
Exception Handling for Experience-based Mobile Cognitive
Systems in Restaurant Environments Exemplified by Guest

Detection

Liwei Zhang, Sebastian Rockel, Jianwei Zhang
TAMS, Department of Informatics
University of Hamburg, Germany

{lzhang, rockel, zhang}@informatik.uni-hamburg.de

Abstract— Recording and exploiting past experiences to han-
dle an unforeseen situation is an important asset of human
beings. However, in current robot architectures, experience-
based learning has mainly been realized at sub-symbolic levels.
In this paper, we present how to handle exception for an
experience-based artificial cognitive system which is able to
fulfill unforeseen situations in restaurant environments. Guest
detection is employed to demonstrate the exception handling
functionality. Experiments were executed to validate and eval-
uate the effectiveness of this artificial cognitive system.

Index Terms— Experience Learning, Exception Handling,
Cognitive System, Guest Detection.

I. INTRODUCTION

It is well-known that recording and exploiting past ex-
periences is an important asset of human beings. However,
in current robot architectures, experience-based learning has
mainly been realized at sub-symbolic levels. And on the other
hand, if humans face an unforeseen situation, e.g. a blocked
access, they try to recall experiences about such a situation
and apply relevant memory records to handle the current
situation. For example, in a restaurant environment, if the
guest sits on a different side of the table other than specified
in the planning domain, the robot waiter still brings the mug
to the same place as before (which is now in front of an empty
seat). But this situation will not happen when the waiter is
a human being. The human waiter will try to find a solution
to deal with such an exception situation. This solution must
then be adapted to the current situation (which may not be
the same in all respects as the recalled situation).

We are inspired by this situation and try to construct an
experience-based artificial cognitive system which is able to
fulfil unforeseen situations. The artificial cognitive system
has been integrated in the EU project RACE (Robustness by
Autonomous Competence Enhancement). The overall objec-
tive of the project is to enable a robot to obtain increased
robustness by exploiting experiences. We will demonstrate
robot behavior in an experimental restaurant domain. The
robot will carry out tasks of a waiter, bringing food and coffee
to any of several tables, placing dishes properly in front of
guests, cleaning tables, etc.

To achieve this goal, we will integrate state-of-the-art
approaches in an attempt to develop several learning and rule
extraction methods developed in previous work and in the AI
research community. The work in RACE is primarily directed
at developing scientifically founded engineering solutions,
but results may have a considerable impact on future ap-
plications, e.g. in health care, service robotics and industrial
applications.

Work in RACE was integrated from several research
areas: (1) multi-level knowledge representation tools and a
formalisms framework which are based on an ontology; (2)
a software reasoning framework to deal with hybrid and
diverse knowledge; (3) a semantic interpretations framework
for recording complex robot and environment activities; (4)
learning approaches for gathering and exploiting all levels
of recorded experiences. All this is integrated on a PR2 [1]
platform, which is one of the most advanced general-purpose
robot systems available today, and is assumed to possess the
capabilities that more commonly available robots will possess
in the near future.

Several scenarios in the restaurant domain have been set to
validate and evaluate the experience-based artificial cognitive
system. The idea is to let the robot discover a generalization
of the experiences in experience-gathering phase, which
are followed by an experiences-exploitation phase. In the
experiences-exploitation phase, different exceptions will be
designed to test the capability of exception handling. In the
experiments, the guest sits on different side of the table other
than specified in the planning domain, guest detection will be
employed to handle the exception of a “ServeACoffee” task.
In the experiences-gathering phase, the robot fails to place
the mug in the targeted area on the table, i.e. in front of the
guest. But the robot will complete the “ServeACoffee” task
when the robot has the experience of “mug must be placed
in front of the guest”.

The rest of this work will be organized as follows:
section 2 presents related work. In Section 3, we present
the architecture of the mobile cognitive system which is
being developed in ongoing research. Several scenarios are
conducted in section 4 to evaluate and compare the efficiency

of the proposed system and, finally, in section 5, conclusions
and future work are presented.

II. RELATED WORK

A. Exception Handling and Experience Learning

I. J. Cox and N. H. Gehani [2] discussed the construction of
robust and reliable robot systems able to handle errors arising
from abnormal operating conditions. It is assumed that the
robot program is logically correct but fails due to hardware
or external state errors. Frédéric Souchon et. al [3] discussed
how to increase reliability in multi-agent systems (MASs) and
focused on the study of an appropriate exception handling
system (EHS). Chrysanthos Dellarocas and Mark Klein [4]
presented an experimental evaluation of a set of domain-
independent services designed to handle the failure modes
(“exceptions”) that can occur in open multi-agent systems.

