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Abstract— We present a novel learning and control frame-
work that combines artificial neural networks with online tra-
jectory optimization to learn dexterous manipulation skills from
human demonstration and to transfer the learned behaviors
to real robots. Humans can perform the demonstrations with
their own hands and with real objects. An instrumented glove
is used to record motions and tactile data. Our system learns
neural control policies that generalize to modified object poses
directly from limited amounts of demonstration data. Outputs
from the neural policy network are combined at runtime
with kinematic and dynamic safety and feasibility constraints
as well as a learned regularizer to obtain commands for a
real robot through online trajectory optimization. We test our
approach on multiple tasks and robots.

I. INTRODUCTION

Humanoid robot hands offer unique opportunities for

robotic manipulation by being ideally suited to handle a vast

number of objects and tools that were originally designed

for human hands and by potentially allowing for simple

and intuitive teaching of robots through human demonstra-

tion without requiring explicit task-specific programming of

motions or task goals. As an additional benefit, humanoid

robot hands are modeled after a system that has proven to

be extremely versatile and effective for millennia. However,

despite many recent advances in robotics and AI, control

and learning for dexterous manipulation with humanoid robot

hands in the real world remains a significant challenge.

To make teaching simple and convenient, we want to

allow humans to demonstrate tasks using their own hands

with real objects, instead of having to use teleoperation, ki-

naesthetic teaching, or additional task-specific programming

or annotation. While kinaesthetic teaching would provide

robot poses directly and teleoperation could rely on human

feedback to correct for errors and to ensure safety, our

system has to produce accurate and safe robot commands

autonomously. To apply current reinforcement learning tech-

niques to robotic manipulation, human programmers usually

have to implement task-specific rewards and simulation en-

vironments. Dynamic motion primitives can require explicit

data annotation and task-specific programming to adapt and

initiate different motion primitives. We do not want to burden

human teachers with having to perform these additional

steps and instead want our system to learn the required task

information directly from demonstration data.
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Fig. 1: We learn manipulation tasks from human demon-

stration (top-left) and execute the learned behaviors on real

robots (bottom-left, middle, right).

We first record human demonstrations using an instru-

mented glove and extract motion trajectories as well as

tactile information. To efficiently learn stable control policies

that generalize to previously unseen situations, we introduce

a set of trajectory-based training and data augmentation

methods. We present and compare three different network

architectures: a feed-forward policy, a deep recurrent struc-

ture that implicitly learns hidden state information, and a

model-based approach which first learns neural models and

then trains a multimodal policy network to also consider

tactile sensations and state variables. At runtime, an online

trajectory optimizer uses abstract and hardware-independent

commands from the neural network as well as a learned

regularizer to generate joint-space commands for a particular

robot under kinematic and dynamic safety and feasibility

constraints. Optimizing trajectories over multiple time steps

allows our controller to avoid kinematic constraints and

collisions while it is still possible to do so without violating

dynamic limits or further deviating from the motion goals.

We also use trajectory optimization for stable hand tracking.

See figure 2 for an overview of our system. We test and

demonstrate our methods on four different manipulation

tasks and on three different robots.



II. RELATED WORK

Inverse kinematics can find joint angles for a robot arm

to reach a Cartesian goal pose, inverse dynamics computes

joint velocities or torques from Cartesian goal velocities or

forces [1] [2]. It can be desirable to optimize trajectories over

multiple time steps simultaneously to fulfill kinematic as well

as dynamic objectives and constraints. This can be accom-

plished using stochastic [3] or gradient-based [4] methods.

Schulman et al. [5] generate collision-free trajectories using

penalty terms. Mordatch et al. [6] use a special contact model

to generate trajectories for simulated manipulation problems.

Trajectory optimization for robots with many degrees of free-

dom is typically performed offline due to high computation

time. However, for certain general classes of constrained

optimization problems, it has been shown that interior-point

methods can find solutions efficiently [7] [8] [9] [10].

Reinforcement learning adjusts a policy to maximize a

reward function through trial and error. For practical prob-

lems with sparse rewards, the required numbers of trials

can be prohibitively large. It is often possible to accelerate

reinforcement learning by programming smooth task-specific

shaped reward functions. Marcin et al. use reinforcement

learning in simulated environments and a special reward

function to find finger motions for rotating a cube [11].

