
Automatic Checking of Students’ Designs
Using Built-In Selftest Methods

Norman Hendrich

Dept. of Computer Science, University of Hamburg
Vogt-Koelln-Str 30, D 22 527 Hamburg

Email: hendrich@informatik.uni-hamburg.de

Abstract While distance learning is attractive for many reasons, it also incurs some
specific problems. One of them is the lack of direct interaction between teaching
staff and the students, another one the large number of students for some courses.
Therefore, the checking and correction of the homework submitted by the students
often takes a lot of time and effort. This is especially true for digital logic design
exercises, where a variety of functionally equivalent designs is possible.

In this paper we show how to apply the signature analysis technique based on
linear-feedback shift-registers, well known from built-in selftest (BIST) research, to
the automatic checking of the circuits designed by the students. As the selftest is
run on the students’ own PC or workstation, the system provides immediate feed-
back about whether a circuit is working, and it allows to reduce the number of false
solutions submitted by the students.

1 WebAssign and Hades
Several management systems have been proposed to ease the distribution and correction
of exercises for distance learning. One of these is the WebAssign system [1], built since
1997 in a cooperation of several German universities. Among the functions provided by
WebAssign is a module for automatic checking of students’ homework solutions, which
are represented as HTML documents. This module currently allows to check (and correct)
numerical values and the answers to simple yes-no or multiple-choice questions. Unfor-
tunately, none of these functions is even remotely sufficient to check or rate the solutions
to digital design assignments.

We therefore tried to integrate a means to automate the checking of digital logic home-
work assignments as far as possible. While several digital simulators suited to teaching
are available (e.g. Diglog [2]), we selected Hades [3], a Java-based framework for digital
system simulation and visualization. First, the Hades system is available free of charge
for eductional use. Second, the software is very portable and runs on Windows, Linux,
Solaris, Macintosh systems, and it can also be used as an applet. Third, the simulator pro-
vides all the simulation models required, including a complete set of gate-level models,
and the linear-feedback shift registers and BILBO registers [4] used for running the self-
tests. Fourth, the networking functionality provided by Java allows the easy integration
into the WebAssign system, which itself is also implemented in Java.

2 Built-In Selftest
The basic idea of built-in selftest methods is to increase the testability and to reduce the
cost of testing of integrated circuits. A variety of algorithms and architectures have been

Figure 1: Signature-analysis example: Left: A schematic in the Hades editor showing
the testbench circuit with LFSR-generator, the unit under test, and LFSR-signature ana-
lyzer. The dialog window shows the final signature value collected by the analysis register
(highlighted). The simulation can also be run in batch-mode without the user-interface.

Figure 2: Two typical homework assignment design examples. Simple 2-out-of-4 decoder
circuit (left) and a tree of adders to calculate the bit weight of the inputs (right). The
template designs available to the students only include the I/O-components, into which
the logic “has to be filled in”. To comply with the presentation in the lectures, the German
DIN symbols are used for the basic logic gates.

public int check_signature(int seed1, int seed2) {
editor.loadDesign("testbenches/bitcount8.hds")
analyzer = editor.getComponent("LFSR-analyzer");
analyzer.setSeed(seed1)
generator = design.getComponent("LFSR-generator");
generator.setSeed(seed2);
editor.runSimulation(time)
signature = analyzer.getValue()
return signature;

}

Figure 3: Pseudocode for a personalized signature check. The correct “master” signature
can either be calculated or is found by running the simulation on a reference circuit.

proposed to this end (for an introduction see [5]). One of the most successful techniques is
the use of linear feedback shift-registers for both pattern generation and signature analysis.
From a hardware point of view, the main advantage of the LFSR-registers and the BILBO-
registers in particular is the low cost, as the selftest logic can usually be integrated into
the registers required for the normal system function. Also, LFSR-registers can be run
at very high clock-rates which enables a full-speed test of the target logic. This in turn
allows to run many test patterns and results in high fault-detection probabilities.

