
A Multi-Robot Platform for Mobile Robots – A Novel Evaluation and
Development Approach with Multi-Agent Technology

Sebastian Rockel, Denis Klimentjew, Jianwei Zhang
{rockel, klimentjew, zhang}@informatik.uni-hamburg.de

Abstract— In the field of robotics, typical, single-robot sys-
tems encounter limits when executing complex tasks. Todays
systems often lack flexibility and inter-operability, especially
when interaction between participants is necessary. Neverthe-
less, well developed systems for robotics and for the cognitive
and distributive domain are available. What is missing is the
common link between these two domains.
This work deals with the foundations and methods of a middle
layer that joins a multi-agent system with a multi-robot system
in a generic way. A prototype system consisting of a multi-
agent system, a multi-robot system and a middle layer will
be presented and evaluated. Its purpose is to combine high-
level cognitive models and information distribution with robot-
focused abilities, such as navigation and reactive behavior based
artificial intelligence. This enables the assignment of various
scenarios to a team of mobile robots.

Index Terms— mutli-agent system, mutli-robot system, mixed
reality, distributed architectures, sensor fusion, intelligent sys-
tems, middle layer .

I. INTRODUCTION

Multiple robots collectively committed to a task play a
more important role in today’s robot research than in the
past. In earlier research one, probably quite sophisticated,
robot was adapted to solve a task very efficiently. There has
been some scientific research into the collaborative effort of
multiple robots assigned to a task. Robot teams have been
applied in various research fields, with the navigation of
multiple robots in a synchronized manner being one of the
most active. In [1] a team of two hexapod robots collaborate
in navigating unknown territory. Other works propose a ded-
icated architecture for navigation and tracking using multiple
robots in unknown environments. In [15] a team of robots
cooperates to navigate and to organize dynamic formations.
The latter work overlaps another quite active field in robotics,
namely research into formations of multiple robots. Research
has also been done in a grid-based formation and the
synchronization and configuration of agents. Other studies
discuss fault-tolerant formations of mobile robots, while in
[14] the focus is on stable and spontaneous self-assembly
of an MRS. Another frequently investigated topic is that of
a team of robots building a map. [6] explores a ground-
mobile robot and a quadrocopter cooperating to build a
three dimensional map. Traditional two dimensional SLAM
with multiple robots in unknown territory, using Pioneer-
3DX mobile robots and barcode markers, is described in
[5]. Theoretical algorithms for cooperative, multi-robot, area
exploration are described in [16]. In contrast to conventional
two or three dimensional grid maps, [4] solves the problem of
an MRS collaboratively creating a topological map. Another

study, focusing on three dimensional, laser-based modeling
with a heterogeneous team of mobile robots combining ICP,
SLAM and GPS in an outdoor scenario can be found in
[7]. Other areas of research concentrate on the problems
of task allocation and sub-division, which arise when a
task is to be split into sub-tasks for each robot. [11] uses
a box pushing scenario in a heterogeneous MRS, while a
framework for multi-robot coordination and task allocation
is proposed in [12]. A traditional Artificial Intelligence
(AI) topic, reinforcement learning in cooperative MRS, is
described in [13].

II. SYSTEM ARCHITECTURE

The goal is to connect existing Multi-Robot Systems
(MRS) and Multi-Agent Systems (MAS) using a new middle
layer, the Robot System Abstraction Layer (RSAL), to create
a three-layer architecture.

The introduction of the RSAL alleviates some mutual
constraints imposed by the MAS and MRS. Robot and device
actions take significant time to execute (moving an arm or
actuator for example), whereas agent methods must return
immediately or are at least designed for operations separable
in small chunks of work. The middle layer has to manage
the transition between a synchronous interface to the robot
hardware and an asynchronous interface provided to the
MAS. Therefore it encapsulates service oriented facilities,
such as subscribing to notifications of lower level device
events. Moreover, while MRS APIs differ, it is desirable
that the MAS be independent of the MRS. In summary, an
additional middle layer decouples the MAS and MRS.

This work combines a high-level MAS with an MRS.
Current technologies in MAS and mobile robotics are used
to achieve a high degree of task flexibility. Some specialized
algorithms are implemented, such as for robot control, but in
general, out-of-the box drivers and interfaces are used. An
MAS is assumed to provide certain features:

• that a sample task can be described by the MAS tools
and that the required definitions (such as of agents) can
be created conveniently within the framework;

• that complex tasks can be divided into sub-tasks and
distributed to multiple agents;

• and that distributed agents can use the MAS network
communication layer to exchange data.