There are also some related projects which investigate ex-
periences. The project RoboEarth (http://www.roboearth.org/)
represents experiences using OWL (Web Ontology Lan-
guage). RoboEarth aims for obtaining a sharable represen-
tation of the environment by combining the experiences of
many robots. RACE focuses on using the experiences of a s-
ingle robot to improve its future performance by an integrated
sub-symbolic/symbolic and top-down/bottom-up approach.
Another related project is XPERO (http://www.xpero.org/),
which emphasizes on active robot experimentation to enable
inductive learning.

B. Guest Detection

Human body detection and tracking is a very active area in
computer vision and biometrics community. This topic has
been studied for nearly 30 years and has been applied in
robotics, security and entertainment. In this section, we will
introduces some packages of ROS (Robot Operating System)
[5]. We do not focus on the details of implementations.
But we will pose emphasis on which package can provide
functionality we need as the main goal is to integrate the
state of the art guest detection functionality into our robot
system.

To our knowledge, there are two mainstream detection
approaches used for guest detection: skeleton detection and
face detection. The face detection technique is mature now.
The skeleton detection and tracking technique provides by
RGB-D sensor like Kinect [6] is also popular and stable.
The Kinect for Windows sensor and software development
kit (SDK) provides the limitless possibilities offered by the
Kinect technology. Nevertheless, many functions are only
developed under Windows. The skeleton tracking library
provided by PrimeSense provides a convenient way to extract
and track people from a depth image.

pi face tracker [7] is a ROS package and employs
OpenCV’s Haar face detector together with Good Features to
Track and the Lucas-Kanade Optical Flow tracker to perform

face tracking in a live video stream or recorded video file.
The depth information of the RGB-D sensor (Kinect) can be
used to reduce the number of false positive face detections.
ROS topics like “/roi” and “/target point” published by
pi face tracker provide regions of interest around the tracked
face and PointStamped centroid of the tracked cluster.

ProcRob face recognition [8] package provides a simple
actionlib server and client interface for implement different
face recognition functionalities in video stream. It can also
capture, train and recognize face images by commands with
different parameters.

cob people detection [9] is also a ROS package which
provides head detection, face detection, face recognition and
detection tracking functionalities. The Head Detector node
first detects heads in the depth image of RGB-D data (Kinec-
t). Then the Face Detector node determines the locations of
faces within these head regions. It publishes via a ROS topic
an array of the detected heads and faces, includes bounding
boxes of heads and faces and 3D coordinates. Then the other
packages can subscribe the topic in order to retrieve the
results. In this work, we employ this package to detect and
track guests.

There are also many other approaches used by robot
researchers. Chris Burbridge and Lorenzo Riano [10] used
a Microsoft Kinect camera attached to the end of a 7 DOF
Schunk manipulator to track persons. The points correspond-
ing to the person are extracted from the RGB-D camera’s
point cloud when the robot is moving.

In this work, we mainly focus on how to use guest detec-
tion to handle exceptions. Therefore, we will use the state-
of-the-art guest detection technique and existing packages to
handle exceptions occur in restaurant environment.

III. SYSTEM ARCHITECTURE

In this section, we present the main components of the
modular RACE architecture (Fig. 1).

A core module of the RACE architecture is the Black-
board [11], here all Fluents are stored and updated by other
modules and provided to others. Fluents, as facts or instances
with start and end time, represent various knowledge about
a scene, episodes, experiences, predictions and environment
events.

The different reasoners, e.g., ontological reasoning, tempo-
ral reasoning, spatial reasoning, scene interpretator, receive
knowledge (either hand-coded or learned) from the OWL
ontology (represents a T-box in Description Logics) and post
the results of reasoning back to the blackboard for further
processing.

