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Abstract. The process of different human manipulating a specific ob-
ject in hand obeys very similar operating steps. The hand movement
can be modeled and generalized into action gist to guide other human
or robots to execute the specific in-hand manipulation task. This paper
suggests a kind of action gist similar to the way humans learn to repre-
sent the five finger hand motions in in-hand manipulation. Our method
is based on Gaussian Markov Random Field that processes data-glove
values to obtain the action gist. Several experiments are carried out to
discuss the performance of the proposed methods.

1 Introduction

The word gist means the essential part of an idea or experience. Different from
hand gesture, the in-hand manipulation action gist is a concept with kinetic
property. It represents the key hand motions in any given manipulation task
and widely adapts to different hands. The manipulation process is generalized as
several compact meta motions. On the one hand, this makes it easy to remember,
on the other hand it can be translated from one entity to another, just as the
knowledge passing from the teacher to the student.

As we know, in the mechanism of the human hand, the motions and forces
are governed by the neuromuscluar apparatus, refer to [15]. The movement of
the hand is continuous, but according to human cognition, it can be classified as
infinite types of motions in the brain. For example, as the muscles tightening up
and relaxing, or the fingers closing and opening. Then in the specific application,
the possible solution sequence is recalled and executed. The object in question
is touched and released by the hand components over time. When the touching
motion is executed, an interacting force is generated between the object and the
hand, and the neuromuscluar system keeps the hand in a proper force applying
state that does not damage the hand itself but still holds the object firmly.

In our lab we have a five-finger air muscle hand from the Shadow Robot
Company 1, it is very similar to the human hand and better protected against
damage even when overforce is applied. With a humanoid hand, a robot can
implement much more human-like object manipulation than before. Because of

1 http://www.shadowrobot.com/
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the high degree-of-freedom, a multi-finger robot hand can perform more dexter-
ous skills rather than grasping, holding or translating the object from one place
to another. It can rotate, or shift objects and perform other advanced in-hand
movements. These manipulation skills depend on the cooperation of five fingers
and the palm, and in the process of in-hand manipulation, the roles are hand and
object. The hand plays the role of control, and changing the object state is the
aim of the manipulation. Therefore here the manipulation process is considered
as a State-Action Model [8][4][6], meaning that the whole process is divided into
states which are changed through actions. The action is equal to hand move-
ment, and the state is supposed to be the criterion of how the process proceeds.
Hand movement can be considered as a continuous hand joint angle variation,
with countless angle combinations between each joint pair. The movement leads
the manipulation process from one state to another state until the final target
of the application is achieved.

The method can be applied in both human analysis and the control of robots
with humanoid hands. However, it is unrealistic to map the motion exactly as
from the demonstrator because of the different hand sizes. It can be imagined
different-sized hands can interact with the object from different distances, ob-
viously it can result in different gaps with a same pose. Actually in developing
their hand skills, humans have the ability to learn from others and to practice by
themselves. Nobody can memorize the detailed joint angles of their hands, but
they can remember the key motions which are related to the moving tendency
of each finger; this is defined as in-hand manipulation action gist.

This paper proposes a cognitively feasible in-hand manipulation action gist
definition for a robot with an extremely life-like humanoid hand, to enable it to
learn in-hand manipulation with a small amount of key information. The action
gist is expected to be universal for all in-hand movements regardless of whether
it is simple (grasping) or complex (finger-gaiting). The structure of this paper is
organized into several sections. After the following related work, the definition
of meta motion is given, which is an element of the in-hand manipulation action
gist. Then the modeling process is introduced, and experiments are carried out
to discuss the performance of the algorithms. The final part is the conclusion
and future work.

2 Related Work

There are multiple ways to generate a manipulation model.
One kind of model is to plan the motion in continuous space including the

position and the speed of each relative component. The major stream is the
dynamic movement primitive (DMP) framework introduced by [3] and [12], in
which the movement is recorded and represented with a set of differential equa-
tions. The position and the speed is controlled in terms of the immediate position
and speed feedback. [9] expanded the model into a manipulation control appli-
cation so that the hand can grasp and place the object in the destined area.
To include obstacle avoidance in this job, an extra item is added in the system
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equation, which causes the form of the framework to change with the task. Dif-
ferent from the separate models to deal with multiple tasks, [1] applied Locally
Weighted Regression to generate the movement, and the manipulating process
is divided into several steps by the perceptual input. Rather than generalizing
a trajectory in Cartesian or joint angle space, [2] considered the joint velocity
space and enables the robot to accomplish similar tasks. As a result, this method
can produce smoother trajectories than others.

