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1. INTRODUCTION

The presented work introduces a new air flow analysis ap-
proach based on Particle Tracking Velocimetry (PTV). One
of the special features of the proposed method is that after
the tracer particles are detected, matching and tracing are
jointly conducted. To this end, we introduce an interpreta-
tion module based on a directed hypergraph for 3D curve
reconstruction. At first the 2D inter-frame locations are lo-
calised and used for the extraction and calculation of 3D
keypoints. Through 3D keypoints which are evaluated by
the hypergraph together with the time information in several
steps, reverse curve matching for path selection can be re-
constructed and the resulting trajectories visualised.
In contrast to the preceding works our approach tries to
describe the measuring data by 3D trajectories directly in-
stead of estimating first 2D trajectories and then matching
afterwards. A higher precision can be achieved also with
complicated trajectories. A certain independence of the re-
flections and lighting conditions is reached by the interpre-
tation. Moreover, the path of particles can also be recon-
structed with the minimum number of 3D keypoints under
consideration of the path energy minimization.

2. THEORETICAL DESCRIPTION OF THE
ORIGINATING METHOD

The PTV system we developed is based on two synchro-
nised cameras with long exposure time.

Figure 1: Cross section of a full scale aircraft cabin mock-
up, as used in our experiments

For the background removal an image I can be seen as the
sum of several components:

Fi,f (
−→x ) = α·BGi,f (−→x ) +Ni,f (

−→x ) + Ti,f (
−→x ) (1)

where F denotes the image, Ti the foreground region con-
taining the traces, BGi the background, and Ni the camera
noise at frame number i. In a static scene, BGi is affected
only by changes in illumination (and reflections). The main
of BGi’s intensity can be removed by calculating a median
image over several frames. This template is then subtracted
from each input image. If an effort was made to keep illumi-
nation constant, the remaining BGi intensity is low enough
to not affect further segmentation steps significantly, so that
we can assume Fi = Ti +Ni, which simplifies the following
segmentation steps.
If F is viewed as feature space, the MeanShift algorithm
can be used for segmentation. It operates by following the
density gradient with a kernel in the feature space until a
maximum has been reached. Pixels sharing the same gra-
dient maximum are assigned the value of that maximum. All
other pixels are assigned the density estimate of the kernel
centered at their position. If the kernel is chosen to be suit-
ably large, and the noise is uniform and white distributed,
the method is noise resistant.
Although by no means perfect, the MeanShift based seg-
mentation showed the best performance of all the tested
methods, due to its suitability to varying classes of input
images.

2.1 Keypoints
We introduce inter-frame locations of particles as a choice
of 2D keypoints, which can be detected on each view indi-
vidually; the 2D keypoints introduced above are then com-
bined to 3D keypoints, all while respecting the epipolar con-
straint.
There is more to the choice of such 2D keypoints as essen-
tial significant feature:

• they are very robust against the choice of exposure time,
because the aspect, except for inevitable overlaps, de-
pends only on first order of arclength of the original tra-
jectory, and not on curvature or other aspects of its shape
• no matter how long the duration of the integration of intra-

frame information, these keypoints are always equally
well localized

Figure 2: Example of correctly detected inter-frame loca-
tions, superposed onto a color-coded two-frame difference
image

For the software prototype, the choice fell on Harris’
and Stephens’ combined edge and corner detector over
other possibilities because of excellent localization and
high specificity (empirical, synthetic and actual image se-
ries), and especially for its avoidance of multiple detections
(which would be toxic for the accuracy of measurements).

