
Parallel Plan Execution and Re-planning on a Mobile Robot using State

Machines with HTN Planning Systems*

Lasse Einig, Denis Klimentjew, Sebastian Rockel, Liwei Zhang, Jianwei Zhang1

Abstract— This work presents parallel plan execution, an
intermediate layer for mobile robot systems using high-level
planners such as Hierarchical Task Network planning to execute
a series of actions.

Sequential plans generated by high-level planners leave sys-
tem resources unused while unnecessarily increasing execution
time of generated plans. This increases delay of development
cycles and also increases the actual cost, regarding time,
energy, and resources, of running mobile service robots in real
environments.

In this paper, a parallelization layer is presented using
an execution based state machine. An extension to this state
machine is proposed, which is capable of low-level re-planning
if the desired action could not be executed correctly. The
achievements are evaluated on a mobile service robot using
an HTN planner and future integration into a learning system
is presented.

I. INTRODUCTION

This paper presents the middle layer of a three-layer archi-

tecture in order to bridge the gap between sequential plans,

generated by Hierarchical Task Network (HTN) planners,

and the parallel execution capabilities of modern mobile

service robots, such as the PR2 by Willow Garage2, as

part of the RACE3 (Robustness by Autonomous Competence

Enhancement) project. The time comsuming test runs, which

have to be repeated numerous times during the RACE

project, inspired this work, in order to reduce the delay

of the development process. Therefore implementation and

evaluation are done using the RACE architecture, as seen in

figure 6 and described in section IV-D, and thus, the Robot

Operating System (ROS4) and the HTN planner JSHOP2 [9],

respectively SHOP2, which are used by the RACE project.

As seen later, the structure of this work may be applied to

any robotic system using ROS with only minor adaptions,

as well as systems not using ROS with medium adaptions.

The main thrust of RACE is to develop a framework and

methods for learning from experience utilizing the scenario

of a restaurant waiter.

The general aim of this work is to optimize the plan

execution on mobile service robots. This optimization is

based on two parts: the parallel execution of sequential plans

*This work was not supported by any organization.
1L. Einig, D. Klimentjew, S. Rockel, L. Zhang and J.

Zhang are with TAMS Group, University of Hamburg, Germany
{einig, klimentjew, rockel, lzhang, zhang} at

informatik.uni-hamburg.de
2http://www.willowgarage.com
3RACE is funded by the European Community’s Seventh Frame-

work Programme FP7-ICT-2011-7 under grant agreement n◦ 287752.
http://www.project-race.eu

4http://www.willowgarage.com/pages/software/ros-platform

and the re-planning capability of the parallelized plan. The

given state by the RACE project offers a sequential plan

generated by the JSHOP2 planner, which is then executed

sequentially using ROS services and actionlibs.

HTN planning is one of the most popular high-level plan-

ning strategies for robotics. Other common HTN planners are

NONLIN, SIPE-2, O-PLAN, and UMCP, but SHOP2 is the

most efficient HTN planner for a wide area of applications

[7][9]. HTN planners recursively decompose complex tasks

to smaller tasks, often referred to as atomic tasks. The size of

this atomic task depends on the interpretation. One project

might assume picking an object as an atomic task, where

another project would try to decompose this task further to

detecting, positioning, and grasping or even smaller tasks.

A huge advantage of SHOP2 over other HTN planners,

including SHOP [8], is the possibility to generate partially

order plans, which also increases the potential for parallel

execution, i.e. by generating a plan to grasp two objects

and then moving with theses object instead of grasping a

single object, moving this object and returning to grasp the

second object. Although either some very specific [2], or very

general [3][5][6] works on parallel plan execution exist, none

of them provide a usable approach to general parallelization

of high-level plans.

