The Theory of Dynamic Encryption,
a New Approach to Cryptography

Bo Démstedt!, Jesper Jansson?

! Protego Information AB, Ideon, 223 70 Lund, Sweden,
bo.domstedt@protego.se
2 Dept. of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden,
Jesper.Jansson@cs.lth.se

Abstract. In this paper we introduce a cipher where the mapping from
the plaintext to the ciphertext consists of a computational process that
will generate a new encryption system in response to every combination
of input messages, initialization vectors, and cipher keys. The construc-
tion will have dynamic cryptanalytic properties, which we show is an ob-
stacle that prevents the cryptanalyst from breaking the cipher. Ciphers of
the introduced type may be adopted to implementation constraints and
application specific issues, thereby substantially increasing the technical
efficiency of implemented ciphers.

Keywords: Cipher construction, dynamic encryption, complexity theory.

1 Introduction

A message may be protected in transit or in storage by encryption [4,6] (Fig.1).
The input message M is called plaintexrt. The ciphertext C = f(K, M), an unin-
telligible from of the plaintext, is computed as a function of the plaintext and a
finite secret cipher key K. The legitimate receiver may recover the plaintext from
the ciphertext by applying an inverse transformation M = f~!(K,C). Both the
sender and the receiver share a secret key K that must be distributed between
the parties using secure means.

The scientist who construct ciphers is called a cryptographer. We assume
that a cryptanalyst (or enemy) will be trying to find the secret cipher key K, or
converting the ciphertext C back into intelligible form.

The distribution of message lengths, transmission frequencies, transmission
errors, frequencies of repeated messages, context switching frequencies, etc., is
likely to be different for every new application area. Ciphers may be used for
many purposes, like link encryption, storage encryption, or authentication. It
may be required that the cipher prevents a certain attack, or that it can easily
be adopted to a certain plaintext format. Some ciphers will be implemented
in software. Other ciphers will be implemented on Smart-Cards, FPGA:s, or on
ASIC:s. Different implementation strategies will perform differently. A mismatch

Enemy ~
Cryptanalyst M
M—>» C=f(K,M) C M=F}(K,C)———»M

K K

Fig. 1

between the selected cipher and the target technology and application area could
decrease the technical efficiency obtained.

It is evident that no single cipher [9], no matter how flexible and efficient,
will be optimal in meeting this challenge in respect to the above mentioned
constraints. There will be a need for new cipher systems that meet the evolving
demands of various application areas.

When a cryptographer is designing a new cipher, its security level may be
difficult to establish. The security is an estimation of how difficult it would be
to break the cipher without knowing the secret cipher key. Conventionally, it
is assumed that the analysis made by the cryptographer and the cryptanalyst
is based upon identical information — the cryptanalyst knows the system being
used [1] (ch 11.2.2). A key point, that we show in this paper, is that this condition
is necessary. A cryptanalytic break implies that the cryptanalyst has obtained
a part of the secrets of the cipher corresponding to the degree of success. This
opens the possibility to challenge this fundamental assumption by introducing a
construction that will prevent the cryptanalyst from learning the details of the
cipher being used.

A short description of classical methods for cipher construction is given.
The proposed construction is introduced, including a short overview of major
implementation problems. Finally, a short analysis is given of the properties of
the proposed system.

2 Classical Cipher Construction Methods

The cryptanalyst may attack a cipher in a variety of ways [1,5]. He may even
discover new cryptanalytic methods that could possibly break a cipher efficiently
and thoroughly [2]. The only objective of the cryptanalyst is to recover the
plaintext. There is no restriction on what kinds of mathematics or methods that
may be used.

An intuitive approach to the problem of constructing secure cipher functions
is to evaluate proposed ciphers, and based upon the findings, incrementally im-
prove these implementations. In practice, the cryptographer may only protect the
cipher from cryptanalytic techniques known to him. Weak ciphers, that may be
broken using existing methods, cannot be used for real applications [11] (ch 13.4).
Stronger ciphers, that cannot be successfully cryptanalysed, will have unknown
strength [11] (ch 12.3). It will not be clear, until a new cryptanalytic method is
discovered, if these systems need to be improved.

3 Dynamic Encryption

Suppose that a cryptanalyst is trying to identify a function C' = F; (M) by using
a table of corresponding pairs of input and output {M;, C;}. For special functions
F(), for example linear functions, this problem may be solved efficiently. That
can not be the case for general functions. As an example, set C' = Fy (M) = | M|
and compare Fy (M) to F»(M), where F»(M) = |0M| ii % i %2 .

