knowledge about the food-points to aid in selecting

the direction in which it should move. An activation-based matching

scheme leads to significantly better results than its unbiased match

predecessor that was developed earlier. As the agent acquires more

memory items, the eater’s performance continues to improve until it

performs at a level comparable to the greedy eater (that only heads

to the best food in its direct neighbourhood) [23]. The hypotheses of

cognitive capabilities resulting from this episodic memory are dis-

cussed and confirmed by implementations in their latest article [21].

2.2.4 LIDA

The Learning IDA (LIDA) architecture incorporates six major ar-

tificial intelligence software technologies: the copycat architecture,

sparse distributed memory, pandemonium theory, the schema mech-

anism, the behavior net model, and the sub-sumption architecture

[24]. LIDA is an extension for the Intelligent Distribution Agent

(IDA) — which is a referred to as “conscious” software agent — by

perceptual–, episodic–, and procedural–learning capabilities. It was

created as model of human cognition that could be used to suggest

possible answers to questions about the human mind. The authors

designed and developed a practical application that could act like a

human detailer, a person who negotiates with sailors about new jobs

who are near the end of their current tours of duty.

A percept in the LIDA architecture can be thought of as a set of

elements of an ontology that are relevant to the stimulus. They or-

ganise this information into a binary vector, where each field of one

or more bits represents an element of the ontology [24]. A cue (the

binary vector) will be used to query the content-addressable memo-

ries, autobiographical memory (ABM) and transient episodic mem-

ory (TEM). Both are based closely on Kanerva’s sparse distributed

memory (SDM) [25], as already mentioned in the Sec. 1. A similar-

ity between SDM circuits and those of the cerebellar cortex are noted

by [11]. Unfortunately, in this approach the whole domain must be

specified within an ontology ex ante. It is limited to the domain of

providing new jobs to sailors.

2.2.5 Memory retrieval through emotional salience and
statistical information

Episodic memory retrieval driven by an emotional system of a hu-

manoid robot is realised in [26]. A single episode is defined as a

period of task execution of the robot during which the goal of the

robot does not change. The retrieval of episodes is accomplished

through an algorithm that takes the current episode and selects sev-

eral stored episodes for placement in the episodic memory-working

memory set. The probability that a memory is relevant is calculated

through the combination of two independent factors: a history com-

ponent and a contextual component [27]. The retrieved episodes are

used to generate future actions through a planning system. To rep-

resent and evaluate emotions they used Haikonen’s system reactions

theory of emotions (SRTE) as described in [28]. In their cognitive

control experiment, the Agent ISAC (Intelligent SoftArm Control)

has to follow a moving object with its cameras. When a person yells

“Fire!”, ISAC uses attention, emotion and cognitive control to sus-

pend the current tracking task and warns everyone to exit the room

[29].

Unfortunately, ISAC recognises only four objects and four people

in its semantic memory [26]. For the purposes of this experiment,

episodes that were designed to use a variety of semantic memory

units were hand-crafted. Tasks that could be solved cover subjects

like placing objects in a certain configuration, greeting humans, and

identifying objects.

Finally, it should be noted that the review of related work shows that

engineering and computer science are in the early stages of episodic

memory modelling. The afore mentioned approaches should gave the
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reader an overview to current implementations of abstract and bio-

logical models of episodic memories in technical systems. For the

majority the portability to the domain of robotics appears to be quite

problematic. The presented approaches to build an episodic memory

have the following problems in common:

• Only applicable in highly limited domains,

• inappropriate for realising higher psychological functionality of

episodic memory,

• only consider actions, no perceptual and executive information,

• mostly handle short sequences,

• do not use one-shot learning,

• exhibit gap of terminology of episodic memory among different

disciplines.

In addition to these problems, neuroscience revealed considerable

evidence that attentional resources are necessary for the encoding of

episodic memories, while the nature of the relationship between at-

tention and neural correlates of encoding is unclear [30]. Especially

a middle layer between encoding of sensoric stimuli from robot sen-

sors to biological paradigms and high level learning, reasoning and

prediction techniques are still missing to move the field of biological

plausible computing. The findings offered by neuroscience research

should be taken seriously and greater concentration should be given

to dynamic network architectures that can alter their structure based

on experience. Finally, a more comprehensive understanding of the

brain and the central nervous system is critical to achieving better

and biologically inspired adaptive computing systems.

3 The Multimodal Service Robot Platform

Since our research background belongs to the field of service robotics

we developed a framework to investigate the use of episodic mem-

ory in real robot systems. The domain of service robotics is to assist

human beings by performing jobs that involve long distances, are

auxiliary, dangerous or repetitive et cetera.

