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Abstract

English

Time is not only a valuable resource concerning resource allocation time on robots
for task execution but also concerning duration of development cycles in research
and thus the resource human. Experience gained during participation in the master
project “Intelligent Robotics” together with insights into the EU-funded project
RACE motivated to optimize time and resource efficiency on the Personal Robot
2 in specific and mobile robots in general. This work gives a short introduction
to HTN planners and presents an architectural level to parallelize sequential plans
from HTN planners and execute the parallelized plan on mobile robots using ROS
software. The benefits of the parallel execution compared to the sequential execution
of plans are evaluated in terms of time and consumption of resources. Integration
of the parallelization architecture level into the global architecture of the RACE
Project is discussed and an outlook to future development of the RACE Project in
relation to the parallelization architecture is given.
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Abstract

Deutsch

Zeit ist nicht nur eine wertvolle Ressource, wenn es sich um die Benutzungsdauer
von Ressourcen eines Roboters bei der Ausführung von Aufgaben dreht, sondern
ebenfalls in den Entwicklungszyklen in der Forschung und damit der Ressource
Mensch. Aus dem Master Projekt „Intelligente Robotik“ gewonnene Erfahrungen
und Einblicke in das von der EU finanzierte Projekt RACE motivierten zur Opti-
mierung von Zeit- und Ressourceneffizienz auf dem Personal Robot 2, bzw. mobilen
Robotern im Allgemeinen. Diese Arbeit gibt eine kurze Einführung in das Planen mit
HTN Planern und präsentiert ein Architekturlevel zur Parallelisierung von mit HTN
Planern erstellten, sequenziellen Plänen sowie in die Ausführung dieser sequenziellen
Pläne auf mobilen Robotern auf der Basis der ROS software. Die Verbesserung der
parallelen Ausführung im Vergleich zur sequenziellen Ausführung von Plänen wird
ausgewertet in Bezug auf Zeit und Ressourcenverbrauch. Die Integration der Paral-
lelisierungsarchitektur in die globale Architektur des RACE Projekts wird erläutert
und ein Ausblick der zukünftigen Entwicklung des RACE Projekts im Zusammen-
hang mit der Parallelisierungsarchitektur gegeben.
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1. Introduction

1.1. Motivation

The master project “Intelligent Robotics” taking place at the Group TAMS, Departe-
ment Informatics of the University of Hamburg, offers students valuable insights to
developing high-level applications for robots. The platform for development and ex-
periments in use is the Personal Robot 2 (PR2) developed by Willow Garage. Group
TAMS coordinates the EU-funded project RACE [RACE Project 2012], developing a
robot able of navigating in and manipulating unknown environments. Current work
focuses on Pick-and-Place Operations in catering environments. While observing de-
velopment on the robot during the project, the delay of the development process due
to time consuming test runs could be perceived. Considering the target of cooperat-
ing with humans or rather serving humans in a gastronomy surrounding time is also
a valuable resource affecting customer satisfaction as well as economic efficiency for
the owner. Another view is the environment benefiting from low power consump-
tion by more efficiently executed assignments. Consideration of these observations
inspired the scope for this Bachelor thesis.

1.2. Target Objective

The aim of this work is to optimize the plan execution on the mobile service robot
PR2 by parallel execution of plans.

In earlier robotics reduced complexity of tasks, like moving a robot or executing
simple instructions, led to the development of planners, which generat sequential
plans. Still one of the most used is SHOP2 [Nau et al. 2001], a very effective HTN
planner. In recent years, the variety of challenges that modern robots face has greatly
increased, thus making plans more complex. Current applications in robotics usu-
ally combine movement, visual sensoring and object manipulation. The execution
of tasks in sequential plans leaves resources unused and increases execution time.
Generating parallel plans or executing sequential plans in parallel offers optimized
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resource utilization leading to decreased runtime when conducting complex assign-
ments. Not only the obvious efficieny bonus for practical application but also the
massively decreasing development period inspire this work. Working on assignments
for the robot often forces the developers to run time-consuming test cycles in be-
tween optimizing task execution or debugging. Reducing this time effort speeds up
the development process.

1.3. Outline

In this work the first step will be the analysis of the parallelization capabilities during
the execution of two typical scenarios. Resource idle times will be highlighted, safety
and interferences with other robot actions will be considered. In the following, the
type of parallelization to be used will be evaluated regarding feasibility and time
constraints. The following three methods for parallelization will be focussed: (1)
Implementing a new planner or altering an existing planner to allow generation
of parallel plans; (2) Interpreting sequential plans in a task coordination layer for
parallel execution; (3) Using SMACH State Machines and the Concurrency container
for optimized execution of tasks. The last step is a practical implementation attempt
to execute the scenarios in parallel, which will then be evaluated regarding time save-
up and effictivity.

This work will not consider dynamic adaption to occuring disturbances, although this
is already an important part of robotic planning. While dynamic adaption might be
part of successive works this work will put the main emphasis on time-optimization
through parallel execution. This will at first be approached by finding a parallel task
execution order by hand, later by adding constraints to current implementation or
introducing new architectures to enable the planning level of the robot to parallelize
the task execution. Later works motivated by the experiences made might lead to a
generalized architecture parallelizing unknown task orders without human interven-
tion needed resulting in improvement of utilization of the robots resources.
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2.1. Parallel Task Execution in Robotics

Though parallel task execution yields huge space for optimization, only few works
in robotics approach this field. Existing attempts can mostly be seperated into two
categories: (1) Developing and implementing a planner capable of generating parallel
plans and (2) Interpreting generated sequential plans and executing the (sub-)tasks
of the plan in parallel.