2.2 Interpretation
In the following, we always assume that all interframe loca-
tions which are detectable with sufficient confidence have
been detected. While it might be possible to achieve good
results by suitably tracing out the trajectories from image in-
formation, we think it preferable not to proceed in this direct
way but instead to generate hypotheses and filter them ac-
cording to how well they explain the frame content. This cir-
cumvents most problems local path-following methods have
with ambiguous situations, especially in the presence of oc-
clusion.
The advantages to indirect analysis via hypotheses are
manifest:
• thanks to a global, top-down, view, results are much less

likely to be influenced by local fluctuations, noise and dif-
ficult situations (i.e. crossings of traces) than local ap-
proaches
• there are enhanced opportunities for a true probabilistic

interpretation of the image series, as explained below
• one can unambiguously fit simple curves to just a few

keypoints, which nevertheless remain accurate to high
order if desired (B-splines lend themselves to it)

The third point above can be understood as an instance
of Occam’s Razor; moreover, it renders optimization over
curve spaces completely unnecessary.

Figure 3: Directed graph of continuations

All possible immediate continuations form an acyclic, di-
rected graph (fig. 3). We extend it to a directed hyper-
graph by considering all paths up to an arbitrary number of
frames f . f can be small, of the order of about 5 frames,
and longer range dependencies are disregarded, because
the particle motion can be described locally. By cutting hy-
peredges (e.g. bottom-up, by removing edges first and en-
forcing transitivity under these constraints), one can par-
tition the hypergraph of continuations into non-branching
segments. These partitions are possible explanations, or
interpretations, of the image evidence g and should be as-
signed a probability.

p(β|g) = p(g|β)p(β)
p(g)

(2)

An application of the Bayes theorem: in eq. 2, β represents
the curve parameters and g the image evidence. The prior
distribution p(β) can be picked on physical grounds; for ex-
ample, one should favor interpretations which do not require
excessive kinetic energy to realize. p(β|g) would be read
as the probability of a single trajectory being supported by
the image evidence; the probability of the whole hypergraph
partitioning depends on the individual trajectories’ probabil-
ities, which are independent except for the interdiction of
crossings and for the handling of subchains.
Each path candidate (chain) from the hypergraph is con-
verted to a smooth trajectory candidate by means of B-
splines

3. EXPERIMENTAL RESULTS

The implemented prototype comprises temporal informa-
tion and the reconstructed 3D particle trajectories. In spite
of the foundations the temporal information can be de-
termined through the synchronized cameras and particle
traces (blurred lines). To computate the velocity of single
particles we use two different algorithms, the above men-
tioned physical properties or the first derivative of the re-
sulting curvature.
To assist the developers of air conditioning systems we use
different means for the vizualization of the velocity of the
particles. For the visualization of single particles the direct
numerical indicator can be used. For a large number of
particles, the color-coded visualization of the velocities is
advantageous. Fig. 4 shows the color and hue coded tra-
jectories of the particles, the slowest particles are green,
the fastest are red (color and hue coded).

Figure 4: Color and hue coded velocities of reconstructed
3D trajectories. The slowest particles are green, the fastest
are red

Exact evaluation of fluid experiments needs ground truth,
which is not always easily obtainable: however, for valida-
tion, one can resort to synthetic images, employing ray trac-
ing in order to use the observational model as a generative
model. Experimental results are encouraging: the detec-
tion process, when run on a synthetic image series showing
a portion of a circular motion, reports after hyperedge se-
lection only two candidates for motion, one corresponding
closely to the true motion (with very low average deviation
from it of about 1%).

4. CONCLUSION

This work demonstrated that depth reconstruction of sparse
flow information is practical using a stereo camera setup.
Furthermore, tracking of individual particles can be done
by generating a graph of possible paths and matching gen-
erated curves. After the summary of the results also known
problems of the developed method are shown briefly. The
selecting a suitable background mask to limit the number of
candidate points and prevent the problem from becoming
unmanageable from state explosion (super linear growth of
possible choices).
As a summary, the direct description of the measuring data
by 3D trajectories instead of estimating first the 2D trajecto-
ries and this matching afterwards offer oneself as advan-
tageous. A higher precision can be achieved also with
complicated trajectories. The presented system is capable
of making essentially one-dimensional measurements of a
fully 3 + 1 - dimensional spatio-temporal phenomenon.