Akkaya et al. [12] and Li et al. [13] also learn motions

for rotating the top-facing side of a Rubik’s Cube and

combine the learned behaviors with a traditional Rubik’s

Cube solver. Rajeswaran et al. teleoperate a virtual robot

hand in a simulated environment. They use reinforcement

learning to train a policy network to imitate the demon-

strated motions using the same simulated robot hand and

to maximize additional task-specific reward functions [14].

Abbeel et al. learn cost functions from human demonstration

for controlling a car in a simplified driving simulator [15]. If

we would use current reinforcement learning techniques for

our work, human teachers would not only have to perform

demonstrations, but would also have to prepare task-specific

simulation environments with accurate object models.

Ijspeert et al. [16] capture human motions and represent

the recorded joint-space trajectories using basis functions and

an attractor term. The attractor acts as a low-pass filter and

can be tuned for smooth or accurate control. Users have

to choose between repetitive and non-repetitive basis func-

tions, and for repetitive motions, annotate phases. Repetitive

motions are executed indefinitely and have to be stopped

by the user or by a program. For a single goal position,

the entire motion primitive can be shifted by a fixed offset.

Paraschos et al. [17] learn probability distributions from sets

of joint-space trajectories to shape the transitions between

motion primitives. Automatically adapting to multiple object

poses, achieving rotational invariance, combining repetitive

and non-repetitive motions, generating accurate as well as

smooth and feasile motions, integrating additional sensor

modalities, etc., would require further extensions. It is not

always clear how these features could be integrated without

task-specific programming or annotation.
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Fig. 2: Overview of our training methods (a) and of our

system during execution (b).

Several teleoperation systems have been developed for

controlling humanoid robot hands. These methods can rely

on the human operator to ensure safety and to compensate

for position offsets. Recent successful approaches mainly use

relative objectives between fingertips [18] or treat the hand

and the arm separately [19] [20]. For autonomous execution,

our controller has to not only reproduce relative motions,

but it also has to achieve accurate absolute positioning and

enforce safety and feasibility constraints.

Convolutional neural networks [21] [22] use special con-

nection patterns and weight sharing to achieve transla-

tion invariance. Weight sharing can also be used to pro-

cess unordered point sets [23].

III. DATA ACQUISITION AND TRAJECTORY

RECONSTRUCTION

During each demonstration, we record finger and object

motions as well as tactile sensations. Finger motions and

tactile information are captured using an instrumented glove.

We construct tactile sensors from conductive fabric and

pressure-sensitive piezo-resistive materials. One sensor is

attached to each fingertip. Human motions are recorded

using LEDs on the fingertips and hand joints, and the line

cameras of a Phasespace Impulse X2 system.

To achieve stable hand tracking without manual data clean-

up, we introduce a trajectory-based reconstruction method.

Each line sensor is modeled as a one-dimensional pin-

hole camera with position PC , orientation matrix RC , and

polynomial distortion terms di. We optimize 3D marker

positions pj to minimize a robust loss lj [24] with re-

projection error ej for observation oj . During calibration,

we also optimize camera parameters.

qj = R−1

C · (pj − PC) (1)

sj =
qj,1

qj,3
ej = sj +

∑

i=1

dis
2i
j − oj (2)
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(3)

To fill in data gaps caused by marker occlusions and to

exploit observations from other time frames as additional

evidence for the correct 3D marker positions, we add a

dynamic regularization term di,t with regularization weights

wf , wg between marker positions pi,t.

di,t = |pi,t−pi,t+dt|
2wf + |pi,t−dt−2pi,t+pi,t+dt|

2wg (4)

To exploit the kinematic structure of the hand, we add

an additional link regularizer li,j,t with weight wl between

directly connected hand markers mi,t,mj,t. We use soft

objective terms instead of hard constraints since the glove

can slightly move and stretch.

li,j,t = |mi,t −mj,t −mi,t+dt +mj,t+dt|
2wl (5)

To accelerate convergence, we solve a sequence of

equations with exponentially increasing temporal resolu-

tion. Each previous solution is used as an initial guess

for the next subdivision step.