It is clear that no finite number of experiments {M;, C;} will suffice for the
cryptanalyst to separate the two functions Fi() and Fz() from each other, as
the arbitrary number My may have been set to any value. We have proven the
following theorem:

Theorem 1. There can not exist an algorithm that can identify a general com-
putational process based upon the input/output relation.

We conclude that if we use a cipher that includes a general computational
process, and keep all construction parameters of that process secret, the crypt-
analyst will face a problem which he will be unable to solve. We must however
carefully observe the principle of A. Kerckhoffs that “No inconvenience should
occur if the system falls into the hands of the enemy.” [1] (pp 196). We see specif-
ically that simply using an “optimal” encryption algorithm, that is kept secret,
will not be a solution.

Assuming that Church-Turing’s thesis is true, any general computational
process may be implemented as a software for a universal Turing machine, or a
general purpose computer [10,13]. The specific universal machine that we will
make use of here must have a few specific properties. It should be designed into
accepting any binary string as valid input, i.e no input string shall be rejected as
having wrong syntax. This requirement is equivalent to that the set of operations,
of the universal machine, is devised such that an operation will be selected in
response to any possible input information stream [3]. This modification is of
no difficulty, and can be implemented without restricting the set of possible
computations.

The input stream must further be kept secret, as knowledge of this would
essentially be equivalent to knowing the key of the system. We propose selecting
the combination of the secret cipher key K and the input plaintext M as the
secret input stream. This choice will not pose any difficulties, as the universal

machine may use any binary string as input. We see that the secret input stream
and the internal memory of the universal machine, may easily be protected
during encryption or decryption, and can be erased afterwards.

The output from the universal machine would be in the form of a binary string
[7] (ch 7.7), that we use as an internal key stream to an invertible mapping. We
note that this is required as the universal machine will implement a one-way
function, and an identical output can be obtained only by applying identical
input. We have reached the configuration shown in Fig. 2, where feedback loops
are shown from both the input plaintext and the output ciphertext, to the input
of the universal machine.

<
A

Invertible Mappin »C

T

Universal Machine

T

Software <

Fig. 2

In any actual implementation of Dynamic Encryption, the internal memory
of the universal machine will be limited. This will collapse the set of compu-
tations that can be performed into a subset of the regular machines [7] (ch 2).
This will not necessarily be an exploitable weakness as there may not be any
way of deducing the number of internal states, or how they are connected, just
by observing the output string corresponding to a single input string. Intuitively,
a higher-level description of the computation must be found to facilitate crypt-
analysis.

From an overall point of view we see that when designing an implementation
of dynamic encryption, effort must be made to “approximate” the computational
power of the unrestricted universal Turing machine by selecting design param-
eters accordingly. Particularly, we note that the size of the secret input stream
should not be too small, and we conclude that the minimum size of the input
message, or rather its entropy, must not be too low. The same argument ap-
plies to the secret cipher key K [3], that must be substantially longer than the
“combination lock” type of cipher keys used in conventional ciphers [11] (ch 7.1,
7.5).

4 Analysis of the Proposed System

Any successful break of a cipher, equivalent to the complete recovery of the keys
of the cipher, will reveal to the cryptanalyst all details of the cipher, except parts
that cannot influence the ciphertext. This is obvious as the cryptanalyst may
simulate the encryption of a message using the recovered key. If the cryptanalyst
has not obtained a sufficiently detailed description of the cipher to facilitate
cryptanalysis, the cryptanalyst must first investigate the structure of the system
prior to searching for the secret plaintext. We conclude that if the cryptanalyst
cannot obtain a sufficiently detailed description of the cipher, cryptanalysis will
not be possible.

If we, as another example, assume that the cryptanalyst has been able to
break a particular instance of the secret input stream P, = {M,, K,}, the
cryptanalysis method will apply to another stream only if the cryptanalysis
method can be applied in general. If the break, on the other hand, exploits some
specific weakness of the input stream P,, the cryptanalysis method will only
apply to this stream, and cannot work against any other combination of key and
message. We conclude that, if specific instances of ciphertext are vulnerable, the
cryptanalysis effort must be restarted from the beginning for every transmitted
message.