Most approaches to optimize plan generating in robotics either focus on optimizing
a planner for special environments or generating plans in parallel on multi-core ar-
chitectures [Jacobs et al. 2012][Devaurs et al. 2011]. The few efforts on generating
parallel plans did not focus on robotics, but computer aided scheduling in general.
The most promising planner is SIADEX which has been extended to include tem-
poral knowledge [Castillo et al. 2006]. The main application area of SIADEX is
forest fire fighting planning for the Regional Ministry of the Environment of An-
dalusia. Though it does not feature robotic applications the similarities of SIADEX
and SHOP [Nau et al. 1999] and thus SHOP2 reveal the potential of HTN plan-
ners. SIADEX temporal logic enables it to handle time constraints such as earliest
starting time, finishing deadlines and time synchronisation. The most interesting
enhancement for this work is that of the qualitative ordering. It allows tasks to be
decomposed to different types of qualitative ordered subtasks:

• A sequence is a set of subtasks that is to be executed in the exact order in
which is has been specified.

• Unordered subtasks may be carried out in any possible order, thus allowing
them to be executed in parallel.

• A permutation allows the subtasks to be sorted in any order given by the
permutations of the subtasks but not in parallel.

All three qualitative orderings are inherited to lower-level subtasks.[Castillo et al.
2006]
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In project scheduling, generating parallel plans has always been important due to the
number or workers involved in huge projects. Thus planners capable of scheduling
tasks in parallel have been existing for decades. An approach by Luh and Lin [1985]
uses states of tasks and taskworkers to find a schedule with least idle times.

Lingard and Richards [1998] offer three theoretical improvements to state-based
planning, each with a different focus, enabling the planner to generate parallel plans.
The first enhancement puts the emphasis on protecting the achievement of goals.
The other two strategies address the duration of goals and actions respectively the
duration of the effects resulting from goals and actions. Rintanen et al. [2006] and
others present semantics for parallel operators in planning as satifiability, improving
the work by Kautz and Selman [1996].

Rather than altering existing planners or developing new planners, parallel task
execution on service robots is currently implemented by utilizing a three layer archi-
tecture. The three layer architecture was first presented by Gat [1998] introducing a
reactive feedback layer, a sequencing layer and a planning layer [Gat 1998]. Taipalus
and Halme [2009] use this architecture mainly to use their software on different
robot platforms by exchanging the reactive feedback layer. The introduced Action
Pool architecture enables the robot to execute tasks in parallel, since for each re-
source of the robot there is one Action Pool. The Action Pool selects the task to
be executed. Actions are elements of tasks, more than one task may drop actions
into Action pools, thus allowing i.e. Action Pool for manipulators to execute an
action from task A and Action Pool for base movement to execute an action from
task B. Another three layer architecture has already been presented by Sousa et al.
[1996], who use their task coordination and refinement element to execute a list of
elementary actions after examining the generated mission plan. Probably the most
advanced architecture is part of the ARMAR-III [Asfour et al. 2006] platform devel-
oped at the Forschungszentrum Informatik Karlsruhe (FZI). The coordination layer
of the ARMAR-III and its predecessors is presented by Asfour et al. [2004]. The
ARMAR robot is subdivided into head, left arm, right arm, torso and mobile plat-
form [Asfour et al. 2004]. Tasks are decomposed into subtasks for each subsystem
of the robots. These subtasks are translated to primitive actions. More than one
primitive action may be sent to the task execution layer, thus allowing the parallel
execution. The task execution layer gives direct feedback to the coordination layer
providing the opportunity for the task coordination layer to change the order or type
of primitive actions being executed resulting in an adapted plan completion [Asfour
et al. 2004]. The coordination of task execution is implemented through a Petri net.
Each subsystem is represented by a set of two places and two transitions. Places are
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corresponding to the state of the subsystem (ready/running) and transitions to the
state of the task execution (completed/not completed). In the coordination layer
architecture, the subsystems are connected with transistions, each connecting dif-
ferent sets of subsystems, allowing multiple subsystems to be changed from ’ready’
to ’running’, thus executing the respective primitive action.

Although different approaches to parallelization in plan generation respectively plan
execution exist, none of them is applicable to the mobile robots running ROS with
a JSHOP2 planning system.

2.2. Evaluation Platform

This work will be conducted using the open-source, state of the art operating system
ROS (Robot Operating System) [Berger et al. 2012][Quigley et al. 2009][Hassan and
Cousins 2012b] developed by Willow Garage. ROS offers interfaces to multiple robot
platforms. Developers may wrap their code into nodes and communicate with other
nodes. Projects can be shared with other developers. For evaluation purposes, the
PR2, a high-level robot for research and innovation [Hassan and Cousins 2012a], is
used. Besides its physical benefits, the PR2 also comes with a complete simulator
for experiments. This simulator may even be used without the robot itself, opening
the field of robotic innovation to anyone interested.

One of the current scenarios utilizes the Extended Pick-and-Place Demo for the
RACE Project [2012] to move an object from a counter in a restaurant to a table
in the restaurant. The restaurant is simulated in the laboratory at the University of
Hamburg. While executing, the robot tucks its arms in order not to hit his surround-
ings when navigating to the table. Once at the table, the PR2 locates the object
and, after getting into a position enabling it to perform object manipulation on the
table and grabbing the object, moves to the other table, performing similiar actions
until it is able to place the object on the table. Locating the object and getting into
grasping position forces the robot to execute several movements with arms and torso
in order to move close enough to the table without pushing it away with his arms.

The scenario is planned by SHOP2 from a planning domain and a planning problem
to be solved. In this case JSHOP2 [Ilghami 2006], a Java implementation of SHOP2
is used.

Developed with the PR2, ROS natively supports a state machine called SMACH
[Bohren and Cousins 2010], although SMACH also supports other system than ROS
and the PR2. Execution plans for assignments can be transferred to SMACH by
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building and executing hierarchical state machines. SMACH uses containers consist-
ing of States. Next to the StateMachine container and others, SMACH also features
a Concurrence container capable of executing more than one state at the same time.
Bohren et al. [2011] use this to experience optimal runtime for their PR2 fetching
drinks from a refridgerator. SMACH also features data sharing between containers
and visualization tools.