Figure 1. The TAMS service robot TASER as research object for our high-

level episodic robot memory system.

Westhoff et. al mention a novel concept for distributed program-

ming of our multi-modal service robot TASER shown in Fig. 1 [31].

Furthermore, they describe numerous practical experiments carried

out on the robot. TASER has to work in a dynamic, real-world office

environment and due to its mobility every execution of a task slightly

changes. TASER is operated by a built-in control system, driven by

one Pentium IV 2.4 GHz standard computer. Due to TASER’s evolu-

tion novel tasks may occur that can be solved in analogy with already

learnt tasks. Thus, improved memory systems to remember previ-

ously encountered problems and to anticipate undesirable states are

essential. Generalised memories of sequences consisting of action-

based, perceptual and executive information can be applied to solv-

ing novel problems.

One such task as mentioned above can be described as follows.

A high-level service robotic task is e.g. to “serve drinks to guests”.

For this task TASER has to pick up some drinks and glasses in the

kitchen. Since the robot does not know where the guests are, it has to

walk around to find them. If TASER finds somebody it has to evalu-

ate if the person is an employee or a guest/foreigner e.g. by compar-

ing known and unknown faces via a face detector. If a stranger/guest

is detected, TASER offers a drink to him/her. Since only a couple

of rooms are of special interest for guests on a visit (e.g. labora-

tory, climbing robot room, hallway, et cetera), an episodic memory

of past, similar experiences will help TASER to realise that it has to

search for strangers most frequently in these few rooms. This ensures

that the quality and speed of TASER’s service is improved.

High-level tasks may have similar subsequences. If the robot

should bring something from the elevator to the workshop or vice

versa the subsequence (e.g. “call for the elevator”, “enter elevator”,

“pick up object” or “walk along hallway”, “enter workshop”, “place

next to worktop”, “put down object on worktop”) may be similarly

independent of the object. These sequences can be generalised. In

the case of “empty all waste bins” the task vary among concrete ex-

ecutions caused by a dynamic environment and depending on which

room may be locked or which waste bin may be unreachable or hid-

den. These examples show that generation of action sequences can

be omitted if subsequences remain reasonably stable during different

tasks. Memory retrieval can be used as heuristics to continue or stop

the execution of a task. If the goal in a memory-based, predicted se-

quence is constantly not reachable the robot should either be forced

to use other approaches or to combine several subsequences of other

less related memory traces to reach the goal. This can be seen as task

decomposition.

4 The EPIROME Framework Design

The EPIROME framework offers the capability to record high-level

episodic memories as mentioned in Section 1, 2 and exemplified in

Section 3. EPIROME is an independent framework that is based on

the observer design pattern. The observer pattern is a design pattern

for observing the state of an object in a program. It is mainly used

to implement a distributed event handling system. The essence of the

pattern is that one or more objects (called observers or listeners) are

registered (or register themselves) to observe an event which may be

caused by the observed object (the subject). A domain-independent

abstract layer specifies the interface for event broadcast. Observers

can be attached to concrete subjects by using a connection method.

Observers have to implement a method newEvent() offered by

the abstract interface layer to specify how to process information on

a connected subject if a new event occurs. Each subject has a list

of observers listening to it. Each time a concrete subject perceives

a specific event through the manifold sensors of the robot system, it

will call newEvent() for all observers in its observer collection.
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Figure 2. The hierarchy of events. The classes and interfaces of the depen-

dent layer are customised for our service robot domain. The episodic memory

itself operates only on the independent event layer.

In general we think of episodic memories as sequences of events.

Each event carries time information and can be assigned to one of the

three major event classes: perceptual events, command events and

executive events (Fig. 2). Based on this domain-independent hierar-

chy, a more comprehensive classification can be applied to include

domain-specific information. Fig. 2 shows a part of the event hierar-

chy realised for our service robot TASER. The processing within the

memory module of our framework will only work for the domain-

independent classification of events. Therefore, the framework can

be applied to other domains seamlessly. In the following subsections

we give a brief introduction on how we associate robotic events to

the above-mentioned major event classes.

4.1 Perceptual events

This type of events focus on the recognition and interpretation of sen-

sory stimuli. Perception obviously applies to all sensoric modalities.

Robot sensor input gets a high-level interpretation e.g. by mapping

to semantic knowledge provided by a regionally labeled site map,

basic physics rules et cetera. The following examples illustrate how

high-level events emerge from low-level sensor data:

• Spatial perceptual: In this architecture we assume an inference

component is capable of infering robots position relative to land-

marks in a given semantically, regionally labeled site map. Every-

time the robot changes from one region to another it will receive

a spatial event as e.g. “I am in front of the laboratory”. Based on

this map and the localisation the robot has a sense where it is (e.g.

laboratory, kitchen, office, et cetera).

