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Abstract— We consider in-hand manipulation tasks that
consists of periodic movements. In order to improve the
manipulation learning ability of a robot with a human-like
hand, this paper introduces a segmentation method based on
the techniques of action gist. Action gist is the key motion
information in manipulation with the property of semantics.
In the techniques of in-hand manipulation action gist, there is
a Meta Motion Occurrence Histogram describing the motion
information in the demonstration set. This paper proposes an
algorithm related to the Meta Motion Occurrence Histogram to
maximize the common motions in each segment, so as to figure
out the best segmentation solution in the in-hand manipulation
sequence. The experiments illustrate the performance of the
proposed method, and discuss the possibility of segmentation
fusing with the information from tactile sensor.

I. INTRODUCTION

Human in-hand manipulation involves the synergy of five
fingers and the palm, the feedback produced from visual and
haptic neurons, and the central processing unit – the brain.
When we assign a manipulation job to a robot, especially
one with a human-like hand, it is natural to regard this
procedure as the knowledge transition from human to robot.
Compared with designing a specific solution for the robotic
hand for every single application, it is easier to supervise
the humanoid hand by learning from human demonstration
because in this case we can find teachers all over the world.

In the process of learning in-hand manipulation skills
from humans, a necessary step is to divide a long in-
hand manipulating sequence into several short segments.
One reason for this is that for complicated hand movements
rooted in multiple joints and a high degree of freedom, it
is inconvenient to describe and memorize the corresponding
kinematic form. Another reason is that as the aim of this
kind of manipulation is to transform the state of the in-hand
object, it is easier to solve several subtasks step by step than
to tackle one big problem as long as we create a set of proper
mileposts. This hierarchical idea is well adopted by several
European projects [1] as Fig.1.

To understand and extract the hand movement patterns, we
need a set of sensors to perceive the state of the hand and
the object, as well as the contact information between them
[2]. Besides multiple sensors, we should also be clear about
the specific contextual information according to the scenario
[3] in order to take the correct actions. When we have
enough data, it is time to analyze the entire manipulation
process. Rather than an analysis of simple manipulation tasks
[4] [5], we concentrate more on the detailed finger gaiting
application. In this field, a slight variation of a finger joint
can be a key point in the process of manipulation. Since there

Fig. 1. A hierarchical structure of the in-hand manipulation [1]. This
paper concentrates on the primitive-movement level, to analyze the periodic
variation of the movements.

are many joints in the hand, it is necessary to find an effective
tool to represent variation and perform segmentation.

Specifically to deal with periodic in-hand manipulation
movements (e.g. rotating a screwdriver, turning pages for
several times in Section VI), this paper proposes a kind
of segmentation method based on the techniques in action
gist, which describes the information of key motions widely
adapting to different-sized hands. The method segments the
time-series manipulation process based on the similarity of
each segment.

The structure of this paper is the following: After pre-
senting the state-of-the-art and related work, we give a
short introduction to the techniques of in-hand manipulation
action gist. Then a segmentation algorithm based on a tool
in the techniques is given in Section IV. After that we
discuss the possibility of fusing the segmentation result with
tactile information in Section V. Section VI illustrates the
segmentation results by comparing the results from manual
partition, and discusses how to integrate the segmentations in
multiple sensors to improve in-hand manipulation learning.
And the final part gives the conclusion and future work in
Section VII.

II. RELATED WORK

Since the process of in-hand manipulation contains a
series of hand movements, it is common to segment the
entire process into several smaller parts. In this way, the
manipulation process becomes easily understandable so that
we can concentrate on abstracting the interesting information
in the segments. One kind of segmentation method depends
on the hand gesture, which is based on the fact that the whole
manipulation process can be understood as the translation
of several significant grasping gestures. Several works of



research such as [6] have succeeded in reducing the scale of
the realistic human hand gestures using principal components
analysis (PCA) and discriminant functions. In this case, it
is possible to use finite key hand poses to represent the
entire manipulation process and guide the robotic hand in
task execution.

Meanwhile it is possible to segment the value sequence ac-
cording to the joint angle local minima or maxima, and then
concentrate on the local extremes to study the periodicity [7].
However, as in-hand manipulation consists of the synergies
of many joints, it is difficult to segment the movement only
at this level.