The Personal Robot 2 (PR2) build byWillow Garage features two one-DOF grippers,
each fixed to a seven-DOF arm, attached to a vertically adjustable torso located
on a four-wheeled omni-directional base. On top of the torso is a two-DOF head,
holding sets of stereo cameras and a custom mounted ASUS Xtion PRO LIVE sensor.
Another camera is located in each forearm and laser scanners are attached to the
torso and the base, the former tilting up and down for a 3D scan of the area in front
of the robot. Two Quad-Core i7 Xeon processors are used for computing [Hassan
and Cousins 2012c].

The ROS system running on the PR2 allows developers to encapsulate their software
in ROS nodes using ROS topics to transfer data from node to node. ROS also provides
hardware abstraction and more features to simplify the developers work. For more
information on the Robot Operating System see [Berger et al. 2012].

2.3. JSHOP2

During previous development on the PR2 by the RACE Project [2012], the decision
has been made to prefer the use of JSHOP2 [Ilghami 2006] planning Software. Due to
limitations in time and complexity, this work will not break away from this decision,
but instead use the current plan generation and alter the plan in order to execute
tasks in parallel.

JSHOP2 is a Hierachical Task Network (HTN) planner. HTN planning is one of
the most popular planning strategies. Other common HTN planners are NONLIN
[Tate 1977], SIPE-2 [Wilkins 1991], O-PLAN [Currie and Tate 1991] and UMCP
[Erol et al. 1994]. Recently, the most efficient HTN planner is SHOP2 [Ilghami 2006]
succeeding its predecessor SHOP [Nau et al. 1999]. In general, HTN planners recur-
sively decompose complex tasks to smaller tasks, often referred to as atomic tasks.
A complex task may be moving an object from position A to B. An HTN planner
might decompose this complex task to smaller tasks like moving to A, picking up
the object, moving to B and dropping the object. Task decomposition depends on
the interpretation of atomic tasks. Picking up the object may be an atomic task,
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but it may also be a complex task decomposing to detecting the object, moving
the arm to the object, grasping and moving the arm back into a desired position.
Again depending on the interpretation, these tasks may still be complex tasks. The
definition of atomic tasks and complex tasks is done in the domain specification.
This specification holds a set of atomic actions called operators and a set of complex
tasks called methods. A problem description models an environment and presents
a complex task to be executed. This task is decomposed using the methods in the
planning domain until decomposition leaves nothing but atomic actions. HTN plan-
ners require an additional effort to create and maintain the planning domain, but
efficiency in generating plans makes up for this effort. Effiency of HTN planners is
a result of less unnecessary paths that have to be entered compared to traditional
planners.

JSHOP2 is a Java based implementation of the SHOP2 algorithm by Nau et al.
[2001]. SHOP2 is a multi-awarded Hierarchical Task Network planner that is domain
independent. Both SHOP algorithms know the current state of the tasks at every
point of the planning process, since the algorithms generate the plans steps in the
exact order of the execution. The main difference to its predecessor SHOP is the
partial ordering of subtasks. Partial ordering of subtasks already features some task
execution optimization.

(transport o1)

(move l1)

(load o1)

(move l2)

(unload o1)

(transport o2)

(move l1)

(load o2)

(move l2)

(unload o2)

(transport o3)

(move l1)

(load o3)

(move l2)

(unload o3)

Figure 2.1.: A sample plan for moving three objects generated by SHOP algorithm
using total ordering

Figure 2.1 shows a possible plan reduction for moving three objects from location
l1 to location l2. Total order planning performed by SHOP forces the transporter to
move from l1 to l2 for each object to be transported. Partial order planning allows
interleaving of subtasks. Subtasks of each (transport oi) must be executed in the
correct order ((move l1) may not be executed after (load o1)) but each subtask of
(transport o1) may interleave with subtasks of (transport o2) and (transport o3).
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(transport o1)

(move l1)

(load o1)

(transport o2)

(load o2)

(transport o3)

(load o3)

(move l2)

(unload o3)

(unload o2)

(unload o1)

Figure 2.2.: A sample plan for moving three objects generated by SHOP2 algorithm
using partial ordering

Figure 2.2 shows a partially ordered example like it could be generated by SHOP2.
Due to interleaving subtasks, (move l1) and (move l2) subtasks can be executed
in a single block and therefore only need to be executed once. Of course this is a
simplified example without regarding loading space of the transporter. In JSHOP2
partial ordering is triggered by the keyword :unordered which can be placed within
a task list. In case of Figure 2.2 the keyword is placed as following:

M = (:unordered T1 T2 T3)

where

Ti = ((move l1) (load oi) (move l2) (unload oi)).

Despite its great efficiency and functionality, SHOP2 does not feature a keyword
:parallel or support the parallel decomposition of methods in any way. In order to
generate plans, JSHOP2 needs a domain description and a problem that should be
solved. The planning domain description is composed of operators, methods and
axioms [Ilghami 2006].

Operators define the execution of tasks. They hold information on requirements to
the current state (e. g. posession of objects or knowledge) and the effects of the
tasks (e. g. grabbing or dropping an object). Operators also hold an optional
cost expression. Listing 2.1 shows the structure of an operator based on moving
an object. !name corresponds to a primitive task atom, ?arg1 and ?arg2 are
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the task arguments. (on table ?arg1) is a possible precondition, stating that
the ?arg1 is located on a ?table. The next line is the delete list. Obviously,
after grabbing ?arg1 from the ?table, ?arg1 is no longer on the ?table. The
last required line is the add list. In this case ?arg1 should be placed on top of
?arg2, therefore (on ?arg2 ?arg1) will be true after execution. The :protection
ensures, that (on ?arg2 ?arg1) only becomes true, if ?arg1 is really placed on
top of ?arg2. The add list may be followed by an optional cost operator.