The MRS also has to fulfill some minimal requirements.
The most important feature is path planning, although there
might be use-cases where this is not needed. Path planning
therefore involves several sub-tasks, especially the ability

2012 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI)
September 13-15, 2012. Hamburg, Germany

978-1-4673-2511-0/12/$31.00 ©2012 IEEE 470

to localize on a map using sensors, such as laser or sonar
rangers. Knowing its position, the robot should be able to
plan a valid trajectory through unoccupied space (floors and
rooms) and not hit anything, including both static objects
(those on the map) and dynamic obstacles (those not on the
map, such as people, furniture or other robots). Last but not
least, the MRS has to provide the drivers for all hardware,
such as the robot, sensors and effectors.

Robot 1

Device BDevice A

Agent 1

DriverServer

Client

Scope of

Layer

Module

Control

work

flow

Multi−Agent System

Robot System Abstraction Layer

Multi−Robot System

Service A

Service B

Fig. 1: The RSAL three-tier architecture: the MAS, RSAL
and the MRS (here Player/Stage)

The meta-platform consists of three layers, as depicted
in Figure 1. The user interacts with the top-most layer, the
MAS. More specifically the GUI is provided by Jadex1, the
MAS in the current implementation. Jadex provides a clear
and efficient interface for starting scenarios and individual
agents and for passing the necessary arguments.

Note that although some MRS have a built-in robot
navigation GUI (Playernav, RVIZ) that can observe current
plans and waypoints, the typical user interface is the MAS.
The MAS includes agents that will be started according to
the scenario. Additional agent-related components, such as
services, are also included in the MAS layer. Agents call
robot facilities from the RSAL. A robot can be controlled
using its external interface or using interfaces to attached
devices, such as a planner device for navigation.

The interface between the MAS and RSAL layers provides
callback facilities that allow different timing requirements to
be accommodated and that decouple the MAS and MRS.
The RSAL robots are device modules that include calls to
the MRS. In the current Player/Stage2 MRS these calls are
passed to PlayerClients and are synchronous (as supported
by the MRS). Thus the device implementation has to decou-
ple these synchronous, blocking calls and its asynchronous
interface. A PlayerClient is, in RSAL terminology, a Devi-
ceNode. A DeviceNode is a unique access point within the
network scope that provides interfaces to a group of hardware
devices. Normally each device has a driver included in

1http://jadex-agents.informatik.uni-hamburg.de/xwiki (May 29, 2012)
2http://playerstage.sourceforge.net

the MRS to access the hardware. For example, the p2os
Player/Stage driver controls the Pioneer motors, whereas an-
other driver (hokuyo aist from the GearBox project3) controls
the laser ranger hardware. An overview of the architecture
is given in Figure 1 and depicts all three layers as well as
internal modules.

Agents typically use services to perform tasks and for
communication throughout the network (Figure 2b). These
communication services are used to create information chan-
nels to which an agent can subscribe in order to read or
publish interesting information (Figure 2a). Each agent can
subscribe to a different set of services according to its
activities and abilities.

Service N

Agent N

Service 2

Agent 2

Publish/Subscribe

Services

Service 1

Agent 1

(a)

Services

Agent 2Agent 1

Service 1

(b)

Fig. 2: Agents can subscribe to dedicated Services which
represent communication channels (a). Multiple Agents par-
ticipate in a conversation (b)

The MRS Player/Stage provides another method of remote
access to robot hardware, shown in Figure 1 as a client/server
system. The client is a local proxy for the device hardware
from the caller’s point of view. Any call is transparently
transferred by the client through the network to a server.
The server, which normally runs on the robot-attached host
computer, parses messages and controls the hardware via its
drivers.

III. RSAL MIDDLE LAYER

The RSAL layer embeds data, robot, device and behavior
components. Furthermore it serves as the middle layer be-
tween MAS and MRS. The logical structure is organized in
components.

The data component contains central data types used
throughout other components. The fundamental type is Po-
sition which is depicted in Figure 3a. This class implements
convenient methods related to (planar) distance and (robot)
coordinate transformation. Thus a homogeneous matrix con-
tains the rotational and translatory transformation as shown
in Equation 1. In order to preserve object orientation in
the world frame, normalization of the object’s and robot’s
combined orientation is necessary, as shown in Equation 2.
The angle normalization is done within the range −π to π
where π itself is excluded.xy

1

W

O

=

cos(θR) −sin(θR) xR
sin(θR) cos(θR) yR

0 0 1

 ·
xy

1

R

O

(1)

θWO = norm(θWR + θRO) (2)

3http://gearbox.sourceforge.net

471

Big letters indicate frames (coordinate systems), such as
for the world (W), the robot (R) and the object (O). A
vector can have superscript and subscript frame letters. If
a vector is given with a superscript frame letter it means this
vector contains coordinates relative to that frame origin. In
other words, the coordinates are local to the frame origin.
A subscript frame letter means that the vector contains
coordinates of the given frame (origin) relative to another
frame (origin). The position class and frame conversion are
depicted in Figure 3.