More information can definitely give us more help, such
as considering the hand and the object posture together as
[8] to instruct the regrasping movement. This work does not
concern the whole hand postures but only the area where
the object and the hand interact. Besids taking the object
into consideration, another solution is to add sensors and
understanding the manipulation in multiple channels [2],
[4], [5]. Force sensing is also an important criterion of the
manipulation state transition [9]. Without a sense of force
feedback, humans are unable improve their manipulation
skills. [10] segment the manipulation process as the contact
region and the measured force on a specifically designed
pencil.

When we consider the in-hand manipulation segmentation
as a motion segmentation, we can learn more from simi-
lar topics. Basically, motion segmentation methods can be
classified as online and offline. The online method can be
like [11], it can yield segmentation feedback to improve the
robot real-time reaction. But here we aim at analyzing the
human demonstration, so we have enough time to process
the acquired data. Thus we are more interested in the offline
ideas.

For a time-series motion segmentation, we can consider it
as a kind of clustering. Each segment is separated as the local
relations of the elements. [12] discussed Principle Compo-
nent Analysis (PCA), Probabilistic PCA and the Gaussian
mixture model in high level motion segmentation through
the body joint angle variation. And then [13] continued their
work, clustered human motions based on k-means [14], and
refined the classification by a global minimization algorithm.
For the segmentation, key information is extracted as the
criterion to divide the time series. Along with the clustering
idea, we even can apply a general clustering model for time
series data as lately proposed by [15].

Anyway, we need to define the segmentational feature
as the criterion to maintain the segment quality, such as
rotation-invariant features [16]. We believe that in our in-
hand manipulation case, we can find more specific semantic
features.

For the hand movement recognition, [17] imported Empir-
ical Copula to accurately detect the scenario. Besides, [18]
imported a Fuzzy Active curve axis Gaussian Mixture Model
(FAcaGMM) to detect the scenario fast. Based on the data-
glove value, these methods can analyze what kind of hand
movement is performed even if the training set includes only

Fig. 2. The finger coordinates with the palm. The thumb in the red
coordinate differs from the other four fingers due to its special location
in the hand.

a few samples. However, it is not clear whether both methods
can automatically segment the long manipulation process
including multiple specific operations.

[19] proposed a segmentation method independent from
prior knowledge on motion characteristics, and it is very
effective in one-dimensional cases. But because of the re-
cursive estimation algorithm they applied, the accuracy runs
low with increasing number of joints.

Different from the classical segmentation criteria, our
method concentrates mainly on the hand movement itself. It
is a kind of semantic analysis based on the similar motions
which periodic manipulation presents. We use the data-
glove to generalize the in-hand manipulation action gist with
respect to the application, and based on this kind of semantic
information we complete the segmentation.

III. IN-HAND MANIPULATION ACTION GIST

In-hand manipulation action gist is a kinetic concept which
represents the key finger motions in a manipulation task and
widely adapts to different hands. Take a simple grasping
example: In most cases, we “close” our fingers but do not
“open” them to grasp the object. That means, we use a
kind of action gist to manipulate the object, and another
person who has a different-sized hand can also apply the
same action gist and successfully manipulate it. With in-hand
manipulation action gist we can learn from the demonstration
and record concise information, then instruct the robotic hand
executing the movement by the gist guidelines.

Meta motion is the basic unit in the in-hand manipulation
action gist. It is related to the kinetic direction on each
finger including closing, opening and a projected direction
relevant to the palm. As Fig.2 and Fig.3 show, every finger
has 8 kinetic meta motions and 1 idle meta motion. By
Gaussian Markov Random Field presenting the data relation
in different frame distances, the finger joint angles (e.g. as
measured by a data-glove) are translated into a meta motion
sequence.

Generally speaking, experienced humans seldom repeat
the same meta motion in a short manipulation episode. They
will try their best to avoid any collision and approach the
target with as few meta motions as possible.



Fig. 3. Nine types of meta motion in each finger. Two flex/ext-joints
are modeled as one parameter as open or close, and the abduction angle
variation cooperates with the metacarpal-proximal angle variation to form
a 2D projected direction for the finger’s movements. The idle motion is
specifically set apart and labeled as 9.