1 (:operator (!name ?arg1 ?arg2)
2 (on ?table ?arg1)
3 (on ?table ?arg1)
4 ((on ?arg2 ?arg1) (: protection (on ?arg2 ?arg1)))
5 )

Listing 2.1: A sample operator in a SHOP planning domain

Methods define decomposition of compound tasks into partially ordered subtasks.
Like operators, methods have requirements to the current state. One method
may hold more than one set of preconditions and decomposition tasks lists. De-
pending on the preconditions, a compound task can be decomposed in different
ways. A travelling planner for example could decompose a travel depending on
the amount of cash available. The result may be a plan to travel by plane or
by train. Listing 2.2 shows a quick example of such a method. The methods
name is a compound task like travelling to ?arg1. plane and train are optional
names to help debugging. (enough-cash ?cash) and (not-enough-cash ?cash) is
the precondition for decomposing the task. Depending on the precondition, the
compound task name can either bei decomposed to buying a plane or a train
ticket and then travelling to ?arg1. A method may hold an arbitrary amount
of decomposition branches.

1 (:method (name ?arg1)
2 plane
3 (enough−cash ?cash)
4 ((! buy−ticket ?plane ?x) (! travel ?arg1))
5 train
6 (not−enough−cash ?cash)
7 ((! buy−ticket ?train ?x) (! travel ?arg1))
8 )

Listing 2.2: A sample method in a SHOP planning domain

Axioms are Horn clauses in a Lisp-like syntax due to SHOP2 implemented in Lisp.
They are used to express complex precondition. A precondition to traveling
by plane may not only be the amount of cash available but may also depend
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on travelling distance and availability of airports. Listing 2.3 shows an exam-
ple axiom for travelling by plane with the previously listed prerequisits. First
the ticket price for travelling to ?x and the available cash are evaluated and
compared, then the distance is checked to be greater than 50 miles. The last
preconditions looks for availbale airports near. An axiom may combine precon-
ditions in order to make domain descriptions easier. Preconditions may also
be logically arranged.

1 (:− (travel−by−plane ?x)
2 ((ticket−price ?x ?t) (cash−available ?c) ( call >= ?c ?t)
3 (distance ?x ?d) ( call >= ?d 50)
4 (airport−available))
5 )

Listing 2.3: A sample axiom in a SHOP planning domain

Although JSHOP2 is a powerful, easily usable planning algorithm, it lacks parallel
planning capabilites. The effiency of the SHOP2 algorithm though, allows post-
refinement for parallel execution without slowing down planning processes.

2.4. SMACH

SMACH is a python based task-level architecture. The name derives from State
Machine and is pronounced like the verb “smash”[Bohren 2012]. Although SMACH
was built to allow rapid development of robust robot behavior for ROS, it is inde-
pendent from the operating system but well integrated. This makes SMACH the
system of choice for many developers on the PR2 when it comes to creating a com-
plex behavior. Examples include opening doors, plugging into an outlet and fetching
drinks from a refrigerator [Bohren and Cousins 2010][Bohren et al. 2011] Unlike
usual state machines, the states of which provide a given configuration between
the execution, SMACH states are states corresponding to the system performing
a task. Each state is an executable task. This concept puts the focus on the exe-
cution instead of snap-shots between performing actions. States are connected by
their outcomes. The default outcomes for SMACH states are “succeeded”, “aborted”
and “preemted”. Each outcome may be connected to another state, not connected
outcomes terminate the state machine.

In SMACH, states also include a small database to hold and pass data to other
states, thus states are capable of calculations. Data passing is done by the input and
output keys of states. Input keys are similiar to parameters in method heads, output
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keys are the parameters passed on the method call. In this way, the state outcomes
may be viewed as the methods return value.

SMACH uses States and Containers to construct complex hierarchical state ma-
chines. On the bottom level, states are included in a container. This container may
be treated just like a state in a higher level container. This higher level container
may consist of containers and states or only containers. Therefore, containers need
to have defined outcomes as well as states. SMACH already offers a sufficient range
of containers and states, but custom states and containers may be implemented if
needed. The SMACH default states are:

Generic State is the base state, it may be used to create own customized states.

CBState stands for Call Back State and performs a callback to a given function.
The CBState will pass the states userdata as well as the given arguments to
the function.

SimpleActionState is part of the smach_ros library. It is a state made for executing
actionlib actions. actionlib is an interface for atomic tasks on ROS robots like
moving, manipulating, object detection and many more. The interface uses a
client-server structure to execute and interrupt the actions. While these ac-
tions could be called from a custom state derived from the generic state, the
SimpleActionState offers an easily usable method. The SimpleActionState al-
ways has the three default outcomes, which may then be mapped to successive
states. The SimpleActionState itself offers four possibilities to pass the goal
to the actionlib server. (1) Pass an empty goal; (2) Pass a fixed goal; (3) Get
the goal from the states userdata and pass it; (4) Pass the return value of
a function. Before storing the result of the actionlib action performed in the
state to the userdata, a function callback may be used to interpret the result.

ServiceState is similiar to the SimpleActionState. Instead of executing actionlib
actions, the ServiceState may call any service. Instead of passing a goal, the
ServiceState will send a request to the service and will receive a response
instead of a result. Other than that the usage and the four options to send the
request are the same as the SimpleActionState.

MonitorState is still in progress. It is supposed to monitor a topic and block the
state machine while the desired message has not been published to monitored
topic.

ConditionState calls a condition function to check the result. If the condition is
false and the maximum number of allowed checks is reached, it will return
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false. If the maximum is not reached it will block execution until the condition
becomes true.

SMACH also features four default containers each with a different focus on the task
execution order:

StateMachine is the basic container. States may be added to the container and
connected by their outcomes. Alike all other containers, the outcomes have to
be specified on construction and the optional input and output keys need to
be defined. Each container has a userdata that is available to all states and
containers inside. The static method add() appends states or containers once
the container has been opened. Containers must be opened by using the open()
and close() functions or Pythons with keyword.

