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Abstract— This work documents our progress on building
an unmanned aerial vehicle capable of autonomously mapping
urban environments. This includes localization and tracking of
the vehicle’s pose, fusion of sensor-data from onboard GNSS
receivers, IMUs, laserscanners and cameras as well as realtime
path-planning and collision-avoidance. Currently, we focus on
a physics-based approach to computing waypoints, which are
subsequently used to steer the platform in three-dimensional
space. Generation of efficient sensor trajectories for maximized
information gain operates directly on unorganized point clouds,
creating a perfect fit for environment mapping with commonly
used LIDAR sensors and time-of-flight cameras. We present
the algorithm’s application to real sensor-data and analyze its
performance in a virtual outdoor scenario.

I. INTRODUCTION

Automatic model building has always been one of the most
important parts of autonomous robotics. Exploration and
mapping - as a subclass of this problem - has been the topic
of many publications in recent years. The SLAM problem
was first solved for two-dimensional mapping scenarios and
later-on expanded to three-dimensional environments.

This paper presents a novel approach on increasing the
efficiency of such mapping procedures. While the imple-
mentations of SLAM have improved greatly in recent years,
one aspect of mapping three-dimensional environments was
given comparatively little attention: finding the next best
view. Typically, SLAM algorithms have been researched and
developed on mobile platforms moving on flat surfaces [10],
[11], [5]. This setup does not necessitate high efficiency in
exploration, as it does not inherently impose time constraints.
The authors of this paper, however, are implementing explo-
ration and mapping algorithms on a flying platform with a
maximum flight time of less than 15 minutes. Aiming to
explore as much of the environment as possible within this
limited time motivates an efficient way of finding sensor
poses (and in extension, sensor trajectories) that enable
sensors to deliver information as quickly as possible. While
repeatedly passing over the unknown environment in scan-
line fashion results in very fast scanning, a better approach
needs to be found to ensure scanning of surfaces that are
concealed from those sensor trajectories.

This paper is organized as follows: the next section inves-
tigates other authors work of recent years in this and related
fields. In the subsequent chapters, we first introduce the
hardware platform used for testing our implementations and

then explain the basic data structures our algorithm relies on.
After our algorithm is explained and illustrated, we discuss
its computational complexity and the results achieved so far.
In the final chapter, we share our thoughts on its current
limitations and future developments.

II. RELATED WORK

Since the introduction of SLAM, much work has been
done to refine and extend the algorithm for use in both two-
and three-dimensional environments. Finding the next best
view, though, has never been a part of the SLAM problem
[8] and is thus rarely addressed in these publications.

Generating safely reachable waypoints from previously
acquired sensor data is an extension of the next-best-view
problem (which itself is an extension of the art-gallery
problem [13]), as the former does not include the constraints
of safe navigation and instead deals with the generation of
isolated viewpoints[3]. As sensor poses in areas between
known and unknown environment offer a good compromise
between safe reachability and high information gain, frontier-
based approaches are a popular method to compute new way-
points in two-dimensional space and are well documented in
the literature [8], [9], [11], [12]. Unfortunately, information
about exploration boundaries is hard to generate from three-
dimensional point clouds.

As our robot is very maneuverable, the generated way-
points and trajectories can be created with less concern of the
platform’s ability to catenate them due to motion constraints
that other tyes of vehicles (e.g. fixed-wing UAVs) previously
entailed [1]. The common problem of wind, manifesting as
both opportunity and hindrance for many UAVs, has spawned
many contributions in the past [4], [2]. Even though wind is
still a matter of concern for our platform, it does no longer
impose constraints on path planning.

III. OUR APPROACH
A. Platform

To save time during the construction of our platform,
we used an “Okto 2”-octocopter from the mikrokopter-
project as a base for our vehicle (see Fig. 1). Its central
FlightControl (FC) processor-board is connected to eight
brushless-motor controllers via an I2C bus. Employing its
on-board gyros and accelerometers, the FC is programmed to



Fig. 1.