When a new planning goal is entered by the user or trig-
gered by the guest detection module, the HTN (Hierarchical
task network) Planner [12] queries the Blackboard to build
its initial planning state, then sends the generated plan back
into the Blackboard. The Execution Manager receives the

Conceptualize
r

OWL
Ontology

High-level
Scene

Interpretation

DL Reasoner

Temporal
Reasoner

Spatial
Reasoner

Conceptualizer

HTN Planner

Blackboard

Experience
Extractor/
Annotator

Plan Execution
Manager

Scheduler

ROBOT

Capabilities

Symbolic
Perception

Symbolic
Proprioception

ROS
actions

action
results

new
concepts

expe-
riences

plan
,

goal

initial state,
goal

plan Fluents,
schedule

Fluents

OWL
concepts

OWL
concepts

continuous
data

Fluents

Fluents expe-
riences

User
Interface

instruction
s

Fig. 1. The RACE Architecture

plan and starts dispatching the planned actions to the robot
capabilities of the PR2. During execution, the Execution
Manager monitors executed actions and writes success or
failure information to the Blackboard.

In the RACE project, the PR2 employs ROS to control and
execute the actions. ROS provides many basic capabilities
(e.g., for manipulation and navigation) in the form of ROS
actions. Some failure or exception cases can occur during
the execution. The Execution Manager will be notified of
the permanent failure and will in turn trigger re-planning.
Therefore ROS itself can be seen as an abstract robot control
architecture providing defined interfaces, e.g. via a Publish-
Subscribe mechanism.

To autonomously implement and test developed algorithms
and methods, our simulation infrastructure bases on ROS and
Gazebo [13] is concerned. Gazebo is a 3D multi-robot simu-
lator with a dynamic physics engine. Like Stage, it is capable
of simulating a population of robots, sensors and objects,
but does so in a three-dimensional world. It generates both
realistic sensor feedback and physically plausible interactions
between objects.

A. Guest Detection Pipeline

In RACE, a Guest Detection system is employed to provide
three functionalities. The first is the task initiation of the
“ServeGuest” activity. In RACE, two kinds of input can
trigger the “ServeGuest” task: command input and Guest
Detection input. In the situation of the “ServeGuest” task
triggered by the guest detection, the robot will wait for the
entrance of the guest at the door (point1 as shown in Fig.
2). Once the guest has been detected, the robot starts the
“ServeGuest” task. The second function is to confirm the
position of the guest before placing the mug or dish in front of
the guest. As mentioned before, in a restaurant environment,
if the guest sits on the opposite side of the table (or leave the

sitting area) other than specified in the planning domain, the
robot still brings the mug to the same place as before (which
is now in front of an empty seat). This will not happen if
the robot detects the position of the guest. The third function
is to deal with human obstacles. For example, the robot is
instructed to move mug1 to table1 and finds the path blocked
by an obstacle. If the robot knows the obstacle is a person,
it will wait until the person has freed the path. The latter
two functions are typical cases of exception handling for an
experience-based mobile cognitive system.

IV. SCENARIO SETUP AND EXPERIMENTS

In RACE, we set out to prove that knowledge can enhance
the competence of robots operating in complex environments
such as a restaurant. In this section, several scenarios have
been set to test and evaluate the effectiveness of the system.
Exception handling is achieved by the Execution Manager. In
this work, we focus on the exception handling functionalities
provided by the guest detection package. The evaluation will
test three scenarios, respectively. In each scenario, at least
5 experiments will be executed to obtain the experimental
results. Some indicators like move to mae3 have been
checked with values obtained from all the experiments.

A. Scenario Setup

We first present the scenario setup in the restaurant domain
which will be used for the ServeACoffee demonstration. The
idea is to let the robot discover a generalization of the 3
experiences in scenarios A and B which will subsume the task
in scenario C. As mentioned above, the first phase (scenario A
and B) consists in an experiences-gathering process, followed
by an experiences-exploitation phase (scenario C).

As shown in the Fig. 2 and Fig. 3, the counter lies near
the southwestern corner of the room. At the middle of the
room, there are two square tables. The robot drives from door
position (point 1, close to the door) to the counter(point 2),
looks for the coffee mug and picks it, moves and places it
on the table(point 3).

In the restaurant environment, the robot has to transport
meals and beverages to specified area. Hence we predefine
the PlacingArea. The PlacingArea is the part of the table
where mugs and dishes should be placed. It is a rectangle
area with length of 350 mm and width of 300 mm. Distance
from the edge of the table to the PlacingArea is 50 mm.
The mugs, dishes and spoons can be placed anywhere in
the PlacingArea. The PlacingArea of the counter is slightly
different.

