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Abstract— In this paper, an experience based mobile artificial
cognitive system architecture is briefly described and adopted
by a PR2 service robot for the purpose of carrying out tasks
within the EU-FP7 funded project RACE. To measure the
benefit of learning from experience to improve the robustness
of the robot’s behavior, an FIM (Fitness to Ideal Model) and
a DLen (Description Length) based evaluation approach has
been developed.

I. INTRODUCTION

The main goal of RACE is to develop a framework and
methods for learning from experiences in order to facilitate
an cognitive intelligent system. To achieve this goal, expe-
riences are recorded as semantic spatio-temporal structures
connecting high-level representations, including tasks and
behaviors, via their constituents at lower levels down to the
sensory and actuator level. In this way, experiences provide a
detailed account of how the robot has achieved past goals or
how it has failed, and what sensory events have accompanied
the activities.

To measure success for a given task in a given scenario,
we use an approach inspired by model-based validation
techniques [1]; namely, we measure the compliance of the
actual robot’s behavior to the intended ideal behavior for
that task in that scenario. Fig. 1 graphically illustrates this
principle: the trace of a given execution of the RACE system
is compared against a specification of what the ideal behavior
should be, resulting in a “Fitness to Ideal Model” (FIM)
measure.

Specification of

ideal behavior

Environment

RACE 

System

trace

execution

compare

Fitness to Ideal Model

Fig. 1. Principle of evaluation in RACE: the system’s behavior is compared
to a model of the ideal behavior for the specific scenario.
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Discrepancies between the observed behavior and the ideal
behavior can originate from errors of four different types:
conceptual, perceptual, navigation and/or localization and
manipulation errors. Conceptual errors arise from discrep-
ancies between the knowledge used by the robot and the one
encoded in the specification of the ideal behavior. We call
these discrepancies inconsistencies. Specifically, inconsisten-
cies can be of four types: temporal, spatial, taxonomical
and compositional inconsistencies. Together, the four above
define the FIM metric:

FIM =
∑

i∈{t,s,x,c}

pi (1)

In addition to estimating the effectiveness of learned knowl-
edge by counting the number of inconsistencies, we are
also interested in measuring the Description Length
(DLen [2]) of the instructions that should be given to the
robot to achieve a goal. Successful behavior following shorter
instruction descriptions is indicative for the effectiveness of
the learned knowledge.

II. SCENARIO SET-UP AND EXPERIMENTS

In this work, two demonstrations named “ServeACoffee”
and “ClearTable” have been defined and performed on the
physical PR2 platform in a restaurant environment. The
results are presented and evaluated with respect to the metrics
defined and described in [3], [4].

A. ServeACoffee Demonstration

Scenario A: The robot knows the approximate area (pae)
of mug1 on counter1, the position of table1, the approx. area
of guest1 west of table1, and the areas for manipulation,
sitting and placing. The user successively instructs the robot
to move to counter1, grasp mug1, move to the manipulation
area (mas1) south of table1, and place mug1 at the placing
area (pawr1) west of table1. The robot is told that this is a
“ServeGuest” activity.

Scenario B: The same as Scenario A, except a new guest
(guest2) is sitting east of table1 and the robot is instructed
to move to the north of table1 and place mug1 at the east of
table1. Again, the robot is told that this is a “ServeGuest”
activity.

Scenario C: Guest3 is sitting south of table2 and the robot
is simply instructed: Do a “ServeGuest” to guest3.



B. Experimental Results

Let V 0 be the nominal (ideal) condition of the demon-
strator (as described in the scenario A schedule). In V 1
(as described in scenarios B and C), the guest sits on the
opposite side of the table (or leaves the sitting area), other
than specified in the planning domain. The robot again places
the mug in the same area as before (which is now in front
of an empty seat). This is classified as perception error and
compositional inconsistency.

Here we set weight τ(·) = 1. The initial value of the four
types of inconsistency is assigned to be 0. This results in:

FIM(V 0) = 0

FIM(V 1) = #spatial inconsistencies (2)
+ #compositional inconsistencies = 2

Fig. 2 and 3 show the statistical results of the different
kinds of errors occurring in the three scenarios. The errors
are judged by a human judge during the experiments.
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Fig. 2. RCE (Robot Capability Errors) in the ServeACoffee scenario
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Fig. 3. Conceptual errors (left) and the Description Length of the
instructions in ServeACoffee (right)

To measure the Description Length (DLen) of the instruc-
tions given to the robot, step by step instructions are provided
to the robot. In scenarios A and B, a set of instructions were
provided. In the following instruction list of Scenario A, each
achieve command specifies a sub-task to be carried out
by the robot and represents an instruction. The last teach
command is the instruction to teach a new concept.

1) achieve drive robot Task preManipulationAreaEastCounter1
2) achieve grasp object w arm Task mug1 rightArm1
3) achieve drive robot Task preManipulationAreaSouthTable1
4) achieve put object Task mug1 placingAreaWestRightTable1
5) teach task ServeACoffee guest1

In scenario B, similar instructions were provided by the
user. In Scenario C, only a single achieve instruction
is provided as follows. Now the robot can execute the
“ServeACoffee” task with a shorter instruction set:

1) achieve serve coffee to guest Task guest3

Fig. 4 illustrates the relationship between FIM and DLen.
The experimental (restaurant) environment is shown in
Fig. 5. The scenarios might be executed in the physical or
the simulated environment, as indicated by the figures.

III. CONCLUSIONS

The proposed artificial cognitive system has been eval-
uated with the defined metrics and the results presented.
The data obtained indicates an improvement in the robot’s
knowledge and behavior. Thus the newly introduced met-
rics are appropriate to evaluate such a system. The initial
assumption of an FIM and DLen co-relation is supported by
the evaluation results.
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Fig. 4. The relationship between FIM and DLen

Fig. 5. The restaurant environment in a typical start condition: the robot
waits for a guest and to be instructed
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