Concurrence is the most interesting Container for this work and the main reason
why SMACH was chosen to implement parallelization of task execution. The
Concurrence does not connect the contained states by outcomes, instead all
contained states are executed in parallel. Once all states have terminated, their
outcomes are mapped to a container outcome. Concurrence also offers two call-
backs to gain further control of the parallel execution. child_termination_cb()
is called whenever a state of the Concurrence terminates and the outcome may
be used e. g. to terminate the other, still running, states in case the desired
outcome was not archieved. outcome_cb() is called when all states have ter-
minated and may be used to alter the Concurrence outcome.

Sequence is a container to run a simple, consecutive task execution. Alike the Con-
currence, the outcomes of the states do not have to be mapped to other states
by hand. A connector_outcome is specified. Each state is connected to the
successive state with this connector_outcome. The states are executed in the
order in which they are added to the Sequence. Since Sequence is a modified
StateMachine container, it is still possible to connect the outcomes to other
states, but the connector_outcome will override this connection.

Iterator works like a loop for SMACH. The container will execute the single con-
tained state while the result is equal to the loop_outcomes. In order to con-
struct a more complex loop, other containers may be wrapped inside the Iter-
ator.

Since parallel plans consist of nested Sequences and Concurrences, the SMACH
containers and their nested structures offer huge potential for parallel execution
of refined sequential plans. The integration into ROS with SimpleActionStates and
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custom states inherited from the Generic State, presents a good interface to interpret
parallel plans into execution of atomic actions.

Lasse Einig 13



Parallel Plan Execution on a Mobile Robot
A Resource Based Approach

2. State of the Art

14 Lasse Einig



Parallel Plan Execution on a Mobile Robot
A Resource Based Approach

3. Analysis

In order to find a suitable parallel execution order for the sequential plan, this work
will analyze the atomic actions and assign resources of the robot to the actions. A
parallel execution may not have more than one task in a parallel order that uses the
same resource. Tasks that use different resources may be parallelized. In addition,
some security constraints may be added to ensure a secure execution order. Resources
of the PR2 are:

• Head (including most sensors like vision and depth cameras)

• Torso (moving up and down)

• Base (navigating in the environment including the 2D base laser)

• Right arm (manipulating the environment)

• Left arm (manipulating the environment)

Atomic actions in the JSHOP2 planning domain are operators, while methods are
used to decompose complex tasks.

3.1. RACE Scenario: Serving beverages

In this scenario, the robot is supposed to get a beverage from a counter and serve it
to a table. The scenario is located in a laboratory restaurant environment at group
TAMS, University of Hamburg.

3.1.1. Operators and Resources

The planning domain for the “Serving beverages” scenario holds a total of ten oper-
ators. Four of these operators move one arm and only differ in the prerequisites and
the arm which is to be moved. One operator for each arm assumes that both arms
are in a tucked position, thus leaving the arm that is not moved by the operator in
the tucked position after the operator has finished. The other operator for each arm
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assumes that only the arm to be moved is tucked and the other arm is already in
some kind of manipulation position. After completion of this operator, both arms
will be in an untucked state. These arm operators are !move_arm_to_side left_arm
respectivly !move_arm_to_side right_arm. Since these operators only use one of
the robots arms, the resource used by this action is the arm (left_arm, respectivly
right_arm).

The torso resource is used only by the !move_torso ?position operator which is used
to move the torso to a torso_up_position or a torso_down_position. !move_base
?to and !move_base_blind ?to use the base resource to navigate to tables or counters
in the room. While !move_base uses collision avoidance to navigate in a room with
obstacles, !move_base_blind is only used to navigate from a pre-manipulation pose
close to the table or counter in order to get into the required grasping range.

The last two operators (!pick_up_object ?object ?arm and !place_object ?object
?arm ?to) control picking up and putting down the objects to be served. They do
not only require the arm resource to grab the object, but also the head resource to
detect the object with vision and depth sensors.

3.1.2. Methods and Decomposition

A typical problem for the planning domain locates the robot in the same room as
a counter and a table. Three objects, including one clean coffee cup, are located on
the counter. Both arms are in an untucked state, the torso is in an upper position.
The objective for the robot is to serve the coffee cup to the table (serve_cup ta-
ble_1 ). serve_cup ?to is decomposed to move_object ?object ?to after checking for
the correct object type (coffee cup) and if the object is in a clean state. move_object
?object ?to can be decomposed to move_object ?object ?from ?to, if the precondi-
tion: ?object is located on a counter or table (?from) is fulfilled, or into put_object
?object ?to, if the precondition robot is holding on to ?object is fulfilled. At this
point, the object is still located on the counter, so the first decomposition is applied.
move_object ?object ?from ?to first decomposes to get_object ?object ?from, then
again to move_object ?object ?to. After execution of get_object ?object ?from, the
robot should hold on to the object and therefore decompose move_object ?object
?to to put_object ?object ?to. Both get_object ?object ?from and put_object ?object
?to decompose similarly.

In case the robot is not already close enough to the table or the counter to get the ob-
ject from, or put the object down to, the robot will first drive to a pre-manipulation
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position (drive_robot ?fromarea respectively drive_robot ?toarea), then retry the de-
composition. The drive_robot method decomposes, depending on the preconditions,
to the operators !tuck_arms, !move_torso and !move_base. Tucking arms and mov-
ing down the torso will only be applied, if the robot is not holding an object.

