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Abstract— In this paper, an FIM (Fitness to Ideal Model)
and a DLen (Description Length) based evaluation approach
has been developed to measure the benefit of learning from ex-
perience to improve the robustness of the robot’s behavior. The
experience based mobile artificial cognitive system architecture
is briefly described and adopted by a PR2 service robot within
the EU-FP7 funded project RACE. The robot conducts typical
tasks of a waiter. Temporal and lasting obstacles and standard
table items, as shown in the demonstrations of “Deal-with-
obstacles” and “Clear-table-intelligently”, are being adopted
in this work to test the proposed evaluation metrics, validate
it on a real PR2 robot system and present the evaluation
results. The relationship between the FIM and DLen has been
validated. This work proposes an effective approach to evaluate
a cognitive service robot system which enhances its performance
by learning.

I. INTRODUCTION

Recording and exploiting past experiences is an important
asset of human beings. However, experience-based learning
has mainly been realized at sub-symbolic levels in curren-
t robot architectures. The ability to conceptualize stored
experiences and to adapt plans and behavior according to
experiences can help robots to expand their knowledge about
a complex world, to adapt to changes and to cope with new
situations. RACE (Robustness by Autonomous Competence
Enhancement) project tries to develop an experience-based
mobile cognitive system, embodied by a service robot, able
to build a high-level understanding of the world it inhab-
its by storing and exploiting appropriate memories of its
experiences. This raises the question of how to evaluate
this experience-based mobile cognitive system, which may
not be evaluated by the traditional methods. There is no
systematic method for evaluating the performance of the
cognitive service robot system. In this paper, we propose
an “FIM” and “DLen” based evaluation approach and show
the evaluation results of the RACE cognitive system.

The main goal of RACE is to develop a framework and
methods for learning from experiences in order to facilitate a
cognitive intelligent system. RACE demonstrates the ability
to employ knowledge about common temporal and causal
dependencies among tasks and subtasks that only emerge
as a result of experience in the specific physical scenario,
and which cannot be modelled apriori. To achieve this goal,
experiences are recorded internally at multiple levels: as
high-level descriptions in terms of goals, tasks and behaviors,

connected to constituting subtasks, and finally to sensory and
actuator skills at the lowest level. In this way, experiences
provide records of past happenings stored by a robot as
witnessed with proprioceptive and exteroceptive sensing, and
interpreted according to the robot’s conceptual framework.
Experiences typically abstract from low level data deemed
irrelevant for the intended use of experiences.

RACE integrates research from several communities: (1)
an ontology-based knowledge representing and Meta-CSP
based reasoning framework; (2) Hierarchical Task Networks
(HTN) based hybrid planning and control system; (3) per-
ception and perceptual memory system; (4) integrated service
robot platform (PR2).

A restaurant environment has been designed to evaluate
and implement the proposed cognitive intelligent system. In
this experimental restaurant environment, a typical task is to
serve a coffee to a specified guest. In a specified scenario,
the robot finds the path blocked by a person. The robot is
instructed to wait until the person has freed the path. After a
short while, the person frees the path and the robot completes
its task. The robot is told that this is a solution to deal
with obstacles. At another time, an extension table blocks
the path. Based on the experience with the person, the robot
decides to wait. After a while, it is instructed that this kind of
obstacle must be circumnavigated. Hence the robot chooses
another path. After several more experiences with obstacles,
the robot knows to distinguish between temporary and lasting
obstacles, and chooses proper actions without instructions. In
another scenario, the robot is instructed to clear dishes from
a table, in a room with different tables and varying examples
of cluttered tables. However, the robot will initially also
clear standard table items (table decoration, salt-and-pepper
pot, etc.). After being instructed to leave such items on the
table, the robot will refine its table-clearing conceptualisation
accordingly, showing improved competence. After several
experiences, the robot will be able to clear new tables with
dish configurations which are not experienced before.

