
From CMOS-Gates to Computer Architecture:
Lessons Learned From Five Years of Java-Applets

Norman Hendrich

Dept. of Computer Science, University of Hamburg
Vogt-Koelln-Str 30, D 22 527 Hamburg

Email: hendrich@informatik.uni-hamburg.de

Abstract Static images in textbooks are only poorly suited to illustrate complex non-
static processes. A typical example is the task to explain and visualize the parallel
data-transfers in a microprocessor pipeline or cache. One candidate solution to this
dilemma is the use of dynamic media in teaching, e.g. videos or interactive simula-
tions. Shortly after the first version of Java became available, we started to build a
library of Java-applets to visualize several topics in logic design and computer ar-
chitecture. In this paper, we will present the rationale behind our applet collection.
Based on user feedback and our experiences in teaching, we derive some guidelines
concerning the design and use of Java applets in teaching.

1 A Library of Java Applets
Many topics in microelectronics education are concerned with complex sequences of
events, often occurring in parallel and even asynchronously. It is quite a challenge to
explain these processes just with the help of static images. An excellent example is the
description of the MIPS pipeline in [1], where a dozen pages are allocated to color graph-
ics, each of them showing one step of pipelined instruction execution. However, despite
this effort, still only a few of the pipeline states and hazards are covered.

The use of interactive simulations to illustrate and visualize such processes suggests
itself. As Java-applets are portable and require no installation, they seem an ideal can-
didate to implement such interactive simulators. Also, the applets are embedded into
HTML pages which can directly provide the applet user-guide and additional documenta-
tion about the applets’ context. Finally, the performance problems often attributed to Java
are usually not a concern for teaching.

Shortly after Sun Microsystems announced Java [2], we therefore started to build a
collection of applets [3], each one of them illustrating a topic which had proved difficult
for our students. Currently, public access is possible for the following applets via our
applet homepage, tech-www.informatik.uni-hamburg.de/applets:

• demonstration of static CMOS-gates
• Karnaugh-Veitch diagrams and logic minimization
• binary decision diagrams
• an interactive finite-state machine editor and simulator
• an highly-animated simulator for a simple von-Neumann processor
• a complete applet-based course in computer architecture, from basic RT-level com-

ponents to a whole computer system including user-configurable caches
• the HADES digital system design and co-simulation framework [4]



Figure 1: The CMOS-gate demonstration applets use colors to indicate voltage levels and
allow the user to interactively play with static CMOS gates and flipflops. Two examples
are shown: 2-input NAND-gate (left), D-LATCH with waveforms (right).

Written at the end of 1995, our CMOS-gate demonstration turned out to use some of
the very first Java-applets in Europe, and remains one of the most frequently accessed
pages on our website. Based on a 0/1/X/Z switch-level model, each applet allows the
student to toggle the input voltages for the transistors and calculates the corresponding
output values. Different colors are used to visualize the logical values on the wires, and
the transistor symbols are updated to show which transistors are conducting (figure 1).
Usually, just a few minutes of playing with the applets allow the students to just “see” the
complementary nature of the p- and n-paths in the static CMOS-gates.

Another example applet, the interactive Karnaugh-Veitch map editor, is shown in fig-
ure 2. It supports both sum-of-products and product-of-sums minimization of user-defined
logical functions (with 2..6 inputs and 1..8 outputs). Unlike a textbook description which
can only show a few steps of the minimization process, the applet instantly updates the
circuit schematic corresponding to the terms selected in the K-map. Again, colors are
used to indicate the user-selected terms (cubes) and the corresponding gates in the logic
realization. In “student mode”, the circuit schematic highlights the gates corresponding
to a cube in the K-map, before collapsing them to show the minimized schematic.