The above frameworks consist of models depending on precise perception
of spatial manipulator trajectories. However, for muscle control, it tracks the
trajectory related to the moving tendency, not the position. Therefore, DMP
does not offer any significant advantages to the target of this paper.

Another branch but a relatively older one is the generalized motor program
(GMP), see [14] and [13]; here the overall process is guided by invariant fea-
tures. [7] extended this model with the symbolic motion structure representation
(SMSR) algorithm. The body movement is tracked and segmented according to
the joint angles, and then the values are used to plan a novel similar application.
However, the SMSR only extracts the body motion into simple joint angle vari-
ations such as increasing, decreasing and stationary. Therefore, it would have
difficulties when dealing with the multiple links cooperation application because
it does not consider this kind of application so much. Different from simply
defining the motion, it is possible to have a related higher semantic model. [10]
applied Fuzzy-Logic Control to execute the motion sequence, and this idea was
examined in a 2D five-segment body model by simulation. The above methods
suppose that the motion sequence to an application is fixed, but actually humans
can have many ways of completing a specific application. What we need are the
most effective or common methods of the teacher.

[5] indicated that humans learn motion by way of muscle control, not the
position perception, therefore to know the posture variation (joint angle) is more
important than the absolute posture. Thus the motion tendency oriented model
is more feasible than DMP.

Once the model is decided on, the next problem is how to sense the movement.
Many studies concentrate on sensing from the robot, for example, [9], [1], or [2].
However, for fingers, it is not convenient to directly move the robotic fingers
to find the result. Another channel is vision, the components are tracked to
complete the motion behavior model. For example, [11] employed color pattern
on the demonstrator to track the human motion. It is promising to use vision
to analyze hand motion, but the visual processing itself is a challenging topic
which increases the difficulty of model generation.

A quick way to know the finger movement is using a data-glove, it can sense
every finger joint relation in each data frame. Based on this kind of sensing
channel, our study intends to generate an action gist model to represent human
in-hand manipulation behavior.
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3 Meta Motion Definition

To establish a set of hand motions which presents the hand posture transforma-
tion in in-hand manipulation, we intend to construct the model as follows.

1. It covers all possible movements of a hand
2. Each motion in the set is unambiguous from other motions
3. The motion involves the relative joint angle variation but no absolute posi-

tion information

An exception to the above is the idle pose. When the motion remains static
for a while, we have to decide whether it is “move, stop and move again”, or
consider it as moving continuously. Our strategy is to analyze the movement
without static motions first, and in the second loop to find the static section
following certain rules.

Supposed that the hand has the form of five fingers and one palm, the palm
stays still, then the movement is equal to the cooperation of the five fingers. The
basic movement of each finger can be classified as open or close, and in terms
of the moving direction at the proximal phalange end related to the palm, every
finger has the same motion definition. Specifically, the coordinate origin of the
thumb is different from the other four fingers because of its diverse position on
the palm.

Fig. 1. Meta motion definition. Five fingers move related to the palm, so we describe
their moving directions in coordinates. The thumb in the red coordinate is different
from the other four fingers due to its special location in the hand. In each finger, two
flex/ext-joints are modeled as one parameter as open or close, and the abduction angle
cooperates with the metacarpal-proximal angle to form a 2D projected direction (blue
arc indicates the directional range in the quadrant). The idle motion is specifically set
apart and labeled as 9

Shown in Fig.1, we project the finger motion into 2-dimensional space because
the finger ends are fixed on the palm. In the X-Y plane, the finger direction is
classified as 4 directions as the 4 quadrants in the Cartesian coordinate; plus with
the open, close and the idle period, each finger has 9 types of meta motions. To
ensure the motion model a uniform form, the X axis and the Y axis in the moving
direction related to the coordinate origin is either parallel or vertical to the palm
plane.
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4 Action Gist from Data-glove

Here the action gist is defined as the key meta motions between two adjacent
states. Guided by the action gist, the object is manipulated from the begin state
to the end state.

The data-glove is a direct way to perceive the hand movement, as the data
is measured by the joint angle value. Therefore, the values from the data-glove
become the source for analyzing the hand movement in in-hand manipulation
applications.

Corresponding to the degree of freedom, each finger has several joint val-
ues from the data-glove. However, according to the general law, the distal-
intermediate and proximal-intermediate angles increase in close movement, de-
crease in open movement, and the varieties of metacarpal-proximal and abduc-
tional angles indicate the moving direction in the X-Y plane of the finger.