IV. NETWORK ARCHITECTURES

After recording human demonstrations and reconstructing

3D trajectories, the obtained data is used to train a neural

policy. We substitute objects and the robot with simplified

but differentiable Cartesian template models. This frees the

network from having to learn hardware-specific details about

a particular robot, and it allows us to focus our machine

learning efforts on task information. It also allows us to

train our policies directly using efficient gradient-based op-

timization. Both the objects and the hand are represented

as point sets. Hand points pt,j can be controlled by the

network through velocity commands vt,j .

dpt,j

dt
= vt,j (6)

We provide relative position vectors of the hand and object

points, velocities vt, and if available additional state vari-

ables st and tactile measurements ht as inputs It. Relative

position vectors are obtained by subtracting the arithmetic

mean of the N hand points pt,j .

It = (pt −
∑N

j=0

pt,j

N
, vt, st, ht) (7)

As in convolutional neural networks, translational invariance

is ensured by the network architecture and rotational invari-

ance is achieved through data augmentation.

A. Feed-Forward Policy Network

For simple tasks such as reach-to-grasp, which neither

require memory nor tactile perception, a simple unimodal

feed-forward policy should be sufficient. Our feed-forward

network shown in figure 3a consists of 5 densely connected

layers with 2048 input neurons, 512 neurons in each hidden

layer, and 15 output neurons. We use ReLU activation for

input and hidden layers and linear activation for the output

layer. Each output neuron controls the velocity of a hand

point along one Cartesian dimension.
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Fig. 3: Neural policy and model networks.

B. Recurrent Policy Network

We enable the network to remember previous actions and

observations by adding recurrent connections as shown in

figure 3b. Inputs are shared with a recurrent branch, which

consists of three densely connected layers. The outputs of

the recurrent branch are concatenated to the inputs of the re-

current and of the feed-forward branch. We use significantly

smaller layer sizes for the recurrent branch, with 32 TanH

input units, 16 TanH hidden neurons, and four linear output

neurons, and we apply 10% dropout at the inputs.

C. Neural Object Models

We extend our template models to also simulate tactile

sensations and object state variables. To keep the training

process simple for human teachers, we learn these models

directly from demonstration data.

1) Tactile Object Model: Our tactile models map relative

fingertip positions, fingertip velocities and object state vari-

ables to simulated tactile readings. We represent the tactile

models using PointNet-inspired [23] fully convolutional neu-

ral networks with 1D convolutions over tactile sensor indices

and a filter width of 1. The architecture consists of 4 layers

with 64 convolutional TanH units in the input and hidden

layers and one linear convolutional unit in the output layer.



2) Object State Model: During human demonstration,

we measure and record additional object state variables.

At runtime, the state variables are predicted. Our neural

object state model takes relative Cartesian fingertip positions

and velocities, current values for the state variables and

tactile information as inputs. The outputs of the object state

model are added to the current values of the state variables.

The network consists of 4 densely connected layers with

32 TanH units in each input and hidden layer and one

linear output unit for each state variable.

V. TRAJECTORY-BASED TRAINING

We train our policy networks by simulating trajectories

over multiple time steps and propagating gradients back in

time. During each simulation step, the policy network P is

called with inputs from a previous time step St. The velocity

outputs of the policy network P are used together with our

differentiable template model M and learned models L to

compute new values St+dt for the state variables.

St+dt =

(

M(St, P (St))
L(St, P (St))

)

(8)

State variables St,m are reset before the first simulation

step t0 and at randomly selected time frames with demon-

stration data Dt,m and random perturbations. The reset

probability is computed using a constant base r, a random

exponent x and a uniformly distributed random number

generator rt. The random perturbations are composed of

a normally distributed random vector Pt,m for each point

m and a scalar random exponent f for each trajectory

segment. We introduce exponential terms to randomly scale

the perturbations across multiple orders of magnitude to

avoid having to manually fine-tune augmentation parameters.

Rotational invariance is achieved through additional online

data augmentation, multiplying each demonstration trajectory

with a random rotation matrix R.