• Stalled: If the robot e.g. passes down a planned path and encoun-

ters a meanwhile closed door or an obstacle blocking its way, it

will receive an event signalising that it cannot pass through. In

addition, manipulation events can also perceive if they get stuck.

• Uni-/Multimodal perceptual: Perceptions can be based on a sin-

gle sensor or can be combinations of different sensory informa-

tion. This information is useful for investigations to multimodal

cognitive processing.

4.2 Command events

Command events are specifications of the ability to produce move-

ments by interaction of a control unit and actuators. In case of

TASER the control unit is the motor control system and the actuators

are the servomotors. Command events can be seen as basic move-

ment functionalities, typically: Rotate, Translate, Stop, Open fin-

ger et cetera.

4.3 Executive events

This category contains high-level abilities and meta events that are

mostly reflective or procedural. They are necessary for goal-directed

behaviour. Thus they are called executive functions.

• Goal: An agent strives for a particular goal, this can be a high-

level main task (e.g. “bring me a coffee from the kitchen”, “carry

this object to person X”, “empty all waste bins”) or a collection of

subtasks (e.g. “go to kitchen”, “grasp waste bin”). This may result

from direct user interaction.

• Ends: The agent confirms if a task/subtask is reached successfully

or not. This also can be a result from feedback of a user. However,

it also records if a goal is not reached to avoid the same mistakes

next time.

• Planning: If the agent makes plans to solve tasks and desires (e.g.

recharge, path planning, trajectory planning)

• Manipulate/Grasp: The ability to manipulate/grasp objects with

e.g. a robot arm, a hand.

• Handle: A more complex combination of object grasping, manip-

ulation, translation, et cetera as combination of few basic com-

mand events.

The type of used tasks and events (e.g. spatio-temporal events like

“I am in the laboratory next to a desk”) demonstrates that our system

operates on a high cognitive level. The current EPIROME frame-

work for our robot domain possesses several observers and subjects.

The user can choose between several basic command events to solve

a desired task (Fig. 3). It has a visualisation tool to present experi-

enced and currently running episodes to the user 4. Each event of an

episode gets a dedicated colour depending on the event type (Fig.

3). The colour coding makes it easier to make a first comparison of

episodes visually. The map in Fig. 3 shows a hallway and the current

position and sensing of the robot. The door application to the right

of Fig. 3 is only used during simulation. Doors can randomly open

or close to force the robot to stall and rearrange its path. This leads

to considerable changes within episodes of the same task. The three

episodes in the middle of the visualisation tool are of the same task

and look similar. However, the first episode differs from the other

two after few events and is longer although the robot stalled due to

a closed door. Nevertheless TASER solved its task successfully by

replanning.

4 A recorded sequence may look as follows (timecodes are not listed):
GOALEVENT: Bring newly delivered material from the elevator to the
workshop ≻ Floor in front of elevator ≻ Approach bucket ≻ Grasp ≻

Pick up bucket ≻ Bucket lifted ≻ Planning a path ≻ Path found ≻ Rotate
to north north east ≻ Translating to position (x: 14303 mm; y: 7765 mm;
theta: 45.117) ≻ Floor in front of lab ≻ Rotate to east ≻ Translating to
position (x: 23646 mm; y: 8245 mm; theta: 0.0) ≻ Floor in front of office
2 ≻ Floor in front of office 3 ≻ Floor in front of office 4 ≻ Rotate to north
east ≻ Translating to position (x: 26121 mm; y: 14523 mm; theta: 167.354)
≻ Workshop ≻ Put down bucket ≻ Bucket released ≻ Goal successfully
accomplished . The majority of events can be deconvolved from complex
to atomic actions.
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Figure 3. Screenshot of the running EPIROME framework. The graphical EPIROME user and command interface at the left, at the top already recorded

autobiographical sequences of our robot, the map of our hallway in the background and the randomised door control system.

5 Current Work

The basic functionality of our framework for high-level episodic

memory research in robotics has been completed. We already de-

veloped the EPIROME framework to collect high-level events and

developed mechanisms to maintain such high-level events. These

events are based on different modules that provide particular high-

level information, e.g. the path planner provides information like

“move straight on for distance Y ”, “turn right”, “turn hard left”,

et cetera; events might be given apriori by user interaction and com-

mands; an open or closed door can be sensed through the laser-range

scanners in combination with a site map; high-level arm movements

like beckoning, opening a door, grasping an object on a table, shak-

ing hands has been learned via a content-addressable SDM and can

be recognised5.