If the robot is close enough to the manipulation location, get_object ?object ?from
and put_object ?object ?to decompose to manipulation methods grasp_object ?ob-
ject and put_down ?object ?to. Both manipulation methods decompose to assuming
the manipulation pose (coming from the pre-manipulation pose), performing the
manipulation and leaving the manipulation pose. Assuming the manipulation pose
decomposes to the operators !move_torso torso_up_position, !move_arm_to_side
[left_arm, right_arm] and !move_base_blind while leaving the manipulation pose
decomposes only to !move_base_blind. The manipulation operator performed during
assuming and leaving the manipulation pose is !pick_up_object ?object [left_arm,
right_arm] respectively !place_object ?object [left_arm, right_arm] ?to.

3.1.3. Plan and Parallelization

The planning process usually comes up with four different plans, of which the first
plan is executed. A typical sequential plan resulting from the planning process is:

1. !tuck_arms both_arms

2. !move_torso torso_down_position

3. !move_base counter_1_pre_manipulation_pose

4. !move_torso torso_up_position

5. !move_arm_to_side left_arm

6. !move_base_blind counter_1_manipulation_pose

7. !pick_up_object coffee_cup_1 left_arm

8. !move_base_blind counter_1_pre_manipulation_pose

9. !move_base table_1_pre_manipulation_pose

10. !move_base_blind table_1_manipulation_pose

11. !place_object coffee_cup_1 left_arm table_1

12. !move_base_blind table_1_pre_manipulation_pose
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This plan is devided in two sections as this work will later show. At first, the latter
section is reviewed. It starts at item 6. The movement action with no collision
avoidance cannot be paralellized with moving the arm or picking up an object.
Moving the arm to the side while moving closer to the table or the counter with
no collision avoidance exessively increases the risk of damaging the robot or its
environment, including humans sitting at the table. The same is true of manipulating
an object increased by the fact, that the robot may not be able to grab the object
because it is out of range for the arm or increases probability for singularities in arm
planning. Therefore item 6 offers a good breach dividing the plan into two segments.
The following tasks 7 – 12 alternately have a !move_base_blind task and another
task. Again, moving tasks with no collision avoidance are unsafe to parallelize. In
addition, the task 7, picking up the object must be complete before backing off
from the table or counter to successfully complete the manipulation. Item 8 must
be finished before moving with object detection in task 9, since the object detection
that close to the table might force the robot to shut down since no collision free
path can be found. Tasks 8, 9 and 10 use the same resource (moving with the base)
and may not be executed in a parallel order as well. Again, item 11 may not be
executed in parallel with 10 or 12, because either the area to place the object at is
not in range or the object has not been put down yet.

For the second segment of the plan, this only leaves a sequential task order to be
executed, shown in figure 3.1. Although the sequential order of the tasks 8 – 10 will
result from the resource collision, a constraint must be introduced to avoid the
parallel ordering of the other tasks with the “blind” navigation.

The former section of the sequential plan offers parellelization potential. This work
will review two different approaches. The first approach is a more secure approach
as it puts a constraint on the task 3 to avoid driving through the environment with
untucked arms and a torso in upper position. Untucked arms bear a slightly higher
risk of collision and increase collision detection complexity. The torso in an upper
position raises the center of mass of the robot, thus reducing stability of acceleration
in the horizontal plane. The second approach will ignore these risks, as the robot is
still able to decelerate without tilting over if the torso is in an upper position. Test
runs in the gazebo simulation environment and the practical experiments in the test
environment at group TAMS will point out difficulties with collision detection and
avoidance when executing the parallel approaches.

The collision avoidance will be examined in a practical experiment (chapter 5) in
the test environment at group TAMS and the gazebo simulation environment.

18 Lasse Einig



Parallel Plan Execution on a Mobile Robot
A Resource Based Approach

3.1. RACE Scenario: Serving beverages

(!move_base_blind
counter_1_manipulation_pose)

(!pick_up_object
coffee_cup_1 left_arm)

(!move_base_blind
counter_1_pre_manipulation_pose)

(!move_base
table_1_pre_manipulation_pose)

(!move_base_blind
table_1_manipulation_pose)

(!place_object
coffee_cup_1 left_arm table_1)

(!move_base_blind
table_1_pre_manipulation_pose)

Figure 3.1.: Sequential section of Serving Beverages scenario. Due to security threats
by movements without collision detection, there are no parallelization
capabilities in this section.

For both approaches, tasks 1, 2, 4 and 5 may be executed in parallel, regarding:

• Tasks 1 and 5 use the same resource, therefore 1 has to be finished before 5.

• Tasks 2 and 4 use the same resource, therefore 2 has to be finished before 4.

• Task 3 may not be started after 4 or 5.

These constraints add up to the parallel execution orders shown in figure 3.2 and
3.3. While figure 3.2 shows a more secure approach by adding a security con-
straint to the !move_base counter_1_pre_manipulation_pose operator, the execu-
tion order in figure 3.3 increases parallel potential by allowing arm and torso move-
ments while moving the base. In figure 3.2, the !move_base operator is assigned the
Base resource, as well as the Torso, Left arm and Right arm resource. Therefore,
the operator !move_base must wait for the completion of !tuck_arms both_arms
and !move_torso torso_down_position operators and it must be finished before
!move_torso torso_up_position and !move_arm_to_side left_arm operators may
be executed. In figure 3.3, the !move_base operator is assigned only the Base re-
source.

Expectation is, that the approach without security constraint is most effective, if the
time that task 3 needs is longer than the time of the parallel execution of tasks 1 and
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(!tuck_arms
both_arms)

(!move_torso
torso_down_position)

(!move_base
counter_1_pre_manipulation_pose)

(!move_torso
torso_up_position)

(!move_arm_to_side
left_arm)

(!move_base_blind
counter_1_manipulation_pose)

Figure 3.2.: Parallel section of the Serving Beverages scenario. A security constraint
is added to !move_base counter_1_pre_manipulation_pose forcing the
robot to finish arm and torso movements before moving the base to the
new position and waiting for the base movement to finish before the
arms and torso may operate again. This prevents the robot from hitting
objects or humans in the environment, respectively increases the tilt
stability while moving due to a lower center of mass.