−x: double

−y: double

−yaw: double

+ getCartesianCoordinates()

+ getGlobalCoordinates()

+ getRelativeAngle()

+ isNearTo()

Position

+ distanceTo()

+ equals()

(a)

x0

y0 θRO

x2

O
y2

y 1 x 1

W

R
θWR

(b)

Fig. 3: The Position class (a) and the robot coordinate frames
W, R, O (b)

Goals within a scenario can be specified by the Goal class.
They are typically defined by a planar position within the
world frame. A Goal is used for example by the BoardObject
of the blackboard implementation. Another central type is
that of a Board, which implements a blackboard pattern.
With this class, memory is provided to store various chunks
of data that would represent notes on a bulletin board in the
real world. This blackboard has several advanced features
compared to its real world analogue. Notes or board objects
can be ordered into topics and can have an associated
timeout value. The Robot component contains a generic
Robot class from which currently implemented specialized
robots inherit. The Robot base class represents a mobile
robot moving on the ground. The specialized Pioneer robot
adds a behavioral model (Figure 4) and states that can be
monitored. Specialized robot classes are derived from it. The
device class provides the abstract class for all real robot
hardware devices, and for virtual devices such as those of the
Blobfinder or Simulation type. Devices can inherit from each
other for specialization, which is the case for the laser ranger
and sonar ranger. These devices both inherit from the type
Ranger. A device is typically event-based and concurrent
(Figure 5).

Min

S

S

S

S

MotorsWallfollow

Collision Avoidance

Escape

Safe Turnrate

Safe Speed

Laser

Sonar

Fig. 4: The (RSAL) Pioneer robot sensor fusion model

As some devices have other devices attached (logically or

:Device:Agent

loop

info

[ready|error]

issue command

notify command

:Device

update()

request info

Fig. 5: The Agent Device access

physically), objects can be linked within an ordered hierarchy
of devices. For example a robot is represented as a device and
typically has other devices, such as ranger sensors, mounted.
This introduces recursion into the class model (Figure 6). The
dynamic handling of devices and the searching for it in the
device tree at runtime is provided.

1..*0..*

DeviceNode

0..*

DeviceRobot

meta−device meta−device

meta−device

Fig. 6: The Device class hierarchy

The Localize Device class implements features that locate
the robot within a world frame. It uses the underlying
MRS localization driver, currently AMCL, encapsulates any
dependencies and provides a consistent interface. As most
localization algorithms keep track of the current position
hypotheses with a (symmetric) covariance matrix. The co-
variance matrix implemented is depicted in Equation 3. Each
matrix element (a covariance of two variables) is calculated
as shown in Equation 4, where ai is a raw coordinate value,
a is the mean of all values and N is the number of all values.

COV 3x3 =

cov(x, x)
cov(y, x) cov(y, y) ...
cov(θ, x) cov(θ, y) cov(θ, θ)

 (3)

cov(a, b) = Σ(ai − a)(bi − b)/N (4)

The Planner class provides access to the underlying path
planning driver. It encapsulates different drivers and specifies
a generic interface. The Simulation class provides access to
a simulation environment such as that provided by Stage.
Interaction between software clients and the virtual world
is provided so that the position of dynamic objects, such
as robots or furniture, can be changed dynamically. This is
currently used to test software units with repeatable environ-
mental configurations. Moreover this interface is integrated
to allow a mixed reality approach (Definition 1). This means
that the positions and orientation of real robots can be used
to place virtual proxies of those robots into a simulation
environment. Such a scenario allows interaction between

472

real and virtual robots. Further robot related devices are
available (gripper, motors etc.). An overview of all currently
implemented devices and their inheritance is depicted in
Figure 7.