In this paper, we mainly focus on the evaluation approach
for a cognitive service robot system which is applied to the
described system in RACE project. The proposed approach
combines an “FIM” [1] and “DLen” [2] metric. The evalu-
ation metrics have been applied to multiple demonstration
scenarios. The experimental results show the relationship
between these two measurable indicators.



The rest of this work will be organized as follows: section
III presents related work. In section IV, we present the
architecture of the mobile cognitive system. The scenario
set-up and experimental results are conducted in section V
and, finally, in section VI, conclusions and future work are
presented.

II. RELATED WORK

Cognitive Robot System [3] is a kind of robot that not
only moves robustly in the dynamic environment [4]–[7],
but also can learn from experience and to improve its
capabilities [8]. Mali and Mukerjee [9] defined the behavior
metric to evaluate the performance of behavior spaces of
the autonomous robot. In their work, a detailed theoretical
analysis has been done. To test the proposed metrics, the
“WashDish” task is carried out by a robot simulator.

To evaluate the performance of service robots in a house-
hold environment, the International Electrotechnical Com-
mission (IEC) [10] proposed a series of evaluation meth-
ods. In this report, the authors try to formulate general
standard terms for robot capabilities and how to measure
them. Many performance indicators, for example, pose and
carrying capability, are defined. However, evaluation metrics
for knowledge and experience was not mentioned in this
report.

The international annual competition for autonomous do-
mestic service robots, RoboCup@Home [11], designs many
benchmark tests. In these tests, the robots are tested in
a realistic non-standardized home environment. These tests
mainly focus on physical capabilities of the robots.

The Performance Metrics for Intelligent Systems (PerMIS)
try to define metrics for the performance of intelligent
systems. These measures are defined to test robots in applica-
tions concerning practical problems. A collection of related
work has been published in the book [12]. Unfortunately, it
is not a general benchmark for intelligent systems.

The “Mobile Manipulation Challenge” focuses on au-
tonomous mobile manipulation applications. In 2010, it
focused on a constrained pick-and-place task, e.g., object
retrieval, loading a dishwasher. The “2012 ICRA Mobile Ma-
nipulation Challenge” is similar: the robots were instructed
to clean a table in a “sushi boat” restaurant environment.
In “2013 ICRA Mobile Manipulation Challenge”, the robots
were assigned to manipulate the objects, like cutlery and
bowels, in a kitchen environment. The manipulation perfor-
mance is evaluated by scoring.

Till now, little research has been done to evaluate the
experience-based cognitive service robot system. In this
paper, we propose an evaluation approach which adopts an
“FIM” and “DLen” metrics.

III. RACE ARCHITECTURE

The main components of the mobile artificial cognitive
system and important features of the knowledge represen-
tation and reasoning (KR&R) framework will be presented
in this section. All the modules have been integrated and
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Fig. 1. The RACE Architecture contains a Blackboard as the robot’s
central memory. Other components mainly communicate with it in order to
exchange and process Fluents.

implemented as ROS packages and on the simulated and
real PR2 platform.

As shown in the Fig. 1, the Blackboard is the cen-
tral component of the RACE system. The Blackboard
tracking the updates and changes of other system compo-
nents during the running process. The sensing data will
be written back into the Blackboard. The basic data
type is a Fluent, which is instance of concepts from the
ontology. Fluents are exchanged in the blackboard by
ROS messages. The state information of the current state
and the past state can be recorded and processed through
Fluents. The detailed experience representation format has
been explained in [13].

When a planning goal was input through the user in-
terface, the HTN (Hierarchical Task Network) Planner [14]
will be triggered by the Blackboard. The planner will
create an initial planning. Then the initial planning state
will be written to the Blackboard. The initial plan in-
cludes pre-conditions and post-conditions and an expand-
ed HTN. The Plan Execution Manager will be trig-
gered. The planned actions will be dispatched by the
Plan Execution Manager. The Scheduler will par-
alyze robot action before any robot capabilities are trig-
gered. When necessary, Robot actions at this level will
executed. At planning operator level, the success and failure
information will be recorded to the Blackboard by the
Plan Execution Manager.