In the context of WebAssign, we use the signature analysis technique for other rea-
sons. Most importantly, it is very simple to write or even auto-generate a testbench circuit
based on LFSRs. Also, there is no need to write specific input stimuli for each assign-
ment. Instead, the LFSR generators and signature analysis registers are initialized with
suitable seed values and the simulation is run for a predefined number of clock cycles
(see figure 3). Once the simulation is finished, the signature values are read out from the
analysis registers and compared with “golden” values from a correct circuit. For small
circuits it is also practical to run a complete simulation through all combinations of input
values, if required.

As an example, the testbench design used for the selftest of a simple adder circuit
is shown in figure 1. It consists of the LFSR-based generator register on the left, the
LFSR-based signature analysis register on the right. The generator and signature registers
are connected to the unit-under-test circuit, as well as clock and reset signals. In order
to guarantee correct interfaces for the circuits, both the testbench design and an empty
(interface only) circuit are provided to the students, who then have to design the missing
adder logic.

Two examples of typical homework assignments are shown in figure 2. While the
circuits are quite simple, it is easy to introduce errors, which can be hard to detect without
the help of the simulator and the selftest.

2.1 Personalized Signatures

After designing the circuit, the student runs the selftest on the testbench, generating a
first signature which is checked against a master signature provided together with the
testbench. Only when both signatures match is the circuit working correctly. Note that
Hades allows both batch-mode simulation and interactive simulation, where the circuit
can be edited and corrected without leaving or restarting the editor.

Once the circuit is working, the student runs a second selftest with new start values for
the LFSR registers, generating a second signature. Finally, the student submits the solu-
tion (that is, the Hades design files) together with the signature values to the WebAssign
server. By using different initial seed values for the LFSR pattern generator and signature
registers, we are able to personalize the exercises for each student.

For a simple circuit like the adder presented above, the main advantage of the selftest is
the immediate feedback to the student whether the design is already correct. However, for
larger designs and especially for sequential circuits with complex state machines, where
a variety of solutions is possible, the selftest also greatly reduces the work required to
check the students’ solutions (and it still provides feedback to the student).

2.2 Timing Checks

Because Hades uses a discrete-event based simulation engine, the simulation includes
gate-delays and allows timing checks on the circuits. For example, one of the homework
assignments asks the students to design a carry-select adder from given 8-bit adder and
multiplexer blocks. Therefore, the correct solution to the exercise does only differ in the
timing, but not the functional behaviour, from a much simpler ripple-carry architecture.
However, by running the selftest at a clock-speed that exposes the gate-delays, we can
easily detect the slower (and wrong) design, without the need for additional timing checks
or intricate waveform comparisons.

3 Status and Experiences
The system is currently in the final implementation and test phase, and it is scheduled
for the summer semester courses [7]. While the server-side software is stable, the robust
installation of Hades on the student’s computers is still a concern, as many combinatons of
operating system and Java virtual machines have to be supported. Initial student feedback
should be available soon.

References
1. Brunsmann, J., Homrighausen, A., Six, H.-W., Voss, J., Assignments in a Virtual University -

The WebAssign-System,Proc. 19th World Conference on Open Learning and Distance Edu-
cation, Vienna, 1999.

2. Gillespie, D., and Lazzaro, J.,DigLOG and AnaLOG, Caltech VLSI CAD Tools, California
Institute of Technology, 1996 ftp://ftp.pcmp.caltech.edu/pub/chipmunk/

3. Hendrich, N., A Java-based framework for simulation and teaching: Hades, inMicroelectronis
Education, Proc. EWME-2000, 285-288, 2000
tech-www.informatik.uni-hamburg.de/applets/hades

4. Koenemann, B., Mucha, J., and Zwiehoff, G., Built-in Logic Block Observation Techniques
(BILBO), Proc. International Test Conference, 37-41, 1979

5. Lala, P.K.,Digital circuit testing and testability, Academic press, 1997
6. Schiffmann, W., and Schmitz, R.,Technische Informatik I, Springer 1999
7. Schiffmann, W.,Technische Informatik I, lecture and assignments, Fernuniversität Hagen, 2002