Different from the ideal environment, the acquired data-glove value can not
be directly applied in the analysis. One reason for this is for the sensor noise,
another one is the issue from the human operator, e.g. a hand tremor in slight
operation, a short but unnecessary movement during manipulation, or at the mo-
ment the finger starts to touch the object, the value may be abnormal. Therefore
a Gaussian Markov Random Field based algorithm is proposed to extract the
action gist of each finger, it can effectively decrease the negative impact from the
mentioned issues and provide a concise meta motion sequence. This algorithm
considers each value frame from the data-glove as a node, every node can influ-
ence the other nodes on which meta motion they belong to, the nearer nodes
have the stronger impacts, the criteria are based on the single meta motion sim-
ilarity and the node distance, the node relationship according to the assumption
is illustrated in Fig.2.

Fig. 2. Node relationship according to Gaussian MRF. Supposing each data-glove value
is a node, then each node is related to other nodes in the neighboring set Neigh(·). With
the impact factor obeying Gaussian distribution, the linewidth indicating the strength
of the impact factor, we can see that the nodes sitting closer have stronger influence

The single meta motion similarity of each node can be presented as:

Iji =

{∑
k∈Fg

∣∣vki ∣∣+ ε , Cjk∈Fg
(vki ) = 1

0 , else
(1)
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Here Iji is the intensity of node i that is similar to meta motion j, vki is the
k-th glove value difference (current value minus previous value) in node i. The
k-th value from the data-glove sensor should belong to one finger Fg, ε > 0
promises the value of intensity is always above 0. This value is not critical but
should be a low value, we suggest to fix ε = 0.05 as experience.

Additionally, C(v) is the conditions that the finger joint angle difference stay
in the range of the corresponding meta motion j. Assuming that there are always
four values v1, v2, v3, v4 ∈ v standing for the joint angle variation in five fingers,
they are mapped correctly with vki . Commonly, v1 is for distal-intermediate, v2 is
for proximal-intermediate, v3 indicates abduction and v4 is for the metacarpal-
proximal angle difference. Specifically, for the thumb values in the data-glove,
in order to have a uniform expression, the rotation angle is considered as v3.
Besides, the abduction value v4 should be adjusted as an identical increasing
direction according to the meta motion definition, then the conditions C(v) are
listed in the right table of Fig.3. v1 has a less important effect here because when
the object is manipulated, it is easy for the finger tips touching the object are
easily to create a contra direction with v2, but v2 is related stably. Whether the
finger is open or close mainly depends on the movement between the proximal
and intermediate joints. In the table, “×” means v1 can be any value in this
condition.

meta motion v1 v2 v3 v4

1
×
< 0

< 0
= 0

> 0 > 0

2
×
< 0

< 0
= 0

6 0 > 0

3
×
< 0

< 0
= 0

6 0 6 0

4
×
< 0

< 0
= 0

> 0 6 0

5
×
> 0

> 0
= 0

> 0 > 0

6
×
> 0

> 0
= 0

6 0 > 0

7
×
> 0

> 0
= 0

6 0 6 0

8
×
> 0

> 0
= 0

> 0 6 0

Fig. 3. An example of the finger joint angle difference in the first finger. v1 is for
distal-intermediate, v2 is for proximal-intermediate, v3 indicates abduction between
first finger and middle finger, v4 is for metacarpal-proximal

For the data-glove, we have to mention that the abduction angle is not the
absolute angle related to the palm. That means v3 is not working perfectly, but
in this study we do not consider it as a critical problem.
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When the single similarities of all nodes are calculated, the influence from
other nodes can be obtained by:

P ji =
∑

t∈Neigh(i)

IjtG(t, i, σ) (2)

where G(t, i, σ) = 1
σ
√
2π
e−

(t−i)2

2σ2 is the typical Gaussian distribution form,

Neigh(i) is the node set near node i (refer to Fig.2). Because the concerned
action gist locates between each adjacent state pair, it is actually set as the
entire glove value sequence. Besides σ is a parameter representing the area one
node can primarily impact with, it also means the shortest single motion exe-
cution time corresponding to the data-glove sensing speed. Then the likelihood
of meta motion j at each node can be compared to find the best meta motion
segmentation.