St,m =

{

R Dt,m + bf Pt,m if (t = t0) ∨ (rt < bx)

S′

t−1,m otherwise.
(9)

We compute a loss value from simulated and demonstrated

states over the entire simulated trajectory, propagate the

gradients back in time until reaching the start of the trajectory

or one of the random resets, and update the network weights

for all contributing time steps. The loss function computes a

weighted error over different modalities including Cartesian

positions and velocities, and if available, tactile information

and object state variables. The network weights are optimized

via a batch gradient descent method [25]. A relatively large

batch size between 128 and 512 should be used to obtain

meaningful gradients despite strong randomization and to

allow for efficient parallelization.

VI. TIME DISCRETIZATION

Even when using a feed-forward policy, our trajectory-

based training method leads to a recurrent structure. During

our experiments, we found that it is usually sufficient to

train with relatively large time steps and that doing so

reduces training time. However, at runtime, we want to

use smaller time steps to allow for fast reaction to sensor

input and to achieve smooth as well as accurate control.

Therefore, we want to reformulate our networks as differ-

ential equations and use numerical integration with differ-

ent step sizes for training and execution. Our continuous-

time network N ′ computes network outputs ot and the

time derivatives of the network activations from current

activations A and additional inputs I .

(
dA

dt
, ot) = N ′(A, I) (10)

A practical obstacle to using this approach is that in current

high-performance software libraries for implementing arti-

ficial neural networks, the network N effectively performs

numerical integration with a fixed step size s.

(At+s, ot1) = N(At, It) (11)

For an explicit Euler step, finite differences could directly

recover the exact gradients within numerical precision. In

practice, the activations may be updated incrementally and

we obtain a gradient approximation.

lim
s→0

dA

dt
=

N(At, It)0 −At

s
(12)

The gradients can now be integrated with modified step sizes.

VII. ROBOT VISION

To allow the robot to manipulate unmodified objects, we

train a fully convolutional neural network to detect virtual

keypoints. We use pre-trained Mobilenet [22] layers up to

the fifth separable convolutional block to compute feature

embeddings and then add two 32-channel 1x1 convolu-

tional hidden layers and a 1x1 linear convolutional output

layer with one channel for each marker ID. The output

is resampled to the size of the original input image using

bicubic interpolation and maxima in the marker channels

are interpreted as virtual marker detections.

Camera poses are calibrated using structure from motion.

We attach multiple Aruco [26] tags to the forearm of

the robot and automatically move the arm into randomly

generated poses while recording marker detections. Since

the surface of the robot and the markers is curved, we use

corner-based subpixel refinement. To calibrate the cameras,

we simultaneously optimize camera parameters and the 3D

positions of the marker corners relative to the forearm link

to minimize the reprojection error of each corner.

VIII. ONLINE TRAJECTORY OPTIMIZATION

We translate Cartesian commands from the neural policy

network into hardware-specific joint angles through kino-

dynamic online trajectory optimization. We first simulate

Cartesian trajectories using the most recent measurements,

the policy network, and our template and neural models.

The resulting Cartesian trajectories are converted into sets

of timestamped position goals, which are combined with



additional goals and constraints to optimize robot trajecto-

ries. Each optimization step is initialized with a timeshifted

version of a previous trajectory.

For each trajectory update, we solve a non-linear op-

timization problem through sequential quadratic program-

ming using a primal-dual interior-point method. The op-

timization problem is defined by instances of different

goal classes. Each goal can specify quadratic objectives,

equality constraints, inequality constraints, and box con-

straints. Inequality constraints are automatically converted

into box constraints and equality constraints by inserting

slack variables. We finally solve a sequence of unconstrained

linear equations with objective gradients JX , equality and

inequality constraint gradients JE and JI , exponentially ad-

justed logarithmic barrier gradients BX , BS , and right-hand-

side vectors rx, re, ri for the joint variables X , Lagrange

multipliers LE , LI and slack variables SB .
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(13)

Cartesian trajectories are translated into quadratic position

goals. For each template model point pi,t with time t and

point index i, we assign a corresponding reference point

ri relative to a link pose Li,t and minimize the squared

distance di,t between both point positions.

di,t = ‖pi,t − Li,t ri‖
2 (14)

For each joint position variable qj,t with time t, step

size dt and joint index j, we specify upper and lower joint

position limits uj , lj , a fixed trust region c relative to the last

candidate solution rj,t, as well as maximum joint velocities

vj and maximum joint accelerations aj .

max(rj,t − c, lj) < qj,t < min(uj , rj,t + c) (15)

−vj <
qj,t+dt − qj,t

dt
< vj (16)

−aj <
qj,t−dt + qj,t+dt − 2qj,t

2dt
< aj (17)

To prevent jumps during trajectory replacement, we con-

strain the first two keyframes of each new trajectory to match

the corresponding two keyframes of the previous trajectory.