The experimental flying platform with mounted GNSS-
antenna/receiver, processor-board, laser scanner and IMU.

stabilize the platform by itself when no other motion-control-
commands are received from either the connected remote-
control-receiver or its serial port. We also fitted an Intel Atom
processor-board to the platform to process incoming sensor
data and send navigation-commands to the FlightControl
board.

A Septentrio AsterX2i RTK-GNSS (Real Time Kinematic
Global Navigation Satellite System) receiver has been in-
stalled and connected to an XSens MTi IMU, enabling
measurement of the platform’s pose at 20Hz. After fusing the
GNSS trajectory and IMU sensor-data, the resulting position
is accurate to within Scm while the orientation shows a
maximum error of ~ 1° for pitch, roll and yaw angles.

The laserscanner is mounted looking downwards, scanning
stripes orthogonal to the platforms heading during flight.
Gathering information on obstacles in the vehicle’s path
necessitates a yawing movement, allowing our algorithms
to detect and avoid potential collisions.

After balancing the platform’s extra loads, it exhibits very
favorable flight dynamics and barely drifts when idling.
Including payload and a 5000mAh 4slp LiPo battery, the
platform weighs 2250 grams and requires around 350W of
power while hovering, leading to a flight-time of about 12
minutes.

B. Data structures

Occupancy grid maps - and in extension elevation maps
- are often used to store sensor data in generalized form
[12]. Although the data structure permits easy traversability
computation and frontier detection, storing more complex
geometry or overhangs remains difficult or even impossible,
limiting its practical use to two-dimensional environments.
Furthermore, its uniform grid size requires a global com-
promise between model quality and memory consumption.
Multi-Level surface maps, introduced by Triebel et al. [14],
eliminate many of these limitations, while still being con-
strained to a grid.

In order to capture sensor data representing arbitrarily
complex geometry and detail, we decided to implement our
algorithm on an octree-based data-structure. Octrees are well
suited for storing information in non-uniform resolution and
the process of storing and retrieving data can easily be

executed in parallel, allowing for optimization of parts of
our algorithms. Each point in the octree also stores a vector
pointing from that point back to the sensor’s position at the
time of its capture. This vector’s length will be used lateron
to assign points recorded from further distance (and thus
suffering a greater impact of platform-orientation errors) a
lesser weight in the following surface reconstruction.

C. Algorithm

Three-dimensional environment mapping is often imple-
mented using laser scanners, so unorganized point clouds are
a very common type of sensor data. Any sensor generating
spatial occupancy information can be used with our algo-
rithm, as the point cloud is its only sensory input. Finding
the next best view in such data can be very hard, as it
does not supply any information about geometric structures
such as corners, edges, surfaces and normals. In contrast to
many other algorithms ([5], [10]), ours does not require such
information.

Prior to the mapping process, the user creates a bounding
volume as a representation of the region-of-interest around
the vehicle’s starting position, thereby defining the environ-
ment that is to be mapped. All generated viewpoints will
be constrained to this volume and its vicinity, ensuring that
the vehicle does not leave the scene. During initialization,
a physics engine is set up so that objects colliding with the
bounding volume’s bottom plane trigger an event handler
described below. Each new point in the point cloud is
automatically registered as a static collision object in the
physics world. After the octree is populated with an initial
set of points (i.e. right after lift-off), the waypoint generation
algorithm (Algorithm 1) is executed as depicted in Fig. 2:

1) Initialize sample geometry (line 5): spheres of radius
sr. are spawned evenly along the bounding volume’s
top plane. Increased sample geometry size will create
fewer instances, less computational burden (see sec-
tion III-D) and less waypoints, while smaller sample
geometry will find smaller gaps in the sampled surface.