When we have multiple trials of a specific manipulation
application, we can generalize the action gist by evaluat-
ing the popularity of each sample through a Meta Motion
Occurrence Histogram (mostly abbreviated to “Histogram”
in the remaining part of this paper). The Histogram is a
statistical matrix of the demonstration set, it describes the
meta motion occurrence frequency according to the position
but not relevant to the duration in the real trial. For example,
when the first finger performs meta motion 7, 3, 4 in 3
seconds, 10 seconds and 1 second respectively, the Histogram
will sequentially record meta motion 7, 3, 4.

The form of the Meta Motion Occurrence Histogram is
described as follows:

H(a, r, l) =
∑

η(ms
i
,a,r,l)=1

G(ψ(ms
i ), a, σs) (1)

where meta motion ms
i is the i-th element from action gist

ms in the demonstration set M. η(·) = 1 if and only
if ms

i belongs to finger r, labeled as meta motion l, and
position a locates near ms

i but no other motion on finger r.
ψ(ms

i ) ∈ [0, 1] indicates the normalized order position when
the meta motion begins, so position a is near position ψ(·).

G(t1, t2, σs) = 1
σs
√
2π
e
− (t1−t2)2

2σ2s is the typical Gaussian
distribution form, and σs is a parameter that controls the
impact factor reduction, it is set as reciprocal to the length
of sequence ms. Considering this is a discrete numeric
processing, the histogram has a resolution. The normalized a
will finally be scaled as an integer form during calculation.

The frequent possible meta motion takes a higher value in
the element of the Histogram. As a result, for every action
gist in the demonstration set, there is a simple way to evaluate
its popularity as in the following equation:

Score(ms) =
∑
i

H(ψ(ms
i ), τfinger(m

s
i ), τlabel(m

s
i )) (2)

where τfinger(·) indicates the meta motion belongs to, and
τlabel(·) indicates the meta motion type.

One kind of action gist can adapt to different kinds of
hands with one manipulation task. However, one manip-
ulation task can be done by countless correct methods.

Fortunately and specifically for one person, it is common
that the movement to solve one manipulation task is more
or less similar.

IV. PERIODIC IN-HAND MANIPULATION
MOVEMENT SEGMENTATION

In the real world the paradigms of periodic manipulation
can be like rotating a key, turning pages, or other move-
ments operating repeatedly. In the process of Learning from
Demonstration, we can decompose the entire continuous
movement into several parts, with each part being a loop.
In this way, we only need to show the robot the complete
part dozens of times, and the robot will extract the necessary
information for future practice. The problem of this method
is that we have to cut the movement by subjective judgment,
as the connective information between adjacent movements
may be missing. Thus if the demonstrator has the chance to
perform periodic movement without interruption, it is a more
natural way to acquire knowledge about the skill.

We intend to make use of the techniques of in-hand
manipulation action gist to automatically segment the entire
manipulation process. Because the meta motion semantically
reflects the finger movement, the reduplicative motion pat-
terns can more or less imply the periodic information.

Firstly we give the definition of the segment in a trial of
periodic in-hand manipulation movements.

Definition 1: If in a segment ms in the periodic in-hand
manipulation sequence, the same-labeled meta motions ωi
are located before ωj in the entire sequence and they belong
to the same finger, then ms starts from the beginning position
of ωi and end before the beginning position of ωj . In this
case, the next segment ms+1 starts from the beginning
position of ωj if the same-labeled and same-fingered meta
motion ωk exists behind ωj .

In this case, every segmentation must begin with the
meta motion of equal type. And then the segment boundary
selection speeds up. The assignment as Def.1 may result in
mistakes, but the majority should share the same sequence
head regarding the statistical point of view. Therefore, as
long as we have done enough periodic manipulation demon-
stration, it is possible to extract the key information in the
periodic movement.

Secondly we give the criterion of a good segmentation.
Definition 2: |ms1

⋂
ms2 | represents the quantity of com-

mon same-fingered meta motions at similar positions in both
segments ms1 and ms2 .

For a good segmentation, we expect |ms1
⋂

ms2 | to be
as high as possible. Here the Meta Motion Occurrence
Histogram is able to generalize the segmentational result
and provide us with the evaluation of the periodicity of the
segmentation.