RACE project employs a PR2 robot, which runs ROS
(Robot Operating System) [15], to execute the waiter task in
the restaurant domain. As part of ROS packages, the PR2’s
basic capabilities, such as manipulation and navigation, can
be accessed through ROS actions. Other modules like object
detection have been developed and integrated into the system.
Some failure situations can be detected and handled locally
during the running process. Re-planning will be triggered by
the Plan Execution Manager if an action fails. Then
a new plan will be generated by the planner.

Unfortunately, not all plan failures can be detected locally
by the capabilities itself. For instance, even the robot has



already picked up a knife successfully, the knife was put on
the top of a fork. The plan execution manager can detect this
kind of plan failure and infer that the knife should not be
put on the top of a fork. The detection of failures requires
inference with respect to the observed state of the world. In
RACE, this is achieved by invoking ontological and Meta-
CSP reasoning services [13].

The ROS and robot sensors provide the continuous data
information about the robot’s own state and the environment
activities. This kind of information then discretized by the
symbolic perception/proprioception into sym-
bolic timestamped Fluents.

The output of these modules indicate whether the robot’s
arms is tucked, untucked, or the temporal and qualitative
spatial coordinates of a piece of cutlery observed by the
robot’s RGB-D camera (here is Kinect).

The OWL Ontology [13] stores and generates
the robot’s conceptual knowledge. Furthermore, the
OWL Ontology also provides input data for the spatial,
temporal and ontological reasoners as well as the high-level
scene interpretation. The simple experiences with higher-
level semantic information will be created by the reasoner
in the Blackboard. This semantic information can also
be queried directly by other modules. On the other hand,
the robot obtains the ability to discern exactly where to
place a mug when serving (between the fork and the knife
of a well-set table) with the help of temporal and spatial
reasoning.

During the running process, the Experience
Extractor is continuously monitored by the
Blackboard since the Fluents are processed in
the Blackboard.

The Conceptualizer [13] modifies the ontology, gen-
erates more robust and flexible future plans by taking the
experiences from the Blackboard as input. Then experi-
ences are used to improve future performance in unknown
situations and environments.

IV. EVALUATION APPROACH

To measure success for a given task in a given scenario,
we use an approach inspired by model-based validation
techniques [16]; namely, we measure the compliance of the
actual robot’s behavior to the intended ideal behavior for
that task in that scenario. Fig. 2 graphically illustrates this
principle: the trace of a given execution of the RACE system
is compared against a specification of what the ideal behavior
should be, resulting in a “Fitness to Ideal Model” (FIM)
measure. These specifications will be formulated in a way
that facilitates the task of automatically computing the FIM
measure, as discussed in [17] and presented below.

Discrepancies between the observed behavior and the ideal
behavior can originate from errors of four different types:
• Conceptual errors — e.g., the robot places a mug

outside of the guest’s reach because it does not know

Specification of

ideal behavior

Environment

RACE 

System

trace

execution

compare

Fitness to Ideal Model

Fig. 2. Principle of evaluation in RACE: the system’s behavior is compared
to a model of the ideal behavior for the specific scenario.

that all objects should be served within the guest’s
placing area.

• Perceptual errors — e.g., the robot fails in perceiving
a mug.

• Navigation and/or localization errors — e.g., the robot
places a mug on the wrong table because it is wrongly
localized.

• Manipulation errors — e.g., the robot fails to pick up
a mug from the table because it slips from the gripper.

The latter three types of errors – perceptual, navigation
and manipulation errors – are platform specific. They do not
indicate problems with the intended behavior of the robot,
but with its physical execution. As the RACE project ad-
dresses the learning and use of knowledge for increasing the
robot performance, our metrics mainly focus on quantifying
conceptual errors.