In order to execute the plan after parallelization, the

state machine architecture SMACH5 (State Machine) [1]

was chosen. SMACH was designed to fuse with the ROS

operating system, but at its core, SMACH is independent

and thus, may also be used without ROS. SMACH is based

on python allowing it to be used with any operating system

supporting Python 2.7 or higher and therefore run on almost

any system while freely exchanging the planning software

as well as the executional level. SMACH was intended to

quickly implement robust robot behavior. While most state

machines use the states to represent given configurations

between the execution, SMACH states correspond to the

system performing a given task. This concept puts the focus

on the execution instead of snap-shots between performing

actions. States are connected by their outcomes and may

hold data which can be passed to other states. The main

reason why SMACH is used to manage the execution of the

parallelized plan, are the container constructs. Containers

may hold multiple states, as well as containers, allowing

the construction of complex hierarchical state machines.

SMACH offers multiple types of containers, where only two

are of interest for this work: The sequence container and the

5http://www.ros.org/wiki/smach



concurrence container. As the names reveal, the sequence

container executes all contained states and sub-containers in

sequential order, whereas the concurrence container executes

all contained states and sub-containers in a parallel order.

Using only these two, SMACH is able to execute any type

of parallelized plan.

Additionally, using customized states, the state database,

and the state outcomes, a low-level re-planning may be

introduced.

This paper gives an overview on the existing system

and the important parts for the parallelization and examines

parallelization possibilites in section II. After examining

possible parallelization, the implementation is presented in

section III. In section IV The results are evaluated for two

scenarios, of which one is a theoretic scenario in order

to show possible benefits from parallelization. In the latter

sections, a low-level re-planning architecture is proposed

(section V) and the future integration with other parts of

the RACE architecture is presented (section VI).

II. PARALLELIZATION

This work will talk about tasks, operators, actions and

resources. A task represents a planning object. It may be

complex and thus, decomposable into smaller tasks, or

atomic. An atomic task is referred to as an operator. Once

a plan is generated, it will be a sequence of operators,

where each operator corresponds to one or more actions. For

simplicity, not all actions are considered by the planner, as

some actions are too trivial, for example pointing the visual

sensors at the target area. Actions are executed by utilizing

a set of ressources.

A. Prerequisites

The evaluation platform for the RACE project is the PR2.

This mobile service robot uses a four-wheeled omnidirec-

tional driving system for navigating, referred to as base (B).

It is also able to raise and lower its upper manipulation

and sensory system, referred to as torso (T). The upper

manipulation system is made up of two seven-DOF arms

with a two-fingered one-DOF gripper attached to each arm,

referred to as right arm (RA) and left arm (LA). The sensory

system referred to as head (H) holds an ASUS Xtion PRO

LIVE sensor as well as multiple cameras including two stereo

camera pairs. The PR2 also features a base laser scanner

for localization and collision avoidance and a tilting laser

scanner for object detection and collision avoidance.

The RACE planning domain offers ten operators and a

set of complex tasks to decompose. Four of these operators

move one arm and only differ in the prerequisites and the arm

which is to be moved. One operator for each arm assumes

that both arms are in a folded (tucked) position, thus leaving

the arm that is not moved by the operator in the tucked

position after the operator has finished. The other operator

for each arm assumes that only the arm which should be

moved is tucked and the other arm is already in some kind of

manipulation position. After completion of this operator, both

arms will be in an untucked state. These arm operators are

!move arm to side left arm respectively !move arm to side

right arm. These operators require the corresponding arm

as ressource (RA, respectively LA). !tuck arms both arms

puts both arms in a tucked state. The torso resource (T) is

used by the !move torso ?position operator and !move base

?to and !move base blind ?to use the base resource (B)

to navigate within the environment. !move base blind is

used to move the robot into grasping range by ignoring

collision avoidance, e.g. when the convex hull of a table is

in collision with the robot, but there is no physical collision.

The last two operators, !pick up object ?object ?arm and

!place object ?object ?arm ?to, control manipulating objects

in the environment. In addition to the corresponding arm

resource, they also require the head resource in order to

detect the object with vision and depth sensors.

B. Analysis

As already mentioned, evaluation and testing is done using

two scenarios. The first scenario is part of the RACE project

and physical experiments will show the improvements using

parallelized plans. The second scenario is theoretic and is

used to show possible benefits from advanced paralellization.

