

Conclusion	ns		
Type Capability	Sky Cleaner 1	Sky Cleaner 2	Sky Cleaner 3
Target character	Glass wall 0°-45°	Glass wall 0°-90°	Glass wall 0°-90°(with < 2° angle)
Efficiency(m ² /8 hours)	37.5	75	100-125
Cross obstacles (mm ²):	Window frame:	Window frame:30×60;	Window frame:10×60;
Height×Width	30×60	Seal: -1×20	Seal:-1×20
Weight (kg)	25	25	45
Body Mass(mm ³): Length×Width×Height	935×900×320	1220×1340×370	1136x736x377
Supporting unit	Supporting vehicle	Supporting vehicle and following unit	Supporting vehicle and following unit
Water supply(L/hour)	50(reused)	50(reused)	50(reused)
Operators	1	1-2	1-2

T <mark>urente de la constanta de la</mark>	Dept. Informatics, Faculty of Multimodal System Dept. Informatics, Faculty of Mathematics, Informatics and Natural Sciences University of Hamburg						
	ference ph	cum		control a	150111	miiis	
• for	Sky Cleaner 2						
	X cylinder			Y cylinder			
No.	Desired position (mm)	errors (mm)	e _{max}	Desired position (mm)	errors (mm)	lel _{max}	
1	30.0	1.09		30.0	1.60		-
2	30.0	1.129		30.0	1.51	1	
3	30.0	0.76	1.36	30.0	0.62	1.60	
4	30.0	1.36		30.0	1.28		
5	30.0	0.05		30.0	0.08		
			1	1	1	1	
	Ph.D. ZHANG, Houxiang Institute TAMS Technical As	pects of Multim	odal System	hzhang@informatik.uni-l s http://tams-www.informa	hamburg.de tik.uni-hamburg.de	e/hzhang	73

	University of Hamburg		
Results of	position servo test	for X cylinder	
Testing condition	Air source pressure $P_0 = 6$ Mpa; Distance: $e_{max} = 148$ mm; $C = 5$, $\varepsilon_{max} = 0.5$, $z = 300$ N, $m = 32$ Kg		
	Average value	146.85mm	
	Average steady time	1.86s	
Step function	Variance analysis	1.36mm	
	Repeating precision	±4.08mm	
	Max overshoot	2.5mm	
	Average value	147.24mm	
	Average steady time	1.12s	
Linear function	Variance analysis	0.53mm	
	Repeating precision	±1.59mm	
	Max overshoot	2.1mm	
	Average value	148.14mm	
	Average steady time	1.64s	
Arc-tangent function	Variance analysis	0.32mm	
	Repeating precision ±0.96mm	±0.96mm	
	Max overshoot	1.4mm	

Institute TAMS Technical Aspects of Multimodal Systems http://tams-www.informatik.uni-hamburg.de/hzhang

• Connecting

- The driving servo is screwed to a pair of ears on Module 1; while the rotating plate of the servo is screwed to another pair of ears on Module 2 which is rotated by 90 degrees.
- The connection between the two modules is completed by attaching the rotating plate to the servo again. In this way, the caterpillar is alternately assembled around the horizontal axis and vertical axis.

100

Ph.D. ZHANG, Houxiang hzhang@informatik.uni-hamburg.de Institute TAMS Technical Aspects of Multimodal Systems http://tams-www.informatik.uni-hamburg.de/hzhang

Technical Aspects of Multimodal System Dept. Informatics, Faculty of Mathematics, Informatics and Natural Sciences University of Hamburg					
Locon	notion co	ontrol (cont')		X	
				X	
Gate types	Parameters for sinu	soidal generators	3.77 .	¥И	
Linear movement Turning	$A_{Vi} 0; A_{Hi} = O_{Vi} = 0$	$ \Delta \ \phi_{V} = 100-120, \ O_{Hi} \ 0 $ $ \Delta \ \phi_{V} = 100-120, \ O_{Hi} = 0 $		W/	
Rolling movement Lateral	$\begin{array}{c} A_{Hi}, A_{Vi} \ 0; \\ O_{Hi} = O_{Vi} = 0 \end{array}$	$ \Delta \ \Phi_{V} = \Delta \ \Phi_{H} = 0, $ $ \Delta \ \Phi_{VH} = 90 $ $ \Delta \ \Phi_{V} = \Delta \ \Phi_{H} = 100, $	D. Land Assessed	XA	
movement Rotation movement		$ \begin{array}{c} \Delta \ \ \phi_{VH} = 0 \\ \hline \Delta \ \ \phi_{V} = 120, \qquad \Delta \ \ \phi_{H} = 0, \\ \Delta \ \ \phi_{VH} = 50 \end{array} $	tr M	W	
				W	
Ph.D. ZH/	ANG, Houxiang AMS Technical Aspects of	hzhang@informatik Multimodal Systems http://tams-www.info	uni-hamburg.de ormatik.uni-hamburg.de/hzhang	107	