Conceptual errors arise from discrepancies between the
knowledge used by the robot and the one encoded in the
specification of the ideal behavior. We call these discrepancy
inconsistencies. Specifically, inconsistencies can be of four
types:

• Temporal inconsistencies, that is, inconsistencies that
are due to not adhering to a temporal constraint — e.g.,
the robot fails to serve coffee within a given deadline.

• Spatial inconsistencies, that is, inconsistencies caused
by not adhering to a spatial constraint — e.g., the robot
places a mug on the wrong side of the table.

• Taxonomical inconsistencies, that is, inconsistencies
that derive from a wrong conceptual taxonomy — e.g.,
the robot serves wine in a coffee mug rather than a wine
glass.

• Compositional inconsistencies, that is, inconsistencies
deriving from the lack of causal support and/or wrong
hierarchical decomposition — e.g., the robot does not
clear all mugs from a table.

Accordingly, we will adopt the following four metrics to
quantify performance of the robot in relevant tasks:

pt = τt · #temporal inconsistencies
ps = τs · #spatial inconsistencies
px = τx · #taxonomical inconsistencies
pc = τc · #compositional inconsistencies

where τ(·) ∈ [0, 1] are weights which determine the impor-
tance of the four types of inconsistency. Together, the four



Fig. 3. Overall view of the RACE aim: to develop tools for autonomously
learning knowledge that allows to specify the robot’s task by as few as
possible instructions (low DLen) to achieve correct behavior (low FIM).

above define the FIM metric:

FIM =
∑

i∈{t,s,x,c}

pi (1)

If the ideal robot behavior is specified using a formal mod-
el that allows to “count” inconsistencies, then this FIM metric
is operational. If that formal model even allows to detect and
count inconsistencies automatically, then the FIM metric can
be computed automatically. In the case of temporal inconsis-
tencies, for instance, we will employ consistency checking
procedures in temporal constraint networks representing the
temporal aspect of ideal robot behavior — e.g., a Fluent
[18] representing the task of serving coffee and a temporal
constraint representing the deadline for serving the coffee can
be checked against the execution trace of the robot through
simple temporal constraint propagation procedures. Clearly,
other formalisms could be used to specify the ideal behavior
[19]. In this project, we will preferably use the formalisms
which are used to represent Fluents inside the RACE
system, since we expect that having the same formalism
inside the system and on the external reference model will
be convenient when evaluating the effect of learning.

In addition to estimating the effectiveness of learned
knowledge by counting the number of inconsistencies, we are
also interested in measuring the Description Length
(DLen) of the instructions that should be given to the robot
to achieve a goal. It is important to include this dimension
into the evaluation, as flawless behavior can always be
achieved by over-specifying the task, e.g. tele-operating the
robot. We conjecture that the FIM measure for a given task
in a given scenario will proportionally decrease with the
description length of the instructions increasing, as shown by
the solid line in Fig. 3. Successful behavior following shorter
instruction descriptions is indicative of the effectiveness of
the learned knowledge. Also, this may indirectly provide a
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Fig. 4. PlacingArea and ManipulationArea of the table1

measure of how general the knowledge is if applied to a wide
range of scenarios and initial conditions.

Overall, our aim in RACE is to develop a system of
learning and reasoning tools that will allow the robot to
autonomously and effectively increase its competence. This
overall aim is related to the FIM and DLen metrics as
indicated in Fig. 3, which summarizes the final objective
of RACE: to make long specifications unnecessary for the
achievement of highly fitting behavior (i.e. behavior which
generates few temporal, spatial, taxonomical and compo-
sitional inconsistencies). Graphically, this enhancement in
competence is indicated by the transition from the solid line
to the dash line.