The first scenario, referred to as Serving Beverages sce-

nario locates the robot in a room with a counter and a table.

Multiple objects, including a clean coffee cup are located on

the counter, the arms of the robot are in an untucked state and

the torso is in an upper position. The complex task serve cup

table 1 is triggered and decomposed into a sequential plan

with twelve atomic tasks.

1) !tuck arm both arms

2) !move torso torso down position

3) !move base counter 1 pre manipulation pose

4) !move torso torso up position

5) !move arm to side left arm

6) !move base blind counter 1 manipulation pose

7) !pick up object coffee cup 1 left arm

8) !move base blind counter 1 pre manipulation pose

9) !move base table 1 pre manipulation pose

10) !move base blind table 1 manipulation pose

11) !place object coffee cup 1 left arm table 1

12) !move base blind table 1 pre manipulation pose

This sequential plan is divided into two sections. Due

to its triviality, the latter section is reviewed first. It starts

with operator 6. Every other operator from that point on is a

movement operator with no collision avoidance. In order to

minimize the risk of damaging the robot or the environment,

the robot may not be allowed to execute any parallel actions

while moving without collision avoidance. Therefore, all

available resources are assigned to the !move base blind

operator, which also removes any parallelization capabilites

in the latter section of the plan.

The former section of the sequential plan does not only

hold parallelization capabilites, but it also describes the

default actions necessary for any mobile manipulation. As the

PR2 is a mobile service robot, almost every task will include

mobile manipulation and therefore require this section to be

executed in advance. For the parallelization of this section,



!tuck arms

both arms

!move torso

torso down position

!move base

counter 1 pre manipulation pose

!move torso

torso up position
!move arm to side

left arm

!move base blind

counter 1 manipulation pose

Fig. 1. Parallel section of the Serving Beverages scenario. A security constraint is added to !move base counter 1 pre manipulation pose forcing the robot
to finish arm and torso movements before moving the base to the new position and waiting for the base movement to finish before the arms and torso
may operate again. This prevents the robot from hitting objects or humans in the environment, respectively increases the tilt stability while moving due to
a lower center of mass.

!tuck arms

both arms

!move torso

torso down position

!move base

counter 1

pre

manipulation

pose

!move torso

torso up position
!move arm to side

left arm

!move base blind

counter 1 manipulation pose

Fig. 2. Parallel section of the Serving Beverages scenario. No security constraint is added. Possible threat is posed to the environment but parallel
capabilities are increased.

there are two available approaches. These approaches will

be referred to as defensive and offensive approach. For both

approaches, operators 1, 2, 4 and 5 may be executed in

parallel, regarding:

• Operators 1 and 5 use the same resource, thus, 1 has to

be finished before 5 may start.

• Operators 2 and 4 use the same resource, thus, 2 has to

be finished before 4 may start.

• Operator 3 may not be started after 4 and 5.

Figure 1 and figure 2 show the defensive, respectively

the offensive approach to parallelization. For the defensive

approach, a security constraint is added, by assigning the RA,

LA and T resource to the !move base operator. The offensive

approach lacks this security constraint and thus, offers more

parallelization capability, while introducing an additional risk

of colliding with the environment. Both approaches may

be valid depending on the environment, but since the test

environment is small and narrow, the defensive approach is

used for evaluation.

The second scenario differs in the latter section while the

first section is the same. This scenario puts the robot in a

kitchen environment supposed to place cups and plates in a

dishwasher with predefined positions for cups and plates.

The robot only requires the head resource to detect and

grasp the object to put into the dishwasher. Placing the

object in the predefined position in the dishwasher may be

executed without visual confirmation. Thus, a sequential plan

of putting cups and plates alternating into the dishwasher

may be parallelized as seen in figure 3. Offering not only

benefit from parallelization for the setup section of the

plan, but also for the main execution section, the benefit

received for this scenario is even greater than for the Serving

Beverages. The shown execution order is possible, as the

robot uses both arms for manipulation at the same time.