Definition 3: To a 3 dimensional Meta Motion Occurrence
Histogram H, the corresponding Frobenius norm is defined
as

‖H‖F =

√∑
a

∑
r

∑
l

|H(a, r, l)|2 (3)



Theorem 1: max
∑
s1

∑
s2
|ms1

⋂
ms2 | ⇔ max ‖H‖F

Proof: According to Eq.1,
max ‖H‖F

⇔ max
∑
a

∑
r

∑
l

(∑
η G (ψ(ms

i ), a, σs)
)2

Here we can see that, once ms
i exists, it will contribute

to several elements in H. In the meantime, the constraint
η(ms

i , a, r, l) = 1 controls the meta motion number of the
contribution. ms

i ∈ ms, and m ⊂ M. According to Def.1,
unless ms

i impacts H(a, r, l) alone, it has to increase the sum
of H(a, r, l) with other meta motions.

Obviously, when we neglect the specific a, r and l,(∑
η G (ψ(ms

i ), a, σs)
)2

.
= (

∑
ιGι)

2

.
=

(∑
iGi +

∑
j Gj

)2
> (

∑
iGi)

2 +
(∑

j Gj

)2
Supposed in this case i meta motions remain a contribution

to the specific element of the Histogram, but j meta motions
work alone. The part (

∑
iGi)

2 is considered as the new sums

of the original element. The other part
(∑

j Gj

)2
is the new

sums of where the meta motions jump to. So it means the
original form takes a higher sum.

For the cases where i meta motions remain but j motions
jump to cooperate with another element, there is no rule to
judge which form is better. Nevertheless, it is not vital that
more than one meta motion fit the constraint η(·) = 1. All
of these cases will be taken into the competition. We will
select the winner with the highest sum.

Then we can say the more meta motions join to work
together, the higher the total is. On the other side of the
theorem,

max
∑
s1

∑
s2
|ms1

⋂
ms2 |

⇔ More ms fits the constraint η(·)
Therefore,

max ‖H‖F
⇔ max

∑
s1

∑
s2
|ms1

⋂
ms2 |

So when the segmentation generates a corresponding meta
motion sequence set {ms}, we can justify whether this
is the best segmentation by examining the corresponding
‖H‖F . Based on this theorem, we propose an algorithm to
automatically segment the periodic movement in an in-hand
manipulation meta motion sequence as Algorithm 1. The
current algorithm is a linear enumerating method to segment
the sequence, where each segment begins with the same-
labeled meta motion. Later it will be improved as an iterative
or head-independent algorithm after we have enough criteria
to prove it.

In this way, we can naturally present a repeated in-hand
demonstration to the robot. During the process of analysis,
the motion sequence is segmented as the proposed algorithm,
and evaluated by Eq.2. Meanwhile in practical processing,
there is the risk of errors or mistaken movements being

Algorithm 1 Segment the periodic movement of an in-hand
manipulation demonstration with the techniques in action gist
Require:

The extracted meta motion sequence M
1: Find the same meta motion l on each finger r, store their

starting positions as Pl,r =
{
P 1
l,r, P

2
l,r, P

3
l,r, · · ·

}
;

2: Scoremax ← 0, segmentation solution Z ← {};
3: for all Pl,r 6= {} do
4: ms ← The meta motion sequence ranging at the

positions of
[
P sl,r, P

s+1
l,r − 1

]
;

5: Demonstration set Mtmp ← {ms};
6: Calculate the Histogram H of Mtmp;
7: if ‖H‖F > Scoremax then
8: Scoremax ← ‖H‖F , Z ← Pl,r;
9: end if

10: end for
11: return Z;

included in the coherent movement. But as long as the
positive data is the majority, we can refer to the evaluation
from Eq.2 and believe that the segmented movement with
a high score is acceptable. The one having a higher score
indicates its popularity in the periodic movement, so we can
use it to reproduce the manipulation.

V. PERIODIC MOVEMENT SEGMENTATION
FUSION WITH TACTILE SENSOR

Generally speaking, with more sensors the segmentation
will become more accurate. Meanwhile, the segmentation
process is equal to design a goal function and then to opti-
mize it. However, more sensors make the decision complex,
we need to weigh and consider balance among many choices.
So far, the common form of the fusion obeys the rule like
following equation [20][21][22]:

Pfusion =

∑
i ciPi∑
i ci

(4)

where ci is the weight of the sensory segmentational com-
ponent Pi. Regarding this equation we can imagine that
the number of components may increase the uncertainty of
segmentation. Therefore, we only address how to deal with
gloved and tactile data without weighting in this paper.