V. SCENARIO SET-UP AND EXPERIMENTS

The system has been tested and evaluated in an ex-
perimental restaurant domain. To collect experiences, the
robot carries out tasks of a waiter, for example serve a
coffee and clear tables, etc. In this work, based on the
basic demonstrations “Serve-a-coffee” and “Clear-table”, t-
wo more complicated demonstrations named “Deal-with-
obstacles” and “Clear-table-intelligently” have been defined
and performed on the physical PR2 platform in a restaurant
environment. The results are presented with respect to the
metrics defined in Section IV and described in [17], [20].

A. Scenario Set-up

In the demonstrations, the robot must transport objects
(knife and/or fork) to the specified area. Hence, the Placin-
gArea is predefine before the running. The PlacingArea is the
part of the table where mugs and dishes should be placed.
It is a rectangle area with length of 350 mm and width of
300 mm. The distance from the edge of the table to the
PlacingArea is 50 mm. The knives, mugs, dishes, forks and
spoons can be placed anywhere in the PlacingArea, as shown
in Fig. 4 (the PlacingArea of the table).

We first present three scenarios in the restaurant domain
which will be used for the “Deal-with-obstacles”. The idea
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is to let the robot discover a generalization of the obstacle
experiences in Scenarios A and B which will subsume the
task in Scenario C.

Then two scenarios are set up for the demonstration
“Clear-table-intelligently”. In the first scenario, the robot will
initially also clear standard table items (table decoration,
salt-and-pepper pot, etc.). After being instructed to leave
such items on the table, the robot will refine its table-
clearing conceptualisation accordingly, showing improved
competence.

B. Deal-with-obstacles Demonstration

The robot trixi starts at a location east of the tables
and the counter and facing west. The tables are not within
its reach. The robot trixi is instructed to serve a mug
mug1 to table1.

Scenario A: The restaurant floor plan as shown in Fig. 5.
The robot is instructed to move mug1 to table1 and finds
the path blocked by a person. The robot is instructed to wait
until the person has freed the path. After a short while, the
person frees the path and the robot completes its task. The
robot is told that this is a solution to deal with obstacles.

Scenario B: The same as Scenario A, except an extension
table blocks the path. Based on the experience with the
person, the robot decides to wait. After a while, it is
instructed that this kind of obstacle must be circumnavigated.
Hence the robot chooses another path (new route in Fig. 6).

Scenario C: The robot is instructed to move mug1 to
table1 and finds the first path blocked by an extension
table and the second path blocked by a person. The robot
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Fig. 7. Clear-table-intelligently scenario A initial floor plan

knows how to distinguish between temporary (person) and
lasting (an extension table) obstacles, and chooses proper
actions (wait until the person has freed the path) without
instructions.

Schedule for “Deal-with-obstacles” scenario A is listed as
follows. The task is composed of 9 steps. The 4 concrete
instructions are included in the schedule.

1) trixi gets the environment model with world coor-
dinates, including coordinates of corresponding areas
(like instances of PlacingAreaSouth) and initial-
izes its own position (position1). The guest sits at
west of table1. Ontology contains “ServeACoffee”
for scenes without obstacle but with a basic activity
for “wait until unblocked” and state “object at area”.

2) user1 instructs trixi to “Serve a coffee to guest1”.
3) trixi plans a sequence of actions with an HTN plan-

ner, based on a pre-existing concept, “ServeACoffee”.
4) trixi moves to mae3, grasp mug1 from pae3,

move to the southern manipulation area of table1
mas1, as planned.

5) trixi meets an entity at MASouth1, reports failure,
and calls obstacle detection for identifying: person at
MASouth1.

6) user1 instructs trixi to “Wait until unblocked”.
7) trixi plans a waiting sequence of actions with the

planner.
8) user1 instructs trixi to “Serve a coffee to guest1”.
9) trixi creates new plan for moving at PMASouth

and then (successfully) places mug1 in pawr1, as
planned.

C. Clear-table-intelligently Demonstration

The robot trixi starts at a location east of the tables and
the counter and facing west. The robot is instructed to clear
objects from a table, which are not within its reach. To pick
up an object from the table, trixi has to reposition itself
first. The clearable items are located at the placing areas of
table1 (as shown in Fig. 7).