2 in addition with the time of 4 and 5. Up to a certain distance from the robots’
start position from the counter, the time benefit will increase while the distance
increases. For the approach with security constraint, the time benefit should stay
constant.

3.2. Theoretic Scenario: Loading a dishwasher

In this scenario, the robot is supposed to load a set of plates and cups into the
upper basket of a dishwasher. Cups are placed on the right side, plates on the left
side. This scenario yet lacks practical application and will therefore be analyzed in
theory.

3.2.1. Operators and Resources

The planning domain for the theoretical scenario Loading Dishwaser holds a set of
operators similar to the “Serving beverages” domain. Both domains hold !tuck_arms,
!move_torso, !move_base and !move_base_blind operators as they are essential for
navigating to and from manipulation poses. The domain for “Loading a dishwasher”
also holds the same set of !move_arm_to_side operators. These operators require
the same resources as in chapter 3.1.1.
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(!tuck_arms
both_arms)

(!move_torso
torso_down_position)

(!move_base
counter_1_

pre_
manipulation_

pose)
(!move_torso

torso_up_position)
(!move_arm_to_side

left_arm)

(!move_base_blind
counter_1_manipulation_pose)

Figure 3.3.: Parallel section of the Serving Beverages scenario. No security constraint
is added. Possible threat is posed to the environment but parallel capa-
bilities are increased.

Picking up plates and cups and loading them to the dishwasher requires four new
operators: (1) pick_up_plate, (2) pick_up_cup, (3) place_plate and (4) place_cup.
(1) and (2) obviously require the robot to detect the desired object and use an arm
to grab the object. Since cups are located on the right of the dishwasher basket, (2)
uses the right arm and (1) uses the left arm. Operators (3) and (4) place the object
into the dishwasher. The dishwasher and its basket have predefined measurements
and the robots tracks the amount of objects in the dishwasher while loading. Pre-
defined positions in the basket allow the robot to place objects in the dishwasher
“blindly”. That is, the robot does not use its sensors to detect valid positions in the
dishwasher. (1) requires the Head resource to detect the objects and the Left arm
resource to grab the plate. (2) also requires the Head resource for detection, but the
Right arm resource to grab the cup. (3) requires only the Left arm resource to place
the object, while (4) only requires the Right arm resource to place the object.

3.2.2. Methods and Decomposition

The theorectical problem for the planning domain locates the robot in the hallway
near the door to the kitchen with the dishwasher. Four plates and five cups are
placed near the dishwasher in a position enabling the robot to grab the objects and
place them into the dishwasher without moving its base. This position may even be a
tray mounted to the robot. The objective for the robot is to place all objects of type
plate or cup in manipulation range into the dishwasher (load_dishwasher). While the
robot is not in its manipulation pose, load_dishwasher decomposes to drive_robot
?position. Similar to Serving beverages (chapter 3.1.2), drive_robot decomposes to
!tuck_arms both_arms, !move_torso torso_down_position and !move_base
pre_manipulation_pose.
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Now that the robot is in its pre-manipulation position, load_dishwasher decom-
poses load ?object until no more objects are left. The ?object type is determined by
the amount of objects of the certain type left to load. In this example, the plan-
ner will decide to start loading a cup and continue loading plates and cups in an
alternating order. load ?object will decompose to !pick_up_plate and !place_plate,
respectively !pick_up_cup and !place_cup. If the robot is not yet in the manipula-
tion position before the pick-up operator, load ?object will decompose to !move_torso
torso_manipulation_position, !move_arm_to_side right_arm, !move_arm_to_side
left_arm and !move_base_blind manipulation_pose.

Once no more objects are left to place in the dishwasher, load_dishwasher will
decompose to !move_base_blind pre_manipulation_pose, !tuck_arms both_arms as
well as !move_torso torso_down_position and the planning process is finished.

!tuck_arms both_arms !move_torso torso_down_position
!move_base
pre_manipul
ation_pose

!move_torso
torso_manipulation_

position

!move_arm_to_side
left_arm

!move_arm_to_side
right_arm

!move_base_blind
manipulation_pose

Figure 3.4.: Parallel section of the Loading Dishwasher scenario. No security con-
straint is added. Possible threat is posed to the environment but parallel
capabilities are increased.

3.2.3. Plan and Parallelization

Since no planning domain exists yet, an assumed sequential execution order is used
for parallelization. A typical sequential plan resulting from the planning process
might be:

1. !tuck_arms both_arms

2. !move_torso torso_down_position

3. !move_base pre_manipulation_pose

4. !move_torso torso_manipulation_position

5. !move_arm_to_side left_arm

6. !move_arm_to_side right_arm
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7. !move_base_blind manipulation_pose

8. !pick_up_cup

9. !place_cup

. . .

10. – 25. Pick and place operators are repeated four times

!pick_up_plate

!place_plate

!pick_up_cup

!place_cup

. . .

26. !move_base_blind pre_manipulation_pose

27. !tuck_arms both_arms

28. !move_torso torso_down_position

Again, the plan is divided into two sections. Other than the Serving Beverages sce-
nario, both sections of the Loading Dishwasher scenario hold parallelization capabil-
ities. Similar to the Serving Beverages scenario, the first section offers two different
approaches to parallel execution (Chapter 3.1.3). Like the first scenario, the prob-
lematic task is moving the base to the pre-manipulation pose, which is enclosed in
tucking and untucking arms, as well as moving the torso up and down. Both ap-
proaches are described in this chapter and the evaluation of the Serving Beverages
scenario in chapter 5 will give information on executability of the approaches.

