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Abstract—Reinforcement learning and differentiable physics
often suffer from local minima, particularly in contact-rich tasks.
Some formulations also involve nested optimization, which can
lead to further difficulties. To overcome these issues, we let the
policy network propose contacts and simultaneously train for
task goals and physical consistency. This leads to a single-level
optimization problem, which we solve with efficient linearizations
and matrix-free Gauss-Newton steps. Our prototype implementa-
tion can train neural networks for dexterous manipulation tasks
within minutes on a single CPU core.

I. INTRODUCTION

Deep reinforcement learning has become an extremely
popular method in robotics [3]. Since it often requires many
training episodes, it is typically performed in simulation.
However, if a perfect model is already available in simulation,
it should not even be necessary to try out random actions. We
should be able to solve for a policy network directly.

A step in this direction is differentiable physics. We can
propagate gradients through a physics simulator via automatic
differentiation. However, most contact models are not differ-
entiable. In some cases, we can still obtain useful gradients
and even overcome small local minima by replacing discrete
collision detection with a soft falloff (see figure |ZL bottom). In
many situations, however, this approach fails. If the materials
are not sticky and we want to e.g. grasp a cube with the
hand initially placed above the object (figure [2} top-left), the
gradient would be zero, or point in the wrong direction.

For motion planning, contact-based formulations have been
developed [} 2]], which overcome local minima by introducing
additional free variables. When using a similar approach to
train neural networks, the contact variables would have to be
continuously re-optimized. We also want to add randomization
(e.g. domain randomization) to obtain stable policies. There-
fore, at each iteration, we would not only have to perform
a cheap back propagation step, but we would first have to
find new contact variables by solving constrained non-linear
problems.

We overcome these issues by training a neural network
to generate not only robot control signals but also contacts,
simultaneously optimizing for task goals and physical consis-
tency [4].
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Fig. 1. We let the neural network propose contacts and simultaneously
optimize for task goals and physical consistency.
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Fig. 2. Direct policy optimization with differentiable physics learns to
reorient a cube with two fingers (bottom), but fails during a grasping task
(top-left). We overcome (top) local minima by letting the neural network
propose contacts (top-right, plotted over multiple time steps), simultaneously
optimizing for task goals and physical consistency.

II. FORMULATION

A neural policy network receives state information as inputs
and produces robot control signals as well as contact points
and contact forces. We minimize a combined loss L; + L,
with task goals L, and physical consistency terms L,. The
physical consistency loss L, encourages the network to gen-
erate physically realistic contacts. For each time step ¢t € T,
the network can output contact points p, p.¢ » ¢a,5,: and contact
forces fqp: between bodies a,b € O. We allow either small
forces or small distances, while avoiding overlap o, ;. and
minimizing deviations f, 5, from friction cones.
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Robot commands, contact points and contact forces are
integrated, and the states are fed back to the network as
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Fig. 3. Learning to rotate a cube around different axes (top, middle, bottom).

inputs (see figure [I).

III. SOLVER

Artificial neural networks are usually trained via steepest
gradient descent with back propagation, since the full gradient
matrix would often be prohibitively large and dense. For many
physics problems (e.g. contact dynamics), steepest gradient
descent can be very slow, but the gradient matrices can be
relatively small and sparse. These equations can be solved
more efficiently with higher-order estimates, e.g. following the
Gauss-Newton method. Our formulation combines artificial
neural networks with contact dynamics in a single optimiza-
tion problem. Instead of computing a gradient matrix, we
generate linearized gradient programs via automatic program
transformation. All non-linear operations are eliminated from
the forward and reverse differentiation passes and moved into
a separate linearization program. To efficiently handle spatial
transformation, we introduce type conversions and linearizers.
Each variable is associated with a value, a gradient and a
linearizer. For a scalar, the linearizer is simply an implicit
reference to the value. For a 3D pose, the value consists of
a vector and a quaternion, the gradient is represented by a
6D vector screw and the linearizer stores a 3-by-3 matrix. We
solve our multimodal policy optimization problem via Gauss-
Newton steps as a sequence of linear equations. For each linear
equation, we call the non-linear pass and the linearizers only
once. A forward and a reverse gradient program are combined
into a matrix replacement program, which only performs linear
operations and is equivalent to a matrix-vector product with
the Gauss-Newton matrix (but without having to compute said
matrix). Using our matrix replacement, we perform a number
of conjugate gradient descent steps.

IV. EXPERIMENTS

We learn neural policies for a two-fingered reorientation
task (figure [2] bottom), grasping a cube with a humanoid
Shadow C6 hand mounted to a UR5 arm (figure 2] top),
flipping a cube around different axes (figure [3), and turning
a wheel (figure [d). Task goals are specified as squared errors
between object poses and goal poses. In a first attempt, we
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Fig. 4. Learning to adapt to different object positions.
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Fig. 5. Training curves with matrix-free Gauss-Newton and back propagation
when learning to grasp a cube with a Shadow C6 hand.

implement a traditional rigid body physics simulator in our
auto-differentiation framework. Since the fingers are initially
not touching the object yet, the gradients are zero and policy
optimization fails. We replace hard collision detection with a
soft falloff over a signed distance function. We can now find
successful policies for the two-fingered reorientation task, if
the fingers start close to the object on opposite sides. However,
this method still fails during all our experiments with multi-
fingered hands. We now try our proposed method. It finds
reasonable policies in less than five minutes for all tasks.
By randomizing initial object poses, we can learn policies
that adapt to the pose of the object (see figure ). If we use
traditional back propagation instead of our matrix-free Gauss-
Newton method, progress is considerably slower (see figure[3).

V. CONCLUSION

We can overcome local minima and learn dexterous manip-
ulation tasks via single-level gradient-based optimization by
letting the neural network generate contacts and optimizing for
physical consistency. The equations can be solved efficiently
by generating linearizations through program transformation
and performing matrix-free Gauss-Newton steps. Our pro-
totype implementation learns dexterous manipulation tasks
within minutes on a single CPU core.
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