2) Find gaps: execute the physics simulation with small
timesteps At, allowing the sampling geometry to fall
(1 25) and collide with other sampling geometry (1 30)
and the static collision objects making up the scanned
point cloud (1 36). Whenever a sample sphere collides
with the point cloud, that event is saved into map,,
associating that sphere to the position of only its most
recent collision with the point cloud (1 38). Because
the data structure is implemented as a map, repeated
collisions of the same sphere with the pointcloud will
replace its previously saved position of collision. Since
the last contact indicates a gap in the point cloud big
enough to let pass a detection sphere or the border of
the point cloud, this position is regarded as a waypoint
candidate.

3) Whenever a sample geometry instance collides with
the bounding volume’s bottom plane, that instance is
removed from this run of the simulation (1 27) and
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Waypoint generation, seen from three different viewpoints; perspective projection. a) depicts the initial setup: the bounding volume and sample
geometry are drawn in blue, while the point cloud is drawn in grey. b) shows sampling geometry interacting with the point cloud. In c), the last collision
positions of detection spheres are converted to waypoint candidates (yellow) after having reached the bounding volume’s bottom plane. Please see the
attached video for an animation of the process.

the associated waypoint candidate - if present - is
processed further in step 4).

Waypoint candidates are converted to waypoints if
there are no other waypoints in close vicinity (omitted
from pseudo-code). During conversion, their height
needs to be adjusted, as waypoint candidates tend to
spawn on the scenery’s ground. The height h, by which
waypoint candidates are elevated before becoming
waypoints, is calculated by h = Ranger;qqr * % a
10). By making the distance of generated waypoints to
the detected gaps in the surface depend on the current
size of the sampling geometry, a natural behavior
emerges: The vehicle will first scan larger voids in
the surface from further away. When the sampling
geometry’s size is reduced in later iterations of the
waypoint generation, it will fly closer passes to fill
smaller gaps that couldn’t be observed from previous
Sensor poses.

Each waypoint generation run stops when all sampling
geometry has either been deleted after hitting the
bounding box’s bottom plane or come to rest on the

pointcloud (to ignore objects that move slowly, but
indefinitely due to numerical instabilities in the solver
employed by the physics engine, we implemented a
threshold-based termination criterion, as seen in line
40). After all generated waypoints have been passed
by the UAV or if no waypoints could be generated,
the sample geometry radius sr. is decreased and the
algorithm is restarted at 1). This can be repeated as
long as the sample geometry’s cross section remains
larger than the gaps between points of well-scanned
surfaces in the pointcloud (see MinDistNeighbor in
section III-D).

Depending on size, number and shape of sampling geom-
etry, our approach simulates exposing the scanned surface to
a fluid pushing through the model. The idea of generating
watertight models from previously generated datasets has
been documented before [17], [16], so the novelties here are:

o testing the currently collected data for watertightness

in-flight and using the result as a termination criterion
for exploration.

o testing for watertightness using a physical simulation



Algorithm 1 Non-parallel version of waypoint generation

Input:
Gravity G, LidarRange LR, Pointcloud PCD,
Bounding Box BB,
Sphere-radius: (initial sr; / current sr.)

1: function FINDWAYPOINTS(G, LR, PCD, BB, sr;)

2 maps(sphere — (pos € R3,vel € R3)) «+ 0,

3 STe 4 ST4

4 repeat

5: maps < RESETSPHERES(sr.)

6 gaps < FINDGAPS(PCD, G, BB, maps, LR)
7 if gaps.size() > 0 then

8 for all gap € gaps do

9: // raise waypoints

10: gap.height + = LR %

11: FLYToO(gap)

12: end for

13: else

14: // no gaps found, decrease sphere size
15: ST < %5°

16: end if

17: until sr, <= % x PC'D.MinDistN eighbor
18: end function

19: function FINDGAPS(PCD, G, BB, maps, LR)

20: map.(sphere — CollisionPos € R3) <+ 0

21: repeat

22: maxVelocity < 0 // to ensure termination
23: for all s € map;.keys() do

24: // update position/velocity

25: s.integrateMotion(G, At);