Actarray

Blobfinder

Device

DeviceNode

Dio

Gripper

Localize

Planner

Position2d

Ranger

RangerLaser

RangerSonar

Robot
(robot)

RobotDevice

Simulation

«interface»
IDevice

(device.external)

«interface»
IGripper

(device.external)

«interface»
Runnable
(java.lang)

Fig. 7: The Device class and its specialized classes

The Behavior component implements a basic set of be-
haviors for a mobile robot. The behaviors are combined in
a hierarchical subsumption architecture [3] to provide robust
obstacle avoidance and escape strategies in case the robot
becomes stuck. Sensory input is provided by laser and sonar
rangers. These sensor inputs are combined to allow accurate
detection of environmental obstacles and to avoid weak-
nesses of standalone sensors: highly reflective or glass walls
confuse laser rangers and soft surfaces confuse sonar rangers.
The behaviors are optimized for the Pioneer robot and work
out of the box. Nevertheless they are easily adaptable to other
robots and sensors and can be combined with behaviors at
a higher abstraction level than wall-following (implemented
here).

IV. EVALUATION AND MIXED REALITY

The technologies used include recent developments in the
areas of multi-agent systems (Jadex [9], [10]) and multi-
robot systems (Player/Stage). Jadex is a proven, reliable
and efficient system for research and industrial purposes4.
The Player/Stage project has been used by many problem-
solving activities in robotics world-wide5. Based upon these
major systems, the implemented abstraction layer (RSAL)
benefits from stability and flexibility. RSAL is implemented
in Java, which supports state-of-the-art object-oriented soft-
ware development. In particular, the RSAL implementation
is heavily threaded: each robot and device runs in its
own thread, handles synchronization and provides an asyn-
chronous interface. This approach dynamically decouples
platform components and also benefits from current and
future multi-core computers.

In addition to the major components described above,
other implementation aspects are noteworthy:

4jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Usages/Projects
5http://playerstage.sourceforge.net/wiki/PlayerUsers (July 11, 2011)

• Current classes for real-world robots, devices and agents
facilitate software re-use within extended or alternative
scenarios;

• The callback mechanism in use provides for easy, event-
driven, access to RSAL services by any client;

• The blackboard design pattern allows easy object stor-
age and retrieval and provides basic features for a robot-
learning architecture. The lightweight implementation
does not degrade performance, allowing components,
such as agents, to have their own “memory” in addition
to memory distributed across a network of participants.

The use of different robot types, or even of similar robots
with different device configurations, often introduces a high
platform configuration effort. The presented implementation
allows for automatic robot device detection. This feature
focuses on a tree-node approach where devices are con-
nected to a root node, the DeviceNode. Dynamic retrieval
of currently active devices is provided and includes the
recognition of devices that malfunction and can no longer
be used. This approach adds a layer of abstraction above the
robot hardware and allows agent design to focus on cognitive
features.

The mixed reality configuration presented has been imple-
mented using pre-existing components of the platform. These
include a device handling a simulation interface and an agent
that listens on active services to retrieve the information
needed to update the simulation. This feature benefits from
software reuse and provides a completely new facility. The
mixed reality approach is currently an active field of robot
research. It provides facilities for a graphical user interface,
enabling it to display virtual and real robots simultaneously
within a simulation environment. The approach can be ex-
tended.

Some of the scenarios presented in this work run in a
mixed reality environment. The difference between this and
purely real environments is as follows. In a purely real
environment robots can sense only physical objects present
in their environment. In contrast, in an augmented real
environment physical robots interact with virtual objects,
such as simulated robots.

Definition 1. Mixed Reality in Cognitive Robotics
Mixed Reality in the context of this work refers to a hybrid

environment mixing real and virtual objects as well as robots.
Where as in augmented reality the physical world is extended
with virtual visualizations, in a mixed reality environment a
virtual or simulated environment is extended by real world
information or models and in return updates the real world
with information from the virtual environment at the same
time.

The Hunt and Prey scenario can be run in either real-
only, virtual-only or mixed reality configuration. For the
MAS and RSAL layer components this distinction is not
present as device access is encapsulated transparently within
the MRS. One exception might be that a robot can be aware
of a simulation environment when passing an appropriate
simulation device to it (section III). Thus it is possible that

473

real robots hunt a virtual robot, virtual hunters follow a real
prey or a team consists of both types. In either case there
is interaction between virtual and real agents/robots. In the
Find and Collect scenario interaction in the mixed reality
configuration has been demonstrated (Figure 8, 9).