III. IMPLEMENTATION

Although this work is very restricted on the technical

prerequisites due to the RACE project, this does not influence

the portability of the parallelization level. As the plan is

parsed into a proprietary format, the planning level may be

exchanged freely, only the parser has to be adapted. Three

different parsers are already available:

• A string parser

• A python list parser

• A JSHOP2 parser

All of the parallelization, as well as the SMACH interpreter

run Python, thus being platform independent. There is a very

close connection between SMACH and ROS but SMACH

may also be used without ROS. The execution API connects

the interchangeable parts with the platform on which the



!move base blind

manipulation pose

!pick up cup cup1

!place cup cup1 !pick up plate plate1

!place plate plate1!pick up cup cup2

!place cup cup2 !pick up plate plate2

!place plate plate2!pick up cup cup3

!place cup cup3 !pick up plate plate3

!place plate plate3!pick up cup cup4

!place cup cup4 !pick up plate plate4

!place plate plate4!pick up cup cup5

!place cup cup5

!move base blind

pre manipulation pose

!tuck arms both arms2 !move torso torso down position2

Head

Right Arm

Left Arm

Fig. 3. Latter section of Loading Dishwasher scenario. Repetitive execution of loading cups and plates with different arms offers huge parallelization
capabilities, nearly cutting execution time in half. Dependencies from Head, Left arm and Right arm resources in the repetitive part are distinguished
between by different line styles shown in the legend.

system is supposed to be running. This enables this system

to run on any platform, with any high-level planning system.

As already mentioned, the implementation is divided into

three levels:

1) Plan generation (HTN Planner)

2) Plan parallelization

3) Plan execution (Low-level Robot API)

Plan parallelization is inserted between the two already

existing levels. While plan generation is clearly seperated

from plan parallelization and execution, parallelization and

execution are somewhat interleaved.

Before the introduction of the parallelization level, the

execution manager and execution API were united in a single

piece of software. Due to the requirements of the execution

of the parallelized plan, the execution manager needs to be

joined into the parallelization level and isolated from the

execution API. This part is taken by the SMACH interpreter.

A. Structure of Parallelization layer

The parallelization is divided into three parts. The first part

parses the original JSHOP2 plan into a format used by the

parallelization algorithm. The second part prepares the par-

allelization by constructing a directed graph in set notation

(G = {V,E}) and finding all possible start operators. These

start operators are all operators in the graph with no incoming

edges. This graph is constructed by allocating the required

resources and the security constraints to the operators. For

evaluation and testing, the list of resources for each operator

is hand-crafted following the pattern described in section

II-B.

The third part uses the start operators and recursively

runs through all remaining operators until all operators

have been rearranged into the parallel plan. In each run,

the remaining operators are analyzed and inserted into the

appropriate position in the parallelized plan if there are

no more incoming edges from operators which are not yet

in the parallelized plan. Depending on the incoming edges

from operators within the parallelized plan, the remaining

operators are placed within sequential or parallel sublists.

Once all operators have been rearranged, the parallelized

plan is passed to the SMACH interpreter.

B. SMACH

The SMACH interpreter converts the parallelized plan,

which is a nested list of sequential and parallel lists. These

sublists are transposed to sequence and concurrence con-

tainers, which are filled with states corresponding to the

operators from the parallelized plan. Each state uses the



corresponding API on the robot execution level to execute

the action equivalent to the operator.

IV. EVALUATION

The evaluation differs between the two scenarios, as the

second scenario is only theoretic, it is missing the execution

time difference evaluation as well as the cpu load difference

evaluation. For both scenarios, the successful parallelization

by the algorithm is shown.

As described in section II-B, the offensive approach is

not suitable for the test environment, as it is very narrow.

Thus the defensive approach was chosen for the practical

evaluation, the parallelization evaluation was done for both

approaches.