2 An Applet-based Course in Computer Architecture
Based on the experiences with the simple applets, we proceeded to create a set of applets
as interactive illustrations for a tutorial on computer architecture [5]. All applets use the
same conventions for visualization (like highlighting active registers or memory cells in
red) and include context-sensitive textual explanations. To save valuable screen space,
a very simple 16-bit accumulator machine with a basic instruction set is used. This al-
lowed us to display all machine registers together with a sizeable part of the memory on
each screen. The course starts with simple applets to illustrate the basic building blocks
like registers, memory, and ALUs. Next, the 16-bit microprocessor is introduced and



Figure 2: Our interactive KV-diagram editor (left) and a simple state-machine editor with
integrated simulator (right).

several applets are used to demonstrate first a few elementary instructions and then the
full instruction set. A separate applet, based on the 68000-series architecture, is used to
illustrate typical addressing modes.

Perhaps the most complex applet is shown in figure 3. It combines the simple mi-
croprocessor with a fully-configurable cache. The user can select many parameters of
the cache architecture (including cache size and line size, direct-mapped, 2-way or 4-
way associative organization, write-through or write-back, random or LRU replacement).
For each of the user selections, the applet generates the corresponding simulator, includ-
ing context-sensitive help-texts, and allows to run programs on the selected architecture
while gathering miss-rate statistics. As shown in figure 3, data transfers are animated and
several colors are used to indicate active data elements and the state of cache lines and
tags. Almost none of the visualization aids would be possible on paper.

3 Experiences and Applet Guidelines
While eye-catching animations easily impress one-time users, it is much more difficult
to make them really helpful for teaching. In fact, one of our highly animated applets
(not shown here) proved much less useful than an older text-mode simulator. Besides
the standard simulation controls like run or single-step, we always found it necessary to
allow the user to take steps back, in order to repeat difficult parts or to explore different
approaches. Unfortunately, this seemingly simple requirement often results in a very
complex implementation, like the use of saving and restoring simulator checkpoints.

Apart from some annoying (and platform-dependent) bugs in all major browsers, we
found Java a good environment to build complex simulators. For example, the cache
applet shown above may easily exceed the memory limit enforced by some browsers.
Other problems are the limited support for audio and the access to user data, restricted
by applet security. While Java performance has been a major obstacle, it is no longer a
problem on modern hardware. Full screen animations are possible in all current browsers,
and simulation speed may surpass one million events or instructions per second.



Figure 3: Thecache appletfrom our applet series on computer architecture. It demon-
strates and visualizes the function of both direct-mapped and associative caches. After
selection of the cache architecture, the user can load and run example programs (or single-
step through the programs). The screenshot shows the applet and the configuration and
simulation control dialog windows. Main memory, cache data and tags, and the CPU
registers are all visible at once. Note the color encoding used to highlight valid, invalid,
and dirty cache entries, the (context-sensitive) help text, and the visualization (animated
dotted lines) of the data transfers.

All applets are currently used in lectures and lab courses at our department, despite
the fact that the required infrastructure (data projector etc.) is not always readily avail-
able. While we do not monitor external access to the applets, the usage statistics for our
webserver show that the applet pages are among the most active. Overall, the students’
feedback to the applets has been quite positive. This is especially true for the simple ap-
plets, which can be used right-away without studying user manuals. Unfortunately, the
computer architecture tutorial is still only available in the original German version.

References
1. Hennessy, J.L. and Patterson, D.A.,Computer organization and design: the hardware/software

interface, Morgan Kaufmann Publishers, 1998
2. Gosling, J. and McGilton, H.,The Java Language Environment, Sun Microsystems, 1995
3. Hendrich, N., The Hamburg computer architecture applet gallery homepage,

http://tech-www.informatik.uni-hamburg.de/applets/
4. Hendrich, N., A Java-based framework for simulation and teaching: Hades, inMicroelectronis

Education, Proc. EWME-2000, 285-288, 2000
5. Kelling, C.,Ein Rechnerbaukasten: Simulation und Visualisierung der Zeitabläufe in Rechner-

architekturen mit Java-Applets, MSc. thesis, Dept. Computer Science, Univ. Hamburg, 1998