(a) (b)

(c) (d)

Fig. 8: Several snapshots during the Find and Collect sce-
nario. Four perspectives of situations during the scenario are
shown. The (start) configuration of the mixed reality scenario
is as follows. A virtual Pioneer robot carrying a blobfinder
device (a virtual camera) searching for green blobs (objects)
in the (virtual) environment. The presented wall-following
behavior serves as the exploration algorithm. In order to
allow real-world interaction, a green bin is placed at the
exact blob position in the TAMS laboratory. A real robot, the
Pioneer-2DX with a gripper attached, waits for blob position
targets in order to approach, grasp the real bin and bring it
back to its start position. The simulation environment is a
necessary part of the scenario. (a) The active collector robot
(center) waits for new targets. (b) The green bin target seen
from the perspective of the approaching collector. (c) The
collector has grasped the target object and returns home. (d)
The same perspective as in (b) but in the virtual environment.

A big advantage in such a configuration is the possibility
of simulating (robot) hardware that is not present in reality,
for example where the required number of robots or the
required device type is not available. Another advantage is
the abstraction from hardware problems. Often an algorithm
has been designed and needs to be tested. Typically a
simulation environment is chosen for initial testing. Later on,
the algorithm is tested on the real hardware. In the latter step,
unexpected difficulties often arise as hardware introduces
other possible errors. In preliminary work a wall-following
algorithm performed well in the simulation and performed
poor in reality (in early development state). In order to focus
the research effort on the main goal such problems can
be avoided by running a stable mixed reality environment
having only components in reality that are mature enough.

(a) (b)

Fig. 9: Another event within the same run of the Find and
Collect scenario depicted in Figure 8. (a) Virtual environment
view. The event of the searching robot detecting a green
blob within its field of view (white square in center) is
depicted. Communication regarding the newly found target is
triggered. (b) The collector robot listens for such targets and
has planned a path to the target, shown here in the planner
view.

A step-wise approach to migrating each component to reality
is transparently possible. Research can focus on the global
problem instead of dealing with low-level (hardware) issues.

Different scenarios provide an overview of basic platform
features. All scenarios runnable with real robots such as
Hunt and Prey, or Find and Collect, demonstrate successful
integration of the robot hardware in use. Navigation, as
implemented, allowed accurate localization within the TAMS
laboratory and the whole floor. The planner worked well
with the configuration and hardware. Additional devices such
as a gripper and robot-mounted laser ranger finder were
integrated successfully.

The integration of the MAS demonstrated the seamless
coexistence of MAS and MRS platforms. All features of the
agent system worked successfully.

The Hunt and Prey scenario shows inter-agent communi-
cation as well as basic cooperation. Interaction happens in
a dynamic environment applying multiple, state-of-the-art,
robotic features such as wall-following, sensor fusion and a
subsumption behavior architecture. This software performs
well, is robust in the case of hardware errors (such as erro-
neous laser readings and hardware defects), and successfully
handles different hardware configurations.

Whereas the Hunt and Prey scenario focuses on a sim-
ple behavioral model of participating agents, in which the
behavior of each agent/robot does not change during the
scenario, the Find and Collect scenario implements a two-
step interaction. The collector agents are triggered only upon
receipt, via the agent services, of information describing an
“interesting” object. Both finders and collectors use local
memory that implements the blackboard model, thus allow-
ing them to represent an autonomous model of the real or
simulated world. The Find and Collect scenario was inspired
by the Jadex Cleaner World example and the trash collecting
robots in [8].

The Swarm scenario demonstrates the scalability and
stability of the platform on a single host. Each robot consists

474

of an agent component that communicates via services,
a robot model that uses its own devices and finally the
localization and navigation component of the MRS. This
single-robot model is replicated 100 times. In addition, this
scenario provides a starting point from which to explore and
implement dedicated robot swarm behaviors.

The user interface provides a multi-window and compo-
nent focused surface. The Jadex Control Center provides a
well arranged user interface to start/stop agents and sce-
narios. Runtime parameters can be changed and passed
to agents and sophisticated agent debugging features can
be applied. An optional Java console supports information
display and error localization. This is the main interface, as
the user typically interacts at agent/scenario level. Each MAS
typically provides its own, optimized interface.

For a more robot-centric view of a scenario, an MRS typ-
ically provides a variety of tools. For watching current robot
localizations and planned trajectories, Player/Stage provides
the Playernav utility. This provides an easy overview of all
participating robots and their goals. Other MRS, such as
ROS, provide their own tools for visualization, such as the
RVIZ utility.

When working with simulated environments instead of real
ones or when applying a mixed world scenario, the Stage
simulator provides a convenient, almost three-dimensional,
interface and allows robot data to be visualized. ROS also
integrates the Stage simulation.