Because tactile information is an important criterion in
hand manipulation, we intend to integrate our segmentation
method with tactile perception. Considering Fig.8 from Sec-
tion VI-B we believe that tactile information also can be
refined as periodic criteria. And it is possible to apply the
same method to the tactile state sequence as the techniques
of manipulation action gist. But according to our current
experimental experience, the tactile segmentation is not as
reliable as the meta motion segmentation. The reason is
related to the different sensitivities of tactile cells, and the
complexity of the tactile sensory structure. And we have to
point out, that the meta motion is the direction of the finger,
but the contact always changes as the finger touches / leaves



the object. That means the segments begin and end based on
different mechanism, we can not use interpolation between
the boundaries of two kinds of segments.

Therefore, we consider the tactile information as a support
to the current segmentation method. The workflow is as
Algorithm 2.

Algorithm 2 Segment the periodic movement of an in-hand
manipulation demonstration with multiple information
Require:

Ranked segmentation solution {Zi},
so ‖Hi‖F > ‖Hk‖F , i < k
Tactile segmentation solution {Tj}

1: Sm ← +∞;
2: for i = 1 do
3: for all Tj do
4: if Zi and Tj have similar number of the segments

then
5: Sum up the position difference between the near-

est segment pair, one in Zi, and the other in Tj;
6: if Sm > the calculated sum then
7: pm ← j;
8: end if
9: end if

10: end for
11: if Sm 6= +∞ then
12: goto 16;
13: end if
14: i← i+ 1
15: end for
16: Update Zi by Tpm with the closest segment positions,

store it in Znew;
17: return Znew;

We consider Algorithm 2 as a kind of compromise be-
tween both kinds of segmentation plans. The reason is that
the result calculated by action gist techniques based method
is always close to the manual segmentation. We had better
to keep the scale and the distances of the segments not far
from the original solution.

VI. EXPERIMENT AND DISCUSSION

We employ the data-glove for the input of hand move-
ments. The values from the data-glove are processed as
described in Section III into meta motions to semantically
present the in-hand movement. In this section, we firstly
compare the glove-value segmentation results with manual
segmentation results, and then discuss the possibility to fuse
the segmentation from data-glove and tactile sensor.

A. Experimental Examination by Multiple Scenarios

We have an integrated system to record the Cyberglove
data with synchronized visual data [23]. By this tool, we
are able to compare the segmentation from our proposed
algorithm with manual results. We have 4 scenarios shown
in Fig.4 to examine the performance of our method. The
demonstrator performs the experiments and repeatly moves

Fig. 4. Four scenarios of periodic movements to examine our proposed
method. The first one is to use a screwdriver to fix the screw. The second
one is to rotate the cover to open the bottle. The third one is to play a
star-like toy. The fourth one is to turn the pages of a book. The red arrows
indicate the operating directions of the corresponding objects.
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Fig. 5. A segmentation example with the corresponding meta motion
sequence from the screwdriver scenario. The figure shows the meta motions
of all five fingers, each type of meta motion is represented by color
rectangles with the corresponding type number. Specifically, the closing
motions employ warm colors but the opening motions apply cool colors at
different saturation levels. The x-axis is a time axis indicating the cyber-
glove frame number. The yellow lines segment the entire sequence into
several parts. This example is a segmentation by Meta Motion 7 in the
middle finger.

the corresponding object. Each application is demonstrated
many times. After that, through maximizing the Frobenius
norm of each segmentation, we can have the result like Fig.5.

We have recorded synchronized visual data at the frame
rate of 30 fps, and the frame rate of our Cyberglove is
set as 15 fps. We spend 10 seconds for each demonstration
of performing the periodic movements, except 20 seconds
for the page turnings. By comparing with the timestamps
of the visual sensor and the Cyberglove, we evaluate the
performance of the proposed method as Tab.I and Fig.6.