Our current work is twofold. First we extend our system with

further event generating modules. These components can be cate-

gorised to extend the already used perceptual, command and execu-

tive events. Thus, it will satisfy the current design. Additional event

generating modules can be e.g. face detectors, manipulation units,

object recogniser and locator et cetera. Additionally we are going to

verify the episodic memory approach to the problem of pattern cap-

ture and recognition through a goal schema recognition task in the

Linux Plan Corpus proposed in [20] and compare it to our episodic

memory module. Our framework can easily be extended and tested

by designing a module with the capabilities proposed by [20].

And secondly, we are transferring and extending the SDM mech-

anisms that are already used for our manipulator unit to a more gen-

eralised memory that combines further robot sensors and actuators.

If the robot solves tasks in a new and distinct manner, it will store

a new memory trace immediately. Since the mathematical model of

5 In addition the SDM stores a model of the world (concerning the manipu-
lator) while the sensory information at a particular moment is represented
as a vector of features (joint angles, tool-center-point & orientation) and a
sequence of such vectors represent the passage of time. This has prediction
capabilities since after short training the SDM returns predictions of some
next arm positions that were normally activated from the current position.

SDM follows the basic idea that the distances between concepts in

human minds correspond to the distances between points of a high-

dimensional space, we expect to get clusters of similar actions and

action sequence concepts. Since our manipulator has proved to work

well with an SDM, the main problem remains of how to convey

the different types of features (based on the sensors) into the high-

dimensional input vector required by the SDM. This encoding prob-

lem remains to be the major problem in associative-memories of

which episodic memory and sparse distributed memory are parts.

At a later step, frequently emerging subsequences within episodes

can be generalised to a single abstract meta event. Consequently, in-

dividual subsequences are not stored redundantely and the gener-

alised abstract event refers to the memory trace of the experience

related to this subsequence. This is consistent with the theory that re-

lated concepts are stored close together6. The level of activation of a

trace of a subsequence has to be primed depending on its occurrence.

Since we can easily add additional concrete observers to the

EPIROME architecture it will be a cinch to compare different mem-

ory mechanisms implemented by different modules, listening to the

same type of events.

6 Conclusion

After three decades of psychological and neuropsychological re-

search, episodic memory is finding its way into engineering and com-

puter science. In this paper we gave an overview to current compu-

tational models of episodic memories and outline the problems of

portability into robotics. Even for neuroscience the relationship be-

tween attention and neural correlates of encoding in episodic mem-

ory remains unclear. A better understanding of the encoding of sen-

soric stimuli from robot sensors to biological paradigms and high-

level learning, reasoning and prediction techniques is necessary. We

propose that findings offered by neuroscience and psychological re-

search should be taken seriously to get a more comprehensive under-

6 We are aware that we have to take temporal indexing of each episode into
account if we use generalisation.
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standing of the brain and the central nervous system, especially for

advanced biologically inspired robotics. Close interdisciplinary work

will be indispensable in reaching this major goal.

With our EPIROME framework it is possible to model and com-

pare episodic memories of high-level events for technical systems.

We apply this framework to our robot system and it provides TASER

with a life-long memory to improve action planning based on past ex-

periences. Table 1 shows the characteristics of episodic memory that

EPIROME already complies in comparision to the psychological and

neuropsychological characteristics mentioned in Tab. 1. Unfulfilled

conditions are marked with 2 in Tab. 1 and have to be discussed be-

fore implementing, e.g. it is eligible to realise forgetting as long as

no physical storage or processing limitaion exist.

Episodic Memory EPIROME

Autonoetic 2� Timely distinguishable sensations

Autobiographical 2� Robots own sensations

Variable Duration 2� Episodes bound by start / end event

Temporally Indexed 2� Timestamps

Imperfect 2 Error simulation / Sensor uncertainty

Primed 2 Priming of frequently used episodes

Deletion of less used sequences /Forgetting 2
Physical limited storage devices

Level of Activation 2 Probabilities in retrieval function

Table 1. Characteristics of episodic memory of the current EPIROME

framework (2�) and future work (2).

One major advantage of our episodic memory is that it provides

one-shot learning capabilities to our robot. This is very important

while it learns novel tasks. Furthermore, by using an SDM, less

used executive manipulation tasks will be forgotten. We are not sim-

ply processing motor information but also high-level sensory events

which are mostly neglected or of low-level in other artificial systems.

If an episode based on current sensings does not reach a goal, already

experienced episodes or subsequences of past episodes may provide

approaches to achieving success. The system structures high-level

tasks into a well-composed hierarchy. The EPIROME framework is

a sophisticated model to establish human-like learning in AI robot

systems and for investigating multimodal cognitive processes.
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