Overall performance depends upon the applied scenario.
In general, total processing delays are the sum of delays
in the MAS, RSAL and MRS layers. The threaded design
of the RSAL and the flat, optimized, call hierarchy are
apparent in the low overall impact of the RSAL on total
delays. MAS and MRS delays vary according to the current
state of a scenario. The MAS can produce significant startup
delays. However, by creating many services when starting,
it can reduce its impact on the overall delays within a
running scenario. The major impact comes from localization
components: calculation of initial pose estimates at startup
takes a long time, as no previous positions are known
(unless positions are exactly predefined) and many particles
have to be processed by the localization component. With
the currently implemented and optimized configuration, this
delay is minimized. Moreover the delay is not recognizable
during the main scenario processing. The AMCL algorithm
used needs very few resources once it has a position estimate,
as further updates take the previous position into account.
Nevertheless, the localization and navigation components
limit overall system responsiveness when many robots op-
erate simultaneously, such as in the swarm scenario.

When multiple agents cooperate to solve a task, several
key issues have to be considered. The meta-platform provides
the basic infrastructure for nearly any task-solving strategy
and there are usually many possible configurations, each with
advantages and disadvantages. A suitable system configura-
tion is the key to the effective solution of a given problem.
The key issues to be considered are highlighted in [2] and
are discussed below.

When approaching a task, one must consider the jobs
each robot has to handle. Can all sub-tasks be managed by
the same robot type or are robots with differing capabilities
required? The answers to this question constrain the scenario
configuration. If all robots are the same, they can be seen
transparently, as the physical representation of an agent
that can manage any task. In this case, the selection of
a robot for a task depends only upon robot location. In
contrast, where robots of differing capabilities are used,
the selection of a robot for a task depends upon both
robot type and location. Heterogeneous robot teams require
additional interaction and communication effort, which has
to be considered in the scenario design. Homogeneous robot
teams require coordination, but are more flexible in terms of
the specific robot assigned a task. In the scenarios presented,
this differentiation can be understood. The Hunt and Prey and
the Swarm scenario are based upon homogeneous robots,
whereas the Find and Collect scenario directs a hetero-
geneous group consisting of explorer and collector robots
with differing hardware that notably changes their use and
behavior. Whereas in the homogeneous cases the role of
each participant can be chosen arbitrarily, this is not true
in the heterogeneous case. Here the role of each robot type
is distinct in terms of its basic usage. The explorer has a
blob-detecting device and no effector to collect anything.
Therefore it has to interact with a supporting collector robot
that does not have an optical detection device but instead has
a gripper, allowing it to grip, move and release objects. The
two groups need each other to complete the task of searching
and collecting objects in their environment. The implemented
scenario handles this by interactively triggering events on the
appropriate agent communication channels (services).

Another key aspect of cooperative task solving is the
control of distributed robots. Whereas centralized control
over multiple participants allows efficient and redundancy-
free management, distributed or autonomous control of each
robot introduces another level of robustness. The central con-
trol approach implements a dedicated planner that commu-
nicates with scenario participants in a peer-to-peer manner.
Information retrieval in this case is simple for the planner,
as it processes all data anyway. It can collect data and
make decisions from experience in order to control other
robots. This design can be exploited for complex scenarios
where a lot of information from different sources must
be processed in order to make reasonable and time-critical
decisions. In contrast, a decentralized design introduces more
responsibilities to individual robots. Each robot has its own
goal, resources and plans. Coordination is achieved by each
robot solving its individual task. This approach requires less
complexity from each individual participant than a central
planner, which reduces the risk of design or implementation
failures. Nevertheless this comes at the cost of adjusting each
component in order to integrate a team for cooperative task
solving. The implementation introduces a central planner,
such as the distribution agent, which triggers and receives
robot data and controls their formation according to the
number of robots and their positions. A practical scenario

475

would most likely benefit from a mixed control design.
When formations are required for a task, the design has

to focus on the question of loosely or tight-coupled robot
teams. Although in the presented scenarios almost no relative
robot positions were important, in other scenarios, robots
might operate as a group and therefore have to dynamically
coordinate relative positions.

Environmental and task requirements can introduce con-
straints on communication links. Whereas in some scenarios
it is possible to share all robot information, for example
by broadcasting, in other scenarios such sharing is not
allowed or is impossible because of the environment. Good
communication should prefer information-hiding to polluting
the network with unwanted or unimportant data. Nevertheless
information should be available to all receivers that need it.

Another key aspect of such a meta-platform is the human-
robot interface, or in other words, task assignment. How
is a task assigned to a group of robots? This topic is
related to control design: where a central planner is available,
it can accept a task, process it and delegate sub-tasks to
participating robots. If no such central process is available,
the task has to be subdivided in advance in order to delegate
sub-tasks directly.