Scenario A: The robot is instructed to clear objects
from table1. The robot trixi knows the position
of mug1 and bowl1, knife1, fork1 and spoon1,



pepper pot1 and salt pot1 on the table1, the
position of counter1. The robot trixi starts to clear
items from table1 and will also clear standard table
items(pepper pot1 and salt pot1). The robot is
instructed to leave the standard table items on the table1.

Scenario B: The robot trixi clears items from the table.
The robot has refined its table-clearing conceptualisation
accordingly. The standard table items like pepper pot will
not be cleared. The robot shows improved competence.

D. Experimental Results

In this section, the evaluation metrics described in section
IV will be applied to the two demonstrations. To save space,
only “Deal-with-obstacles” results are shown. The results of
“Clear-table-intelligently” are similar.

Let V 0 be the nominal (ideal) condition of the demon-
strator (as described in the scenario A schedule). In “Deal-
with-obstacles”, if the guest sits on the opposite side of the
table (or leaves the sitting area), other than specified in the
planning domain. Robot still brings the mug in the same
place as before (which is now in front of an empty seat).
Then the compositional inconsistency and the perception
error occur. That means:

#spatial inconsistencies = 1

#compositional inconsistencies = 1

In the “Deal-with-obstacles” demonstration, the waiting
time limit has been set as 2 minutes. The task fails if the
robot could not detect the obstacles(human or side-table) in
given time. This means:

#temporal inconsistencies = 1

In “Clear-table-intelligently” demonstration, if the robot still
clean the standard items from the table, then

#taxonomial inconsistencies = 1

#compositional inconsistencies = 1

According to the evaluation metrics defined in the last
section, τ(·) is the weight which determines the importance
of the this type of inconsistency. Here we set weight τ(·) = 1.
The initial value of the four types of inconsistency is assigned
to be 0. Then we have

FIM(V 0) = 0

FIM(V 1) = #temporal inconsistencies
+ #spatial inconsistencies
+ #compositional inconsistencies = 3

FIM(V 2) = #taxonomial inconsistencies
+ #compositional inconsistencies = 2

where ”V1” and ”V2” means ”Deal-with-obstacles” and
”Clear-table-intelligently” demonstrations.

The evaluation has been tested on the three scenarios
of ”Deal-with-obstacles”, respectively. In scenario A, 50
experiments have been executed to obtain the experimental

results. Some indicators like move to mae3 have been
checked from all the experiments. In Tab. 1, the plan steps
are checked with respect to Scenario A. All the results are
judged by human. There are 42 times executed successfully,
which are shown in the first column of Tab. 1 (only the first
time experiment result is listed). The second column shows
the result of the 9th experiment, where the robot failed to
grasp the mug1 because the grasping solution is not feasible.
The third column shows the result of the 16th experiment,
where the robot failed to detect the mug1 on the counter. The
fourth column shows the result of the 32th experiment, where
the robot failed to place the mug1 in the specified area. The
fifth column shows the result of the 39nd experiment, where
the robot failed to detect obstacles. The 2,3,4,5 columns show
the errors caused by other types of errors such as Perceptual
errors and Navigation errors, which will not be counted in
the Conceptual errors.

Fig. 8 shows the statistical results of all kinds of errors
occurring in three scenarios. In scenario A, there are 42
times successful execution and 8 errors (3 Perceptual errors,
2 Navigation errors and 3 Manipulation errors). In scenario
B, there are 40 times successful execution and 10 errors (3
Perceptual errors, 4 Navigation errors and 3 Manipulation
errors). In scenario C, there are 36 times successful execution
and 14 errors (6 Perceptual errors, 4 Navigation errors and
4 Manipulation errors). All the errors are judged by human
during the process of the experiments.