26: if s.collidesWith(BB.bottomPlane) then
27: maps.remove(s)

28: else

29: // collide s with other particles

30: for all ¢t € map;.keys() do

31: if s.collidesWiith(t) A s # t then
32: s.wel + s.collide(t)

33: end if

34: end for

35: // collide s with point cloud

36: for all p € PCD do

37: if s.collidesWith(p) then

38: map..insert(s, s.pos)

39: s.wel < s.collide(p)

40: end if

41: end for

42: end if

43: mazVelocity = max(s.vel, mazV elocity)
44: end for

45: until maxVelocity < threshold

46 return map..values()

47: end function

and its real-time implementation directly on sensor-data
without the need for additional pre-processing.

o re-weighing the compromise between exploration time
and quality of the resulting model by changing sampling
geometry size quickly and in-flight.

« the algorithm’s gracefully degraded behavior when size
and number of sampling spheres cannot be scaled
to achieve simulation with near-fluid behavior due to
constrained computational resources.

Although any geometry can be used to detect voids in the
surface, using spheres yields three important advantages:

o Spheres can be represented by only radius and position,
reducing the overall memory requirement (especially
when all spheres share a common radius).

o Collision detection between points and spheres is a
process of low computational complexity, rendering
many tasks in collision detection’s broad-, mid- and
narrowphase redundant. To detect a collision, it is
sufficient to check whether the distance between the
sphere’s center and the point is smaller than the sphere’s
radius. The sphere’s orientation is of no concern during
collision detection, reducing computational complexity
even further.

o Most importantly, due to their shape, spheres are ideally
suited to slip through smaller voids in the pointcloud,
facilitating detection of regions requiring another scan-
pass.

D. Computational complexity

The algorithms complexity derives from the computational
effort of the collision detection phase in physics simulation
and thus from the number of collision objects. Collision
detection between n objects in general requires n(n — 1)/2
collision checks to be performed, leading to a complexity
of O(n?). Optimized algorithms like sort-and-sweep [7] or
implementations relying on spatial subdivison may reduce
complexity to O(n log n) in favorable cases [6]. Nev-
ertheless, this initially appears to be a major obstacle to
deployment of the algorithm outside of simulation, as the
pointcloud may grow to several million points during flight.
After the following optimizations, however, the algorithm
has proven to be sufficiently fast for real-time application on
current-generation CPUs.

« Given a pointcloud consisting of n points and a set of
m sample geometries, the algorithm does not execute
collision tests between all n+m objects. As the n points
making up the accumulated scan data are static, the
number of required tests is reduced to mm=1) 4 psm.
Because n > m, this optimization yields a considerable
loss in computational effort.

o When using the sensor data solely for waypoint gener-
ation, the density of the pointcloud can be reduced to
allow gaps almost the size of the sampling geometries’
cross section. That is, if sample spheres are created
with a radius of r, the octree storing that pointcloud
rejects insertion of points if there are neighbors within
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As seen from the top, multiple iterations of waypoint generation lead to continuous scanning at the border between known and unknown

environment. Red waypoints are enqueued for scanning, green waypoints have been passed. In figures a) to d), sample spheres with » = 3m have been
used to quickly explore the landscape, while in figure ), sampling geometry of reduced size (r = 1.5m) has allowed finding smaller holes in previously

scanned surfaces.

a distance of d << 2r (MinDistNeighbor in the
pseudo-code). This is implemented using neighbor-
queries during insertion of candidate points and - while
causing a higher computational complexity in that phase
- yields a reduction of n by about two dimensions in
practice, dramatically reducing the number of collision
pairs that have to be checked in every step of the physics
simulation. For this reason, we use two pointclouds in
our work; one is used for surface reconstruction and
is stored in an octree which allows for close neighbors
and high density (depicted by grey points in the figures)
and another pointcloud used for waypoint generation
and collision avoidance, depicted by red points in the
figures.