Scenario A: The restaurant floor plan is as shown in Fig. 3,
where the robot knows the position of mug1 on the counter,
the position of table1, the position of guest1 west of table1,
and the regions for manipulation, sitting and placing. The
user successively instructs the robot to move to counter1,
grasp mug1, move to the manipulation region south of table1,

Fig. 2. Simulation Environment

trixi

Fig. 3. Initial floor plan for ServeACoffee scenario A

and place mug1 at the placement region west of table1. The
robot is told that this is a ServeGuest activity.

Scenario B: The same as scenario A, except guest2 is
sitting east of table1 and the robot is instructed to move to
the north of table1 and place mug1 in front of guest2. Again,
the robot is told that this is a ServeGuest activity.

Scenario C: Guest3 is sitting south of table2 and the robot
is simply instructed: Do a ServeGuest to guest3.

To monitor the execution of the robot, some discrepancies
between the observed behavior and the ideal behavior must
be checked. During the execution, four different types of
errors can occur: Conceptual Errors, Perceptual Errors, Nav-
igation and/or Localization Errors, Manipulation Errors. The
Conceptual Error is used to measure the capability learning
and use of knowledge to increase the robot performance.
The latter three types of errors - perceptual, navigation and
manipulation errors - are platform specific.

Conceptual errors arise from discrepancies between the
knowledge used by the robot and the one encoded in the
specification of the ideal behavior. We focus on four type-
s of Conceptual Errors: Temporal inconsistencies, Spatial
inconsistencies, Taxonomical inconsistencies, Compositional

inconsistencies [14], [15].
Let V 0 be the nominal (ideal) condition of the scenario

(just like scenario A described). In V 1 (just like scenario
B and C described), the guest sits on the opposite side
of the table (or leaves from the sitting area) other than
specified in the planning domain. The robot still brings the
mug to the same place as before (which is now in front of
an empty seat). Then a perception error occurs. It means
#spatial inconsistencies = 1 according to the evaluation
metrics [14], [15]. We can measure and evaluate the execution
of the robot. The evaluation results can be found in [14], [15].

B. Experimental Results
The robot must also capture other happenings in its envi-

ronment apart from plan-based activities, like guest activities
and position changes of the objects in the environment. In
the scenario A, the robot executes the “ServeACoffee” task
according to the instructions given by a human. In scenario
B, the situation is different. The guest sits on east side of
the table1 other than specified in the planning domain in
scenario A. According to the original plan given by the
HTN planner, the robot still brings the mug to the same
place (west of the table) as before. This exception will
be detected by the Exception Manager. The next time the
Exception Manager will ask the planer to change the plan.
The guest detection will be triggered before the robot tries
to place the mug on the table. If the guest detection package
detect the position of the guest’s face, it will first transform
this frame (/kinect rgb optical frame) to the robot
frame (/base link) or the world frame (/map), then add
the position of the guest to the blackboard (a Fluent is added
to the blackboard). If no guest is detected, an exception will
be sent to the Exception Manager.

Fig. 4. Real environment for ServeACoffee scenario

The execution has been tested on the three scenarios,
respectively. In each scenario, 5 experiments have been

Fig. 5. Simulation environment: mug1 has been placed in pawr1

Fig. 6. Real environment: mug1 has been placed in pawr1

executed to obtain the experimental results. To collect spatial
inconsistencies, the status of the robot and environment
should be checked. In Tab. I, some items are listed with
respect to scenario A. In scenario B and C, the corresponding
item of place mug1 in pawr1 will be Failure if the
robot execute the task according the original planning. The

reason of Failure is that the guest moves to a position at
the table other than the one specified at the beginning. But
the robot would bring the mug to the old position.

The performance of the “ServeACoffee” task is good
since all the tasks have been successfully finished. The real
environment for “ServeACoffee” scenario is shown in Fig. 4.
Fig. 5 and Fig. 6 show that mug1 has been placed in pawr1
in the simulation and real environment, respectively. The face
detection results are also shown in the following figures. Fig.
7 shows the result of the guest entrance detection situation,
where the detected face is indicated in light green rectangle
and the detected head is framed with a light blue rectangle.
The name of the guest was also marked at the left corner
of the rectangle. The pose of the detected guest face is also
marked with a red arrow in the top of Fig. 7, where 3D points
cloud and RGB-D results are shown.