A. RACE Scenario

The offensive approach for the RACE scenario, also re-

ferred to as Serving Beverages scenario, returned a flawless

result compared to the hand-crafted parallelization. The

parallelized plan holds three concurrent paths for the first

plan section. The first path is made up of the arm actions

!tuck arms and !move arm to side, the second path holds

the torso actions for moving the torso down and then up

again, and the third path is the !move base action. All three

paths would be executed concurrently, and, after finishing

all paths, the sequential secondary part of the plan would be

executed also sequentially. For the defensive approach, there

is a minor flaw which does not affect the execution order.

After successfully putting the !tuck arms and !move torso

torso down position action into a concurrence container,

sequentially followed by the !move base action. At this point,

the algorithm opens an unnecessary sequential container, as

this is already part of a sequential container, and places

the second concurrence container within, followed by the

latter section of the plan in a sequential order. This flaw

could be removed by verifying the parallelized plan after the

parallelization process, but as it is only a cosmetic flaw, this

needless calculation is skipped.

B. Theoretic Scenario

As the first section of the plan for the theoretic scenario

of Loading a Dishwasher almost holds the same operators

as the RACE scenario, the results are also the same. Except

for an additional !move arm to side for the other required

arm for manipulation, the plan is the same. This additional

operator does not affect the parallelization, thus generating

the same cosmetic flaw for the defensive approach as for

the RACE scenario. For the latter part, this flaw appears

again but as it is only cosmetic, the parallelization result

may be interpreted as perfect. The parallelized plan is made

of concurrence containers each holding a !place and a !pick

action.

C. Time benefit and CPU load

As mentioned in section IV, only the defensive approach

has been executed and thus, only for this approach an

evaluation is possible. Figure 4 shows the timeline for the

execution using the sequential plan received directly from

the HTN planner in the upper part and the parallelized plan

in the lower part. While the parallel execution takes 269

seconds, 102 seconds less than the sequential execution,

respectively 27.5 %, the authors would like to put the focus

on the execution of the first section of the plan. This

recurring section, which is required for any execution of

mobile tasks, takes 39 seconds in the sequential order. The

parallel execution of these two actions only requires 24

seconds, a benefit of 15 seconds, respectively 39.5 %. A

similiar benefit can be observed for the actions 4) and 5).

Even if the scenario itself does not offer much parallelization

capabilities, a time benefit is achieved already with these

first 5 actions. As the parallelization algorithm itself requires

much less than one second, the overall benefit of parallel

execution is obvious. Exceeding this to a parallel execution

of the theoretic scenario, a time benefit between 35 and 45 %

may be expected.

Other than the time required by the parallelization algo-

rithm itself, also the increased CPU load of the parallelization

and the execution of the parallelized plan was expected to

be a drawback. Figure 5 shows the CPU load during both

the sequential and the parallel execution. Except for a minor

shift of the curves, no significant increase in CPU load is

observed. Instead, the reduced time duration of the execution

not only reduces the total execution time, but also the total

processing time. The main reason for high CPU load is the

collision detection and low-level path planning, as well as

object recognition. As these parts are not parallelized, the

CPU load does not increase.

time [s]

parallel

sequential

50 100 150 200 250229

308

2 3 4 8 10 12 13 15

2
3

4
8 10

13
15

Fig. 4. Result from the practical experiment of the Serving Beverages

scenario. The upper section shows the overall execution time and the
execution time of each task in the sequential order. The lower section shows
the overall execution time, the execution time of each task and the parallel
ordering of the parallelized plan. A significant difference of 102 seconds,
respectively 27.5 % is observed after optimizing the sequential plan.

D. Architectural Integration

Although generating good results, the automated paral-

lelization is still limited. A handcrafted resource to operator

mapping is required and new operators have to be imple-

mented. A decrease in the size of the atomic tasks may

also lead to a very large-scaled plan and set of operators,

where a human might exceed its capabilities trying to map

the resources.