Mechanical couplings between finger joints on underactuated

hands are modeled as additional equality constraints.

For collision avoidance, we construct a convex polyhe-

dral approximation of the workspace in Cartesian space

and approximate the shape of each link by a convex hull

around a set of spheres. Since the workspace approximation

is convex, constraining only the spheres is sufficient to

prevent collisions with the entire link bodies. We insert

pairwise linear constraints between boundary planes and link

spheres. Each boundary plane is represented by a normal nk

and a distance dk. Each sphere has a center cl relative

to a link pose Pl and a radius rl.

Plcl · nk < dk − rl (18)

TABLE I: Robot experiments for different tasks, robots, net-

works architectures, demonstration counts (D.) and trajectory

optimization windows (Traj.). For each experiment, we test

whether the task is performed successfully during multiple

consecutive trials (Succ.) and for different object poses (Inv.).

Task Robot Network D. Traj. Succ. Inv.

Pick Place C5 UR10e Feed-Fwd. 10 10 Yes Yes

Wiping C5 UR10e Feed-Fwd. 5 10 Yes Yes

C. Bottle C5 LBR4+ Feed-Fwd. 1 10 No n/a

C. Bottle C5 LBR4+ Recurrent 1 10 Yes Yes

C. Bottle C6 UR10 Model-B. 1 10 Yes Yes

B. Bottle C5 UR10e Feed-Fwd. 1 3, 4 No n/a

B. Bottle C5 UR10e Feed-Fwd. 1 5..10 Yes Yes

If multiple solutions can be found which fulfill the ob-

jective function almost equally well without violating any

of the constraints, we want to prefer natural hand poses

that would also be preferred by a human. We therefore

introduce a learned regularizer.

ri =

∥

∥

∥

∥

vi −mi

si

∥

∥

∥

∥

2

(19)

From an existing hand pose dataset [27] [28], we compute

averages and standard deviations for the joint angles and con-

struct a multivariate Gaussian distribution. For each Gaussian

with mean mi, standard deviation si, and corresponding joint

variable vi, we add a quadratic regularization term ri.

IX. EXPERIMENTS

We test our methods on three different manipulation

problems: a pick-place and a wiping task, opening a chemical

bottle with a wide lid, and opening a beverage bottle with a

small lid. The experiments are performed with real objects

and robots. We use a UR10e arm with a Shadow C5 hand,

a KUKA LBR 4+ arm with a Shadow C5 hand, and a

UR10 arm with a Shadow C6 hand. An overview of our

robot experiments is given in table I.

A. Pick-and-Place Task

The robot has to grasp an elongated box-shaped object and

place it onto a rectangular plate. Both objects are equipped

with LEDs as tracking markers. We collect a total of 10

human demonstrations. Before each demonstration, both

items are moved into different positions and orientations.

During the demonstrations, a human grasps the box and

places it onto the plate. We use the recorded trajectories

to train our feed-forward network. As training data, we use

the positions of two markers on each object, one marker

on each fingertip, and one marker on each knuckle and at

the base of the thumb. At runtime, we use observed marker

positions as inputs and pass outputs from the network to our

trajectory optimizer. The resulting motions are executed on

a UR10e arm with a Shadow C5 hand. The robot is able

to successfully perform the task even if the box, the plate,

and the hand are placed in previously unseen poses. Grasp

poses are adapted if the box is rotated. The lengths of the



Fig. 4: UR10e arm with Shadow C5 hand while performing

a pick-and-place task.

Fig. 5: UR10e with Shadow C5 hand during a wiping task.