Scenario A Instr. A: ex 1 A: ex 9 A: ex 16 A: ex 32 A: ex 39

move to mae3 1 Success Success Success Success Success

detect mug1 on pae3 2 Success Success Failure Success Success

grasp mug1 from pae3 2 Success Failure / Success Success

move to mas1 2 Success / / Success Success

detect obstacle 3 Success / / Success Failure

place mug1 in pawr1 3 Success / / Failure /

TABLE 1
EXPERIMENTAL RESULTS OF SCENARIO A

To measure the description length of the instructions given
to the robot, step by step instructions are provided to the
robot. In scenarios A and B, a set of instructions were
provided. Each achieve command specifies a sub-task as
shown in the following instructions list of Scenario A, the
last teach command of the following instructions list the
instruction to teach a new task. It is a composition of the
given set of sub-tasks, as shown in the following:

1) achieve serve coffee to guest guest1
2) achieve wait until unblocked by Task preManipulationArea-

SouthTable1 person1
3) achieve serve coffee to guest guest1
4) teach task serve coffee to guest guest1
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In Scenario B, similar instructions were provided by the
user. The step by step instructions given by the instructor are
the following:

1) achieve serve coffee to guest guest1
2) abort
3) achieve drive robot Task preManipulationAreaNorthTable1
4) achieve put object Task mug1 placingAreaWestLeftTable1
5) teach task serve coffee to guest guest1

In Scenario C, only a single achieve instruction is
provided as follows. Now the “Deal-with-obstacles” task can
be executed with a shorter instruction set:

1) achieve serve coffee to guest guest1

Fig. 9 shows there are 4, 5 and 1 instructions in three sce-
narios of “Deal-with-obstacles”, respectively. Fig. 10 shows
the relationship between the FIM and DLen. The yellow
circle dot (4,0), (5,3) and (1,3) means that there are 4
instructions and 0 FIM errors, 5 instruction and 3 FIM errors,
1 instruction and 3 FIM errors in the scenario A, B and C
of “Deal-with-obstacles”, respectively; while the blue square
(3,0) and (1,3) means that there are 3 instructions and 0 FIM
errors, 1 instruction and 3 FIM errors in the scenario A and
B of “Clear-table-intelligently”, respectively.

With the increase of the instructions, execution results
are more close to the ideal situation. Theoretically, the best
situation will be the point (1,0), which means there is no
inconsistency when the robot triggered by one instruction.

The restaurant environment is shown in Fig. 11. In Fig. 12,
the PR2 robot tries to grasp mug1 from counter1 during
Scenario A. In Fig. 13, mug1 has been placed in pawr1.
The video attached to this paper shows the execution process
of the Scenario A. The scenarios might be executed in the
physical or the simulated environment, as indicated by the
figures.
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Fig. 10. The relationship between FIM and DLen

Fig. 11. The restaurant environment in a typical start condition: the
robot waits for a guest and to be instructed (top: real environment, down:
simulation environment)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce an experience-based approach
for cognitive service robot system running in an restaurant
domain. The “FIM” and “DLen” metrics were adopted to
measure the compliance of the actual robot’s behavior to the
intended ideal behavior for a given goal and scenario. The
demonstrations of “Deal-with-obstacles” and “Clear-table-
intelligently” have been designed and evaluated with the
defined metrics on the simulation (Gazebo) and real PR2
robot platform. The improvement has been verified both in
the robot’s knowledge and behavior. The initial assumption
about the “FIM” and “DLen” relationship is verified by the
evaluation results. The metric is effective to evaluate the
cognitive service robot system.



Fig. 12. Path blocked by a person in “Deal-with-obstacles” in real (top)
and simulation (down) environment

Fig. 13. The mug is placed in front of a guest. This involves (learned)
concepts of human obstacle in (Scenario A)

In the future, new scenarios will show how the benchmark
copes with different complicated tasks, new objects and
scene layout. Automatic algorithms will be designed to judge
errors occurred in the executing process. On the other side,
more complicated Fluents will be generated and tested and
added to the result data.
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