Figure 6 shows the current architecture of the RACE

project. All communication is running via a Blackboard

system. This Blackboard connects the functional blocks B



TBox (.owl-file)

Protg

Wrapper

Conceptualizer

High Level

Interpretation

(SCENIOR)

DL Reasoner

Temporal

Reasoner

Spatial

Reasoner

HTN Planner

Blackboard

Experience

Extractor/Annotator

Plan Execution

Manager

Scheduler

Robot

Capabilities

continuous data

Symbolic

proprioception

Symbolic

perception

UI
User

owl

concepts

owl

domain

experiences

occurrences

init. state,

goal
plan

occurrences experiences

plan,

(goal)

occurrences,

schedule

ROS

actions

action

result

occurrences

goal

A

BC

Fig. 6. Global architecture of the RACE project. A Blackboard is the center of the structure managing the communication. Block A highlights the
Reasoners, blocks B and C hold the modules used in this work.

36

38

40

42

44

46

48

50

0 50 100 150 200 250 300 350

cp
u

lo
ad

[%
]

time [s]

sequential
parallel

Fig. 5. Processor load during the practical experiment of the Serving

Beverages scenario. Actually measured values of the computer cluster have
been smoothed with a Bezir polynom and the arithmetic average was
calculated. Both graphs show similiar result, the sequential line is shifted to
the right due to increased execution time within the first five tasks. Overall
processor load is steady comparing the sequential and the parallel execution
of tasks.

and C with block A. The reasoners in block A will eventually

be able to assume the role of the intelligent resource map-

ping, learning from experience gained while executing plans

sequentially and in parallel. These reasoneres may then also

be able to decide wether or not to use the offensive approach,

as the environment changes and spreads wider. Other changes

in the environment, such as the size of the object, the height

of obstacles, the lighting conditions and others may also

chang the required resources for some operators. One of the

reasoners will notice this change in conditions and alter the

plan execution suchlike.

V. RE-PLANNING

The described three-layer architecture can be extended to

a four-component closed loop architecture by adding a re-

planning component, which monitors the execution of the

state machine. The re-planning component triggers the HTN

planner to create a new plan with an adapted goal. A cost-

function-based rule system is used to make the decision on

the new goal, which is to be sent to the planner. This rule

system is extended by an expected success rate for each

possible adaption, defining a cost-success function.

cost-success =
cost

success rate

While costs are static, success rates vary for each type of

failure in the original plan, ranging from object recognition

failure over grasping failure to path planning failures. The

current set of available goal adaptions for the task of detect-

ing and grasping an object is as follows, in ascending cost

order:

• Pointing the head

• Moving the torso up an down

• Moving the base at the manipulation position

All three options may also be combined by the re-planner.

An example for re-planning finds the mobile robot in front

of a counter with a mug on top. The robot is looking straight

at the mug, the torso is in a lower position, the base is located

so that the right shoulder is aligned with the mug. The mug



is identified correctly by the object recognition, but trying to

find a valid trajectory fails because the arm planner runs into

a singularity. This singularity is the result of the arm trying

to align all joints along a straight line. The state machine

reports a grasp failure to the re-planner, which then triggers

(1) the rule-based re-planning routine and (2) a reasoner

seen in block A of figure 6 with the failure information.

For (1), the re-planner decides to use the head movement

because it has the lowest cost and the success rates of all

possible decisions is yet 1, due to the lack of experience.

Since the failure is due to a singularity, re-executing the plan

with altered head orientation also fails. The next decision

is moving the torso up, since the torso is currently in a

low position. Executing the pick-up task with a higher torso

position succeeds, because the angle in the shoulder joint is

now different and is no longer a singularity. Moving the base

left or right would also remove the singularity, but at a higher

cost. Assuming a cost of 1 for moving the head and 1.5 for

moving the torso, the success rate for moving the torso must

be 50 % greater than for moving the head for the re-planner

to decide to move the torso before moving the head.

In order to find actual values for the success rate, a rea-

soner, which is able to extract these experiences is required.

For expected success rates exemplified by recognition and

grasping failures, the cost-success function in table I finds

torso movement to be the most efficient adaption for re-

planning, which may be related to the improved view-angle

allowing the object recognition to identify more features.