Fig. 6: Turning the lid of a chemical bottle (feed-forward

network, LBR4+ arm, C5 hand).

trajectories are adjusted if the object positions are changed.

Figure 4 shows the robot during execution.

B. Wiping Task

We record five demonstrations of a wiping task that

requires grasping a brush, moving to a target object, and

performing oscillating cleaning motions. As for the pick-

and-place experiment, we use the feed-forward architecture

and a UR10e arm with a Shadow C5 hand. At runtime,

the robot approaches and grasps the brush, lifts it, places

it onto the target object, and performs periodic cleaning

motions, with the bristles of the brush wiping across the

surface. The task can be performed successfully for previ-

ously unseen hand, brush and target poses. Figure 5 shows

the robot during the wiping task.

C. Opening a Chemical Bottle

The robot has to turn the lid of a chemical bottle un-

til it has been loosened, grasp the lid, lift it, and place

it next to the bottle. We record a single demonstration

with tactile readings and Cartesian motion trajectories for

the fingertips and bottle position.

1) Feed-Forward Policy: We train our feed-forward ar-

chitecture with the recorded trajectories and use a KUKA

Fig. 7: Opening the chemical bottle using our recurrent

policy network (bottom), image from an overhead camera

(top-left), output of our vision network (top-right).
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Fig. 8: Recurrent neural activations while opening the chem-

ical bottle, with approximate sub-task annotations.

LBR 4+ with a Shadow C5 hand for execution. For a first

test, we assume a fixed bottle pose. If the bottle is carefully

placed in the correct position, the robot performs a correct

approach motion, and the finger motions turn the lid (see

figure 6). Since the network does not possess memory and

can neither use recurrent models nor tactile information, it

is not able to determine when the lid can be lifted off and

continues to perform turning motions indefinitely.

2) Vision Network: We use our vision network described

in section VII to automatically determine the bottle position

without needing LED markers. After performing SfM-based

calibration, our marker-less tracking method delivers results

that are accurate enough for approaching the bottle and turn-

ing the lid. The object can still be detected and manipulated if

it is placed in different positions and orientations on the table.

3) Recurrent Policy Network: We use the same data as

before to train our recurrent policy network described in

section IV-B for the bottle opening task. While the feed-

forward network keeps performing turning motions indef-

initely and fails to remove the lid, our recurrent network

stops rotating the lid at an appropriate time. It then grasps

the lid, lifts it, performs a sideways motion, lowers the hand,

and places the lid next to the bottle. We execute the policy

on an LBR 4+ arm with a C5 hand. Figure 8 shows the

neural activations in the output layer of the recurrent column

over time. If we dampen the connections between the last

layer in the recurrent column and the concatenation layer,



Fig. 9: Opening a chemical bottle and removing the lid

(model-based learning, UR10, C6 hand).

Fig. 10: Turning and removing the lid of a beverage bottle

(feed-forward network, UR10e, C5 hand).

the transition from the lid-rotation phase to the pick-place

phase is delayed. The overall behavior of the network and

the speed of the finger motions remain the same. See figure 7

for photos of the robot during execution as well as an input

image and output activations of the vision network.

4) Crossmodal Model-Based Learning: We use tactile

data collected during demonstration of the bottle opening

task to train a tactile object model as described in section

IV-C.1. We also train a recurrent object state model as

described in section IV-C.2 with lid orientation as a state

variable. Using our model networks, we then train a feed-

forward policy network as described in sections IV-A and V.

During execution, we use predicted object state information

from the object state model and a mixture of predicted

and measured tactile readings. A 50-50 combination leads

to stable yet responsive behavior. We test the policy on

a UR10 arm with a Shadow C6 hand. Each fingertip is

equipped with a tactile pressure sensor. If a human touches

multiple robot fingertips, the robot hand opens, and after

removing the externally induced stimulus, the robot hand

closes again until the fingers touch the lid. Our crossmodal

model-based architecture was able to perform the bottle

opening task successfully in 10 out of 10 trials.