Fig. 8 shows the guest detection results when the path has
been blocked by a person. After a short while, the person
frees the path and the robot completes its task. Fig. 9 shows
the results of guest position confirmation before the robot
tries to place the mug in front of the guest situation.

All this results show that the robot can successfully exe-
cute the “ServeACoffee” task and handle several exception
situations employing the guest detection system.

Scenario A A: ex 1 A: ex 2 A: ex 3 A: ex 4 A: ex 5

move to mae3 Success Success Success Success Success

detect mug1 on pae3 Success Success Success Success Success

grasp mug1 from pae3 Success Success Success Success Success

move to mas1 Success Success Success Success Success

place mug1 in pawr1 Success Success Success Success Success

TABLE I
SPATIAL INCONSISTENCIES METRICS OF SCENARIO A

V. CONCLUSIONS

In this paper, a Guest Detection subsystem is employed
on an experience-based mobile cognitive system to han-
dle exceptions occurring in restaurant environment. The
“ServeACoffee” scenario was setup to validate and evaluate
the effectiveness of the proposed approach. The experimental
results show that Guest Detection succeeded with initiating
the “ServeACoffee” activity and handling the exception of the
guest sitting in a non-specific area and detecting the person
who blocks the path. In the future, more dynamic factors
and scenarios will be designed to evaluate exception handling
capabilities of the experience-based mobile cognitive system
in restaurant environment.

Fig. 7. Guest entrance detection

Fig. 8. Path blocked by a person

ACKNOWLEDGMENT

This work has been conducted as part of RACE, funded
under the European Community’s Seventh Framework Pro-
gramme FP7-ICT-2011-7 under grant agreement no. 287752
(http://www.project-race.eu).

REFERENCES

[1] Willow Garage. Personal robot 2. http://www.willowgarage.
com/pages/pr2/overview.

[2] I. J. Cox and N. H. Gehani. Exception handling in robotics. Computer,
22(3):43–49, March 1989.

Fig. 9. Guest position confirmation

[3] Frédéric Souchon, Christophe Dony, Christelle Urtado, and Sylvain
Vauttier. Improving exception handling in multi-agent systems. In
Software Engineering for Multi-Agent Systems II, volume 2940, pages
167–188, 2004.

[4] Chrysanthos Dellarocas and Mark Klein. An experimental evaluation
of domain-independent fault handling services in open multi-agent
systems. In Fourth International Conference on MultiAgent Systems,
pages 95–102, 2000.

[5] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, and Tully
Foote. Ros: an open-source robot operating system. Technical report,
Stanford University, 2009.

[6] Kinect for xbox 360. http://www.xbox.com/en-US/kinect.
[7] Patrick Goebel. pi face tracker. http://www.ros.org/wiki/

pi_face_tracker.
[8] Pouyan Ziafati. Procrob face recognition. http://www.ros.org/

wiki/face_recognition.
[9] Richard Bormann. cob people detection. http://ros.org/

wiki/cob_people_detection.
[10] Chris Burbridge and Lorenzo Riano. Person tracking and reconstruc-

tion from a mobile base with a 7 dof manipulator. git://github.
com/cburbridge/uuisrc-ros-pkg.git.

[11] Sebastian Rockel, Bernd Neuman, Jianwei Zhang, Krishna S. R,
Dubba, Anthony G. Cohn, S̆tefan Konec̆ný, Masoumeh Mansouri,
Federico Pecora, Alessandro Saffiotti, Martin Günther, Sebastian Stock,
Joachim Hertzberg, Ana Maria Tomé, Armando J. Pinho, Luı́s Seabra
Lopes, Stephanie von Riegen, and Lothar Hotz. An ontology-based
multi-level robot architecture for learning from experiences. In Design-
ing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium,
Stanford (USA), March 2013.

[12] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Morgan Kaufmann, 2004.

[13] Gazebo. http://gazebosim.org/.
[14] Liwei Zhang, Sebastian Rockel, Federico Pecora, Luis Seabra Lopes,

Alessandro Saffiotti, and Bernd Neumann. Deliverable d5.1 - e-
valuation infrastructure. Technical report, European Commission -
Information and Communication Technologies - Seventh Framework
Programme, November 2012.

[15] Liwei Zhang and Sebastian Rockel. Deliverable d5.2 - year-1
demonstrator. Technical report, European Commission - Information
and Communication Technologies - Seventh Framework Programme,
January 2013.