TABLE I

COST BASED VS. COST-SUCCESS BASED ADAPTION

Cost Expected
Success Rate

Cost-Success

Recognition

Head 1 1 1

Torso 2 3 .66

Base 4 1 4

Grasping

Head 1 .1 10

Torso 2 2 1

Base 4 3 1.33

VI. CONCLUSION AND OUTLOOK

This work aims to improve execution time and resource

management on mobile robots. Not only to increase effi-

ciency and thereby reduce expenses for resources and energy,

but also to reduce the duration of development cycles for

applied research. Up to the the authors knowledge, there are

currently no comparable, applicable solutions to improving

the task execution on mobile robots using HTN planners by

executing tasks in parallel.

Although this work was created and evaluated as part of

RACE on the mobile platform PR2, the results are applicable

to almost any platform using high-level planners and

divisible into resources.

The evaluation and experiments identified a security issue

due to the parallel execution of planar movements and torso

as well as joint movement, which could be resolved by

introducing resource constraints. The execution of the RACE

scenario revealed a time benefit of 27.5 % compared to a

sequential execution without significant increase in processor

load. The replanning proposition allows efficient re-execution

of failed plans or failed parts of plans. For the remaining

shortcoming of both the parallelization and the replanning,

resulting from the required handcrafted resource allocation

and cost-success table, the strong research on reasoners

presented in the RACE architecture promise improvement.

In future, the collaboration of the reasoners and the paral-

lelization, as well as the re-planning, will enable the robot to

autonomously find the best suitable parallel execution order

for any given task by learning from experiences gained in

previous experiments. Especially a mass-simulation reasoner

using mixed reality, as presented in [4], will provide most of

the required experience.

ACKNOWLEDGMENT

The authors would like to thank all of the RACE partners

for their valuable suggestions and cooperation.

REFERENCES

[1] J. Bohren and S. Cousins. The SMACH high-level executive [ROS
news]. Robotics Automation Magazine, IEEE, 17(4):18 – 20, dec. 2010.

[2] Luis Castillo, Juan Fdez-Olivares, Óscar Garcı́a-Pérez, and Francisco
Palao. Temporal enhancements of an HTN planner. In Proceedings of

the 11th Spanish association conference on Current Topics in Artificial

Intelligence, CAEPIA’05, pages 429 – 438, Berlin, Heidelberg, 2006.
Springer-Verlag.

[3] Sam Ade Jacobs, Kasra Manavi, Juan Burgos, Jory Denny, Shawna
Thomas, and Nancy M. Amato. A scalable method for parallelizing
sampling-based motion planning algorithms. In Robotics and Automa-

tion (ICRA), 2012 IEEE International Conference on, pages 2529 –
2536, may 2012.

[4] Denis Klimentjew, Sebastian Rockel, and Jianwei Zhang. Active scene
analysis based on multi-sensor fusion and mixed reality on mobile
systems. In Fuchun Sun, Dewen Hu, and Huaping Liu, editors,
Foundations and Practical Applications of Cognitive Systems and

Information Processing, volume 215 of Advances in Intelligent Systems

and Computing, pages 795–809. Springer Berlin Heidelberg, 2014.
[5] A. R. Lingard and E. B. Richards. Planning parallel actions. Artif.

Intell., 99(2):261 – 324, March 1998.
[6] J.Y.S. Luh and C.S. Lin. Scheduling parallel operations in automation

for minimum execution time based on pert. Computers & Industrial

Engineering, 9(2):149 – 164, 1985.
[7] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-

order planning with partially ordered subtasks. In Proceedings of the

17th international joint conference on Artificial intelligence, volume 17,
pages 425–430, Seattle, WA, 2001.

[8] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop:
simple hierarchical ordered planner. In Proceedings of the 16th

international joint conference on Artificial intelligence - Volume 2,
IJCAI’99, pages 968–973, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[9] Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu,
and Fusun Yaman. SHOP2: An HTN planning system. Journal of

Artificial Intelligence Research, 20:379–404, 2003.