In Tab.I, “Repeat” indicates how many times the demon-
strator actually performs the motions. “Miss” indicates the
number of the segments that the automatical segmentation
fails to find. Moreover, “Exceed” counts the extra segments
that the automatical segmentation finds but which are not
real in the demonstration. In the table, we can see that
the automatical segmentation of the star-like block rotation
and the page turning have mistakes. These two tasks are
more complicated than the other two, and without training



TABLE I
THE PERFORMANCE OF DATA-GLOVE BASED SEGMENTATION

Scenario Repeat Miss Exceed

screwdriver
4 times
4 times
5 times

0 times
0 times
0 times

0 times
0 times
0 times

cover opening 7 times
6 times

0 times
0 times

0 times
0 times

star rotation 6 times
6 times

2 times
0 times

0 times
0 times

page turning
5 times
8 times
8 times

0 times
0 times
0 times

2 times
0 times
0 times

0

0.5

1

1.5

2

Screw Cover Star Page

Scenarios

E
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Fig. 6. The errors of the automatical segmentation. Compared with
the manual segmentation, we calculate the related errors measured by
second. The blue boxes indicate the main variances of the errors. The black
boundaries indicate the minimal and maximal errors of the demonstration,
and the red lines in the boxes represent the averages. The red crosses indicate
the outliers.

the demonstrator uses different movements to achieve the
manipulation. But regarding that the trial time increases, the
demonstrator becomes experienced and then this case will
not easily happen.

Fig.6 indicates the errors of the segmentation positions
are mostly under 0.2s. Actually to the normal speed manip-
ulations, with human eyes it is difficult to distinguish the
movement difference in this duration level. So we assume
the segmentation results are acceptable.

Among the demonstrations mentioned in Tab.I, we have
4 failed segmentations. We investigate the raw data and
find two reasons for the failures. One is because the pause
between two periodic segmentation is long, meanwhile the
fingers look staying idle but actually slightly move. In
this case the meta motion parser finds some unexpected
motions which disturb the segmentation. The other reason
is that the demonstrator applies multiple methods to carry
out the manipulation, then the algorithm can not detect the
segmentation correctly.

Therefore, it is helpful that more sensors participate in the
manipulation analysis.

B. Periodic In-hand Manipulation Segmentation by a Tactile
Sensor and the Techniques in Action Gist

In this part we aim at analyzing the manipulation skill
from multiple sensors. Even though the proposed algorithm
in this paper is based on the information processing of the

Fig. 7. The experimental setup for hand pose and tactile information
aquistion [24]. The demonstrator wears the Cyberglove for the hand posture
sensing. The front side of the hand equiped with a Tekscan Grip system
receives the contact information.
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Fig. 8. A segmentation example based on the tactile information. The
scenario is star-like toy rotation. It is assumed that the contact region of
each joint has a threshold value indicating whether it is touched. We use
the 0 to present the non-touched state, and 1 for the touched state. For each
finger we sum up the corresponding joint states, and represent it in decimal
digits instead of binary form. For example, the thumb in digit 1 indicates
that the distal joint is touched, but the proximal joint is non-touched; The
first finger in digit 6 indicates that only the corresponding distal joint is non-
touched, but medial and proximal joints are touched. We can count that the
thumb spends 10 periods in state 1. Furthermore, in this demonstration, the
demonstrator does rotate the block 10 times. However, the demonstrator
does move the ring finger with touching and non-touching 10 times, but we
can not see that the ring finger has any change in the figure. Therefore we
currently only use tactile information as assistance and consider the contact
state transition as a future research.

data-glove, we can have the experiment carried out using
several devices including a stereo camera, a magnetic tracker,
Cyberglove, the Tekscan Grip system (for details of the
set up please refer to [25] and [24], or the applications
[2][5][4][26]). Too many devices installed on the hand
restrain the natural movement of the demonstrator, but it
provides a chance to compare the segmentation result.

Fig.7 shows the experimental set up enclosing the hand.
The image sequence of the manipulating process, the hand
joint angle and the tactile information are available and syn-
chronized in this set up. Besides, the movement of rotating a
star-like block is a typical periodic in-hand manipulation. We
are going to study the block rotation movement by manual,
tactile and finger-action-semantic segmentation.

The tactile sensor Tekscan consists of arrays of haptic cells
attached to each the finger joint. Each cell contains a value
presented by an unsigned byte indicating the intensity of the
contact pressure. Basically we can segment the sequence by
the different contact area combination. The state definition
is similar to [26], but we do not need the palm contact
information. One reason is that the palm does not participate
in the rotation, another reason is that we find too much noise



TABLE II
THE STAR ROTATION PERFORMANCE OF FUSION BASED SEGMENTATION

Glove-based Fusion-based
Repeat Miss / Exceed Miss / Exceed

10 0 / 1 0 / 0
10 0 / 1 0 / 0
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Fig. 9. The errors of glove-based method and fusion-based method
comparing with manual segmentation. Because of the experimental set up,
and for the demonstrator can not naturally perform the manipulation with
wearing too many devices, the errors are higher than Fig.6. But anyway we
can see the fusion-based segmentation is better than the single sensor based
segmentation.

in this application when the parts in and around the palm
rub reciprocally. Meanwhile the tactile information involves
many factors, even as [27] indicates, grip force is affected by
the hand posture. Therefore, here we only need to consider
whether a force is applied to a specific area.