IV. RESULTS

To assess our algorithms performance, we established the
number of points stored in the pointcloud for a given flight-
time as the primary metric. As explained in chapter III-
D, our octree-implementation allows setting a maximum
point-density during construction. For the pointcloud storing
the surface-reconstruction data, we defined the minimum
distance between neighboring points to be 0.1m, so that mea-
suring the number of points stored over time is equivalent to
measuring the scanned surface area over time. All tests were
executed in a simulator, with the platform’s linear velocity
limited to 2.8m /s during all trials. While the scanned points
were streamed to the basestation, waypoints were generated
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Fig. 4. Pointcloud size vs. flight-time using several waypoint generators.
Vertical lines are drawn on every round of waypoint generation using our
algorithm, executed after all previously generated waypoints have been
passed.

and statistics about flight-time and pointcloud sizes were
logged.

The graph in Fig. 4 shows results of using a simple,
manually planned and collision-free scanline based explo-
ration with trajectories similar to those proposed in [15] for
optimal complete terrain coverage. The results of scanning
along these trajectories can be seen in Fig. 5(a) and 5(b) for
four and six equidistant passes, respectively. As expected,
flying more scanlines in the same area results in more points



scanned, albeit with a slightly slower rate.

Additionally, the graph’s red line shows our algorithms’
performance: because the pointcloud needs an initial popu-
lation for our algorithm to start, the scanning rate stagnates
shortly after launch during the first phase of waypoint
generation, then reaches comparable speeds as the vehicle
starts passing waypoints. In this phase of flight, our algorithm
is as efficient as a manually planned collision free optimal
path, with the obvious advantage of having been generated
automatically. Compared to exploring in scanline-fashion, the
true strength in our method lies in the fact that on-line re-
planning occurs such that when no more waypoints can be
generated, gradually smaller sampling geometry is used to
improve on ever smaller deficiencies in the reconstructed
surface. This yields a truly dynamic and efficient scanning
procedure that adapts well to many different kinds of outdoor
scenarios.

During 160 seconds of flight on our university campus,
our vehicle registered 815k points in an area of 80 by 60
meters. Of these points, 3121 were used in the sparse octree
for collisions with sample geometry. After spawning 475
sample spheres with a radius of 1.5m, our algorithm took
7784 milliseconds to compute 71 waypoints on a single core
of an Intel Xeon CPU running at 3.30GHz. Since waypoints
can be computed much faster than the platform is able to
reach them, our approach can be used for dynamic, in-flight
path-planning.

(a) 4 passes

(b) 6 passes

Fig. 5. Pointclouds resulting from straight scanline passes. Note the
unscanned surface in the bottom center shadowed by a roof.

V. OUTLOOK

With the algorithm performing collisions between large
numbers of static and dynamic objects, it is currently limited
by the speed of collision detection. Physics-simulation in
general and collision detection especially lend themselves
well to optimization using massively-parallel implementa-
tions on GPUs. The authors are currently porting the CPU-
based implementation of the algorithm to CUDA in order
to leverage the immense performance gains made possible
by highly-parallel execution. As described by Le Grand
[6], execution of the simulation’s broadphase on the GPU
can speed up collision detection by more than an order of
magnitude compared to calculation on the CPU.

Architecture featuring horizontal planes that shield the
ground below (e.g. carport) has proven problematic with
the current approach, because the sampling geometry’s size

and number did not always allow for traversal through the
remaining gaps. Porting our algorithm to the GPU should
allow completely filling the user-defined bounding box with
smaller sample geometries while still adhering to real-time
compatible time constraints. We hope to show that the
more fluid-like behavior of the sample geometries resulting
from this change will render gap detection below difficult
geometries possible.

Finally, we plan to move our research’s focus from
waypoint generation to the problems of generating safely
navigatable paths between them, dynamically replanning
paths when necessary and discarding waypoints that cannot
be reached safely.
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