In addition to the action gist analysis, the idle motion is processed inde-
pendently from the eight kinetic motions mentioned above. The Gaussian MRF
based method can also be employed here, but according to the experimental
experience, to find a frequent value as high as desired in the sliding window is
a better solution. To realize this method, the first step is also to have the single
similarities of each node to be similar to Eq.1, but the intensity of meta motion
9 at node i becomes as I9i = 1 and the condition becomes C(v) = 1 ⇐⇒ v = 0.
Thus the idle sections can be determined by the following condition:∑

t∈Neigh(i)

I9t > threshold (3)

Thus node i stays idle when the sum of single intensities is larger than
threshold. Here Neigh(i) is set to be at the range of dsw, which is the size of the
sliding window, then dsw nodes are taken into consideration to find the idle sec-
tion. In addition, all adjacent idle nodes are merged as an idle section, but if the
length of idle sections is shorter than a single motion execution time σ, this sec-
tion should be considered as not idle. Commonly, we find that threshold = 0.90
and dsw = 20 fit most cases.

Using the proposed process, the action gist can be extracted from the raw
data-glove values.

5 Experiment

Different kinds of objects are used to examine the proposed method, the hand
movement involves from clearly moving without object to complex finger gaiting.
The corresponding action gists are extracted from the glove values automatically,
and they all agree with our expectation. In order to make a intuitive view, here
we just take bottle screw cap unscrewing as an example. There are four different-
sized bottle screw caps as Fig.4, a participant rotates the caps by four fingers
for many times. After several trials we list several typical results through the
proposed method as in Fig.5.
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Fig. 4. Unscrewing different-sized bottle screw caps. The thumb, first, middle and
ring finger participate in this scenario. Each screw cap is rotated as around 90 degree
anticlockwisely, and this process is defined as a trial
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Fig. 5. Action gists of bottle screw cap unscrewing. Each action gist is composed of
the meta motions of five fingers, each meta motion is represented by different color
rectangles with the corresponding type number. The x-axis is a time axis indicating
the cyber-glove frame number. Taking idle motion into consideration, we find that the
action gists from 4 trials look similar. The common meta motions are motion 7 in the
thumb, 5 in the first finger, 2 in the middle finger, and 1 in the ring finger.
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There are countless ways to move the fingers to reconfigure the object achiev-
ing to the goal state, but for the transfer to a robotic hand one solution is enough
to guide the manipulation. Furthermore, by the result of bottle screw cap un-
screwing we can see for different-sized caps unscrewing it does exist similar action
gists. Therefore, we can demonstrate the scenario-specific finger-gaiting move-
ment many times and find the popular action gist. In this case, the common one
has stronger adaptability for the robotic hand, which is in different size from
human hand, to complete the task.

Among the parameters in the algorithm, σ is the only one depending on the
application. As we mentioned in the previous section, this parameter is relevant
to movement speed and data-glove framerate. Higher σ merges more short terms,
but meanwhile we risk losing critical short meta motions. On this point the value
selection should be considered carefully. We enumerate all possible values and
compare the extraction results for several typical applications, finally we find
that the configuration of σ is not so strict. For most cases the extraction results
are same, otherwise the length of meta motion changes slowly with σ variation.
Thus it is not necessary to check every possible value (e.g. from 1 to 20 for 20
trials), instead, we can set σ = 5 to acquire the details, and then set σ = 10, 20
or even more to get the general context.

6 Conclusion and Future Work

This study concentrates on action gist extraction from the demonstration of
in-hand manipulation. Different from the manipulator trajectory planning, this
model works in a fuzzy way to guide the finger movement. It gives the manipula-
tor a related loosely explored space to implement the task, and from the view of
human in-hand manipulation, it is more similar to the mechanism of the human
hand.

This action gist model is being examined by simulation and real robot tests.
When the action gist is mapped back to robotic hand control, it is supposed to
work as guidelines because it provides the meta motions of each finger in order.
Different-sized hands apply different joint angles to execute the manipulation,
but the meta motion is always correct to indicate the finger movement direction.
In every trial we give the robot quantized parameters according to a fixed meta
motion sequence, and through iterations the parameters are refined to ensure
the correct state transition.

The model currently is built from the value of a data-glove. One disadvantage
is that the human demonstrator wearing the data-glove has a different feeling
and executes the movement unnaturally, and difficult manipulation applications
are hardly handled. Another drawback is related to the four abduction angles
in the data-glove, which are angles between two fingers, not the absolute angle
related to the palm. From this point, we do not guarantee that the finger move-
ment perception is always correct. Hence to fuse the result from other sensors,
especially tactile sensing, is another direction for developing the model further.
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