Finally certain environmental constraints, such as indoor
or outdoor territories, introduce special system designs. Fur-
thermore, learning requires its own cognitive components and
must be handled at a more abstract level of interaction, as
for single robots.

The meta-platform presented here provides all services to
support scenario development in the field of robotics. The
following paragraphs introduce some suitable application
areas.

In the research field of search and rescue robots, in-
teraction becomes mandatory as typical scenarios are too
complex to be accomplished by a single robot. A search
operation benefits from the number of search participants.
The deployment area can be covered in less time with an
increased number of robots. In order to efficiently cover
the environment without re-discovering the same area it is
important to coordinate the robots’ targets dynamically.

Swarm formation, a recent research topic, benefits from
this work by applying dedicated formation algorithms to the
system.

The scenarios presented are based on a pre-defined static
map that is available to planner components. Another sce-
nario would be to explore unknown territory using a team
of autonomous robots. Present state-of-the-art SLAM algo-
rithms can robustly map a territory using a single robot
system. For a distributed SLAM, new algorithms can be
designed and implemented in the meta-platform in order to
exploit its communication and data memory facilities and to
benefit from a multi-robot team.

Communication between a group of agents or robots is
another field of current research, one in which efficiency,
scalability and flexibility are important topics. The currently
implemented service infrastructure can be enhanced in order
to explore these issues.

The important service-robot use-case for a foraging pop-
ulation can also take advantage of such a highly interactive
platform. Different kinds of household robot might share
information on activities to be performed and on environ-
mental changes, or could pass operator requests to the best
suited robot. Nevertheless, such complex scenarios can be
combined with distributed sensor networks to support data
retrieval by small, fixed sensors (both dedicated or robot-
attached) in the domestic environment, such as refrigerators
and washing machines.

A practical environment for the Find and Collect scenario
would be that of a production line. Unused or rejected parts,
as well as trash, are created during manufacturing. Such
parts could be spotted by mobile or fixed sensors, such as
cameras. Mobile collectors would be given the spot positions
and would autonomously find their way to the target, grasp
it and bring it to a disposal position before returning to their
idle task.

Often certain facilities have to be under permanent surveil-
lance, such as museums, company buildings and military
territories. Such a task can be solved by multiple cam-
eras watching the important area. The field of view can
be augmented by various mobile robots that periodically
observe covered territory. In the case of an emergency event,
appropriate actions can be triggered, such as sending mobile
robots to the location of the problem. Robots following
surveillance routes through indoor or outdoor environments
could maintain their battery charge state and servicing au-
tonomously, for example by heading to a recharging point
when necessary.

V. DESIGN AND IMPLEMENTATION

The MAS layer contains components related to high-
level services that include cognition and distribution. It is
implemented in Java and XML. Java is used for agent
definition including initialization, body and de-initialization.
XML serves as a scenario container, in which any scenario
participants are declared along with related initialization pa-
rameters. A scenario can consist of different configurations,
such as varying numbers of agents from the start. These
configurations (in Jadex: Applications) can be grouped within
one scenario (file). The current implementation prefers the
Jadex agent model of MicroAgents over the more complex
BDI agents for reasons of simplicity and efficiency. Nonethe-
less, any agent model provided by the MAS is supported.

All services inherit from a basic service class and imple-
ment sending and receiving facilities to communicate with
subscribers. A subscriber can filter received messages so that
it receives only those of interest. Each service represents an
information channel and follows a defined (simple) protocol.

VI. SUMMARY

This work deals with a generic software platform inte-
grating multi-agent technology and a multi-robot system.
It describes the use of the platform for typical cooperative
robotic scenarios. One Pioneer-3AT and two Pioneer-2DX

476

from MobileRobots Inc. serve as the hardware base for real-
world applications. The robots have sonar and laser ranger
sensors attached and some have grippers. With the ranger
devices, the robots are able to locate their position on a static
map in an indoor environment. The gripper is used for object
manipulation. The multi-agent system, Jadex, is integrated
for cognitive and task-distribution services. Furthermore, the
multi-robot system Player/Stage is used to interact with the
robot hardware and to provide a simulation environment.