We note that the general problem of investigating the properties of software
has been extensively studied in the software industry [8]. We may compare an
cryptanalyst, attempting cryptanalysis on Dynamic Encryption, and a software
engineer, struggling with debugging a problematic software. The cryptanalyst
would be investigating the properties of a universal machine that reads a string
{M,K} and outputs a string {C'}. We assume that the string {M} is known
by the cryptanalyst, who attempts to find a key {K} such that {C'} = {Cy}.
The software engineer will be investigating the behaviour of a general purpose
computer executing a software {P} with input {z}. The engineer observes the
output {Y'}, and tries to find an input {z} that makes the computation behave in
some specified way {Y'} = {Yp}. The comparison {C} = computation({M, K});
{Y'} = computation({P,z}) shows that breaking the proposed cipher will be at
least as hard as debugging software. Clearly, the cryptanalyst will not be allowed
to inspect the software, single-step using a debugger, or inspect the internal state
of the memory, tools that are essential for the success of the software engineer.

5 Concluding Remarks

That certain properties of the universal Turing machine leads to computationally
difficult problems is well known [7,10, 13|, and it has previously been suggested
that this may be one of the foundations of cipher security [14, 15]. We have found
that the security of the proposed concept may be argued from both a theoretical
and a practical point of view. The proposed system has in our opinion many
interesting and favorable properties that have not been exploited before. In this
paper an attempt has been made to further investigate this concept and create
a platform for further research in this area.

References

10.

11.

12.

13.

14.

15.

. Bauer, Friedrich L. “Decrypted Secrets - Methods and Maxims of Cryptology”,

Springer-Verlag Berlin Heidelberg 1997, ISBN 3-540-60418-9.

. Biham, Eli and Shamir, Adi. “Differential Cryptanalysis of the Data Encryption

Standard”, Springer-Verlag, 1993, ISBN 0-387-97930-1, 3-540-97930-1.

Domstedt, Bo and Stenfeldt, Mats. “Processing method and apparatus for con-
verting information from a first format into a second format”, Patent Applications
PCT/SE99/01740; EP 98118910.3, Lateca Computer Inc N.V.

Fak, Viiveke (ed.); Ekhall, Stig-Arne; Cristoffersson, Per; Widman, Kjell-Ove; et
al. “Crypto Users’ Handbook”, North-Holland 1988, ISBN 0-444-70484-1.
Hellman, M.; Merkle, R.; Schroeppel, R.; Washington, L.; Diffie, W.; Pohlig S.;
Schweitzer, P. “Results of an Initial Attempt to Cryptanalyze the NBS Data En-
cryption Standard”, Technical Report SEL-76-042, Sept 9, 1976, Information Sys-
tems Laboratory, Department of Electrical Engineering, Stanford University.
Herlestam, Tore. “Kryptering - for sikerhets skull”, Tidningen Elteknik med aktuell
elektronik, pages 24-26 in #14, 1979.

Hopcroft, John E. and Ullman, Jeffrey D. “Introduction to Automata Theory, Lan-
guages and Computation”, Addison-Wesley Publishing Company, 1979, ISBN 0-
201-02988-X.

Kaner, Cem; Falk, Jack; Nguyen, Hung Quoc. “Testing Computer Software”, Second
Edition, Thomson Computer Press, 1993, ISBN 1-85032-847-1.

National Institute of Standards and Technology. “Advanced Encryption Standard
(AES) Development Effort”, http://csrc.nist.gov/encryption/aes/

Papadimitriou, Christos H. “Computational Complexity”, Addison-Wesley Publish-
ing Company, 1994, ISBN 0-201-53082-1.

Schneier, Bruce. “Applied Cryptography”, Second edition, John Wiley & Sons,
1996, ISBN 0-471-11709-9.

Shannon, Claude Elmwood. “Communication Theory of Secrecy Systems”, Bell
System Technical Journal, Vol 28, 1949, pp 656-715.

Turing, Alan Mathison. “On computable numbers, with an application to the
Entscheidungsproblem”, Proc. Lond. Math. Soc. 42, 230-265 1936; received May
25,1936, Appendix added August 28; A correction, ibid., 43 pp 544-546, 1937.
Wolfram, Stephen. “Computer Software in Science and Mathematics”, Scientific
American, Vol 251 pp 188-203, Sept 1984.

Wolfram, Stephen. “Origins of Randomness in Physical Systems”, Physical Review
Letters, Vol 55, pp 449-452, 29 July 1985.