Therefore, we separate the in-hand manipulation state by
the contact force variation with respect to each finger joint.
Through summing up the intensity of corresponding cells,
smoothing the totals, threshold filtering to separate the high
and low value, and a series of post processing, an example
of the segmentation is shown in Fig.8. Then we can see as
each finger holds a different transition form, there are many
possibilities in the entire process.

Anyway, we can apply the segmentation method via the
data-glove to understand the entire manipulation sequence.
And then integrate the tactile segmentation as Algorithm
2. The results comparing with the manual segmentation is
shown as Tab.II and Fig.9. Because the hand wears too
many sensing devices, the demonstrator can not perform
the manipulation naturally. Therefore the average errors are
higher than glove-only method.

C. Popularity of the First Meta Motion in the Segment

To manipulate an object, there are countless finger-
gaitings. We can get many meta motion sequences from
action gist extraction, and every one will work in practice.
However, for each particular manipulation task, we would
like to find the common action gist. Because we think if
one kind of movement is always performed by humans, it
will be more stable than other movements applied in the
specific scenario. For many trials from the star-like block
rotation in Section VI-B, we intend to find the popular head
of the segment. Thus we sum the Frobenius norm of the

Meta Motion

F
in

g
e

r

1 2 3 4 5 6 7 8

Little

Ring

Middle

First

Thumb

Fig. 10. The possibilities of the start meta motions in VI-B. The block
intensity indicates how likely it is for the meta motion according to the
finger to become the head of the segment. After several demonstrations of
star-like block rotation, the meta motion 8 of the thumb wins the highest
score. It implies that the demonstrator may have this behavior in the rotation
scenario of a similar object.
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Fig. 11. The possibilities of the start meta motions in Section VI-A. In
all scenarios the demonstrator uses his right hand. We can find that the first
motion in the “Screwdriver” scenario is using the thumb. Considering with
the fact that the screwing demonstrations are anticlockwise, this result is
reasonable. And we notice that for the clockwise movement scenario “Cover
Opening”, the demonstrator likes to move the ring finger first as expectation.
The “Star Rotation” result is different from Fig.10 because the demonstrator
often uses his middle finger to keep the block at the beginning. However,
we think the “Page Turning” is the most interesting one in the cases because
we find more bright blocks than other scenarios. We preliminarily think that
is because the demonstrator wants to use the thumb to fix the page, or other
long fingers to touch the margins.

Histograms up and evaluate the popularities. The result is
shown by Fig.10. The result indicates that when rotating a
block with four fingers, the demonstrator always moves the
thumb first. This criterion can be considered as a hint to the
segmentation by tactile information.

In addition, we give the analysis to other experimental
scenarios in Fig.11. We hope the proposed techniques can
more or less help us with the behavior understanding.

VII. CONCLUSION

We propose a segmentation method based on maximiz-
ing the Frobenius norm of the Meta Motion Occurrence
Histogram, which is a technique of in-hand manipulation
action gist, to find the optimized segmentation of periodic
hand movements. Different from gesture segmentation, the



segment is sharp at the boundary of movement variation. We
believe that the proposed method does support the process of
Learning from Demonstration. Then the robot with a human-
like hand allows the demonstrator to teach naturally instead
of decomposing the entire operating sequence.

The current method is based on counting the meta motion,
it belongs to a kind of semantic analysis of the in-hand
manipulation. The meta motion derives from the joint angles
of the fingers; in the process of generation there may be some
error. So it is possible to have a more precise result based
on the raw data. But anyway, to display with meta motion is
more understandable than to display the joint angle values.
In this case, humans can more easily interfere in the learning
process to improve the cognition of the robot.

In our future work, the segmentation method for periodic
movement will follow the in-hand manipulation action gist
in being examined on a humanoid robotic hand. Besides,
another study direction is to integrate the segmentation from
multiple sensors.
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