The development of the software is described in Figure 1.
The robot navigation stacks were configured to reach high
localization and path planning accuracy within an indoor
environment. For this purpose, a proportional and accurate
grid-map of the territory was created by a particle-filter-
based SLAM algorithm. The requirements for a generic
system integrating MAS and MRS lead to the design of a
generic middle layer. Implementation and testing use current
software design patterns and focus on run-time efficiency.
The middle layer consists of a flexible concept for robots,
behaviors and devices independent of the specific MAS and
MRS in use. Moreover agents, communication services and
scenarios have been implemented and tested. A mixed reality
graphical user interface allows simulated and augmented-
reality scenarios. The efficiency of the overall system is
scalable, allowing for control of a large number of robots
simultaneously.

A multi-robot platform with multi-agent technology based
on Player/Stage and Jadex has been introduced. Core com-
ponents can be used with other systems of the same kind,
such as other MAS and MRS. Two real-world scenarios and
one virtual scenario served as the basis for the realization of
interactive collaboration. A concluding discussion of current
and future research into various topics related to the meta-
platform has been presented.

Finally the use of a mixed reality environment provides
certain advantages, in particular by allowing testing with
more robots than are physically available. Moreover, it en-
ables the use of unavailable or non-existent devices, allowing
novel ideas to be simulated rather than being limited to
present reality.

VII. ACKNOWLEDGMENTS

This work has been conducted as part of RACE, funded
under the European Community’s Seventh Framework Pro-
gramme FP7-ICT-2011-7 under grant agreement n° 287752
(http://www.project-race.eu/).

REFERENCES

[1] M. Ahmed, M. Khan, M. Billah, and S. Farhana. A collaborative navi-
gation algorithm for multi-agent robots in autonomous reconnaissance
mission. In Computer and Communication Engineering (ICCCE),
2010 International Conference on, pages 1 –6, May 2010.

[2] G. A. Bekey. Systems of robots: from cooperation to swarm behavior.
IEEE SMC 2005, Hawaii – Computer Science Department, University
of Southern California, December 2005.

[3] R. A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14–23, 1986.

[4] C. Carletti, M. Di;Rocco, A. Gasparri, and G. Ulivi. A distributed
transferable belief model for collaborative topological map-building
in multi-robot systems. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2010, 2010.

[5] L. Carlone, M. Ng, J. Du, B. Bona, and M. Indri. Rao-blackwellized
particle filters multi robot slam with unknown initial correspondences
and limited communication. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 243 –249, May 2010.

[6] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and
S. Teller. Multiple relative pose graphs for robust cooperative map-
ping. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 3185 –3192, may 2010.

[7] R. Kurazume, Y. Noda, Y. Tobata, K. Lingemann, Y. Iwashita, and
T. Hasegawa. Laser-based geometric modeling using cooperative
multiple mobile robots. In Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on, pages 3200 –3205, May 2009.

[8] D. C. Mackenzie, R. C. Arkin, and J. M. Cameron. Multiagent mission
specification and execution, 1997.

[9] A. Pokahr and L. Braubach. From a research to an industrial-strength
agent platform: Jadex v2. In H.-G. F. Hans Robert Hansen, Dim-
itris Karagiannis, editor, Business Services: Konzepte, Technologien,
Anwendungen - 9. Internationale Tagung Wirtschaftsinformatik (WI
2009), pages 769–778. Österreichische Computer Gesellschaft, 2 2009.

[10] A. Pokahr, L. Braubach, and K. Jander. Unifying agent and component
concepts - jadex active components. In In Proceedings of Seventh
German conference on Multi-Agent System TEchnologieS (MATES-
2010), 2010.

[11] C. Rossi, L. Aldama, and A. Barrientos. Simultaneous task subdivision
and allocation for teams of heterogeneous robots. In Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, pages
946 –951, may 2009.

[12] P. Shiroma and M. Campos. Comutar: A framework for multi-robot
coordination and task allocation. In Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on, pages 4817
–4824, 2009.

[13] X. Sun, T. Mao, J. Kralik, and L. Ray. Cooperative multi-robot
reinforcement learning: A framework in hybrid state space. In Intel-
ligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 1190 –1196, oct. 2009.

[14] K. Suzuki, T. Tsukidate, M. Shimizu, and A. Ishiguro. Stable and
spontaneous self-assembly of a multi-robotic system by exploiting
physical interaction between agents. In Proceedings of the 2009
IEEE/RSJ international conference on Intelligent robots and systems,
IROS’09, pages 4343–4348, Piscataway, NJ, USA, 2009. IEEE Press.

[15] P. Urcola and L. Montano. Cooperative robot team navigation
strategies based on an environment model. In Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
pages 4577–4583, Oct. 2009.

[16] J. Yuan, Y. Huang, T. Tao, and F. Sun. A cooperative approach for
multi-robot area exploration. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 1390 –1395, 2010.

477