D. Opening a Beverage Bottle

The feed-forward architecture is trained to open a beverage

bottle with a smaller lid. We use a single demonstration with

trajectories of 21 hand markers at the fingertips and joints,

and two markers on the bottle. At runtime, the bottle markers

are located using the tracking system, and the generated

motions are executed on a UR10e arm with a Shadow C5

TABLE II: Average tracking errors for different trajectory

lengths while following Cartesian goal trajectories generated

by our recurrent network for opening the chemical bottle.

Trajectory Length 3 4 5 7 10

MSE 0.0014 0.0005 0.0003 0.0003 0.0002

hand. See figure 10 for different states during execution. The

robot is able to successfully turn the lid. After the lid has

been screwed off, it falls onto the table. While the chemical

bottle requires a recurrent structure to initiate a final pick-

and-place phase, the beverage bottle task can be considered

successfully solved by the simpler feed-forward architecture.

If we set the window size of the trajectory optimizer to 3,

the fingers push the bottle instead of turning the lid. With a

trajectory length of 5 or above, the lid is turned successfully.

E. Trajectory Optimization

Table II shows mean squared tracking errors for different

trajectory lengths while opening the chemical bottle. The

first two time frames are constrained to match a previous

trajectory to allow for smooth trajectory replacement. For

each time step, the non-linear problem is solved to conver-

gence. Optimizing only a single new robot pose or very short

trajectories leads to high tracking errors. The errors quickly

decrease if the trajectory length is increased.

F. Training Time

The neural networks are trained using Tensorflow [29] on

an NVIDIA GTX 1080. While the feed-forward network and

the model-based approach can learn successful manipulation

policies in about 30 minutes, the recurrent network requires

approximately three hours of training.

X. IMPLEMENTATION

The components of our system are implemented as ROS

[30] nodes and libraries. For neural networks, we use ten-

sorflow [29], Python [31], and Keras [32]. The trajectory

optimizer, calibration tools, and the trajectory reconstruction

method are implemented in C++ using Eigen [33] for linear

algebra. Robot models and states are exchanged as MoveIt

[34] objects. For execution, we used roscontrol [35], FRI

[36], ur modern driver [37], ur robot driver, the etherCAT

interface of the C6 hand, and a custom driver for the C5 hand.

XI. CONCLUSION AND FUTURE WORK

We introduced a novel learning and control framework

that allows human teachers to train humanoid robotic ma-

nipulators by demonstrating tasks using their own hands

with real objects. We successfully tested our approach

on multiple tasks and robots.

Three neural network architectures were presented. A

feed-forward policy network was able to successfully learn

a pick-place, a cleaning, and a bottle-opening task. A

different bottle-opening task could not be finished by the

feed-forward network. Our recurrent networks completed



the bottle opening task by learning to automatically tran-

sition from a periodic turning motion to a final pick-and-

place motion. Our trajectory-based training and data aug-

mentation methods allow the system to learn stable neural

policies that can automatically adapt to modified object

poses from limited amounts of data. As demonstrated by

the pick-place and the wiping task, our system can not only

produce approach motions but also learn to automatically

generate trajectories between objects.

We found that it is possible to learn local object models

which are sufficiently accurate for model-based policy op-

timization directly from demonstration data. In contrast to

previous work based on reinforcement learning, our method

does not require the user to program task-specific reward

functions or simulation environments. By substituting the

robot with simplified but differentiable template models, we

were able to use efficient gradient-based training, and we

could focus our machine learning efforts on task information.

Our trajectory optimizer is fast enough for online control

of hand-arm systems with many degrees of freedom. If

only a single robot state is optimized at a time, as in

inverse kinematics, tracking errors increase and the robot

consistently fails during a bottle opening task. We also

use trajectory optimization to achieve stable hand track-

ing. At runtime, unmodified objects can be manipulated

via learned keypoints. To prefer natural hand poses, we

introduced a learned regularizer.

While our policy networks already accept point lists as

input, we are currently using only small numbers of points

from the motion tracking system or from neural keypoint

detectors. In future work, we want to use point clouds from

depth cameras or raw color images. Tactile perception on our

instrumented gloves could be improved with high-resolution

matrix sensors and we would like to further investigate

methods for using tactile information. It would also be

interesting to test our system on a larger number of tasks.

We plan to further improve our software and to develop

it into a set of public open-source packages.
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