For reasons described in chapter 3.1.3, task 7 marks the border between the two
sections. The first section of Loading Dishwasher is similar to the first section of
Serving Beverages. The only difference is, instead of moving one arm to the side
like in Serving Beverages, Loading Dishwasher requires both arms to be moved to
the side. Since the second arm movement does not conflict with any other tasks
in the execution order but with tuck_arms both_arms, which has to be executed
both before move_arm_to_side left_arm and move_arm_to_side right_arm, the
second arm movement can simply be inserted to into the parallel container (Figures
3.4 and 3.5).

Other than this, the first section is the same as the Serving Beverages scenario
with the same restrictions and will therefore be skipped. The latter part of the
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!tuck_arms both_arms !move_torso torso_down_position

!move_base pre_manipulation_pose

!move_torso
torso_manipulation_position !move_arm_to_side left_arm !move_arm_to_side

right_arm

!move_base_blind
manipulation_pose

Figure 3.5.: Parallel section of the Loading Dishwasher scenario. A security con-
straint is added to !move_base pre_manipulation_pose forcing the
robot to finish arm and torso movements before moving the base to
the new position and waiting for the base movement to finish before
the arms and torso may operate again. This prevents the robot from
hitting objects or humans in the environment, respectively increases the
tilt stability while moving due to a lower center of mass.

plan execution though is completely different from the Serving Beverages scenario.
The problematic task from the Serving Beverages scenario, the !move_base_blind
action is only found twice in the latter part of the Loading Dishwasher scenario. The
first appearance is the section dividing task and has no effect on the parallelization
capabilities of this section, only for the overall execution order. The main part of this
section is made up by repetitive pick and place actions. Two different types of objects
are recognized, picked up and placed in the dishwasher basket. The object types are
cup and plate. Each object has its own pick and place actions. Picking up any of the
objects requires object detection and therefore requires the Head resource with the
cameras and depth sensors. The !pick_up_cup action additionally requires the Right
arm and the !pick_up_plate action requires the Left arm. The arm resources are the
same for the place actions, but the head is not required. This leads to two different
types of dependencies in the parallel execution order, as marked in figure 3.6. The
first type of dependency is the Head resource. In figure 3.6 the Head resource is
represented by a dotted line. The second type of dependency is the Arm resource,
which is divided into Right arm (represented by a thick dashed line) and Left arm
(represented by a thin dashed line). Figure 3.6 shows a thick dashed path from
!pick_up_cup cup1 to !place_cup cup5 on the left side and a thin dashed path
from !pick_up_plate plate1 to !place_plate plate4 on the right side. These paths
are “synchronized” by the Head resource (showing a zigzagged path between left
and right path).
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!move_base_blind
manipulation_pose

!pick_up_cup cup1

!place_cup cup1 !pick_up_plate plate1

!place_plate plate1!pick_up_cup cup2

!place_cup cup2 !pick_up_plate plate2

!place_plate plate2!pick_up_cup cup3

!place_cup cup3 !pick_up_plate plate3

!place_plate plate3!pick_up_cup cup4

!place_cup cup4 !pick_up_plate plate4

!place_plate plate4!pick_up_cup cup5

!place_cup cup5

!move_base_blind
pre_manipulation_pose

!tuck_arms both_arms2 !move_torso torso_down_position2

Head
Right Arm

Left Arm

Figure 3.6.: Latter section of Loading Dishwasher scenario. Repetive Execution of
loading cups and plates with different arms offers huge parallelization
capabilities, nearly cutting execution time in half. Dependencies from
Head, Left arm and Right arm resources in the repetitive part are dis-
tinguished between by different line styles shown in the legend.

After finishing with the pick and place actions, the second !move_base_blind action
forces the parallel execution to a break until continuing with tucking arms and
moving torso in parallel again (like the first section).

Like in chapter 3.1.3, expectation is for the approach without security constraints
(Figure 3.4) to be more effective depending on the distance to be travelled. The main
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benefit though should be gained in the latter section while executing the pick and
place actions. Obviously, best results should be achieved if the amount of cups and
plates only differ by a maximum of one item. Since there is a little sequential exe-
cution left (picking and placing the first item and both !move_base_blind actions)
larger amounts of objects to be placed in the dishwasher basket should increase
percental benefit compared to the sequential plan execution.

This chapter analyzed the parallelization potential of the two scenarios dealt with
in this work. Optimal parallelized execution orders by human have been presented,
resources, dependencies and possible security threats have been highlighted. After
examining the implementation for automated parallelization, the results will be eval-
uated in chapter 5 with the specifications made in this chapter.
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4.1. Basic structure

This chapter will give a quick look into the implementation of the parallelization al-
gorithm and into the creation and execution of the SMACH state machine. SMACH
is currently only available with a Python API, so Python is used. The implemen-
tation has three overall levels (algorithm 1). The first level is the JSHOP2 planner.
Running the JSHOP2 planner and getting the planning result is trivial to this work,
hence it will not be explained. Still, listing A.1 shows the basic routine to call the
planner. The second level parses the plan returned by the JSHOP2 planner and per-
forms the parallelization operations. The third level creates a SMACH state machine
from the parallelized plan and executes it.

Algorithm 1: Main structure
Data: planningGoal

1 begin
2 plan ← GetJSHOP2Plan(planningGoal);
3 parallelPlan ← ParallelizePlan(plan);
4 ExecuteStateMachine(parallelPlan);

4.2. Parallelization algorithm

The parallelization algorithm is devided into two parts. The first part is the Par-
allelizePlan() algorithm (algorithm 2). It parses and prepares the JSHOP2 plan.
Afterwards, a recursive algorithm (ParallelizePlanRecursively(), algorithm 3) runs
through the prepared plan arranging each task in its parallel order.

4.2.1. Parsing and Preparation

After parsing the JSHOP2 formatted list, the operators are matched with a list of
resources (Listing A.2) and an object of the type Action is created for each operator.
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Algorithm 2: ParallelizePlan()
input: JSHOP2 representation of the sequential plan

1 plan ← ParsePlanToList;
2 begin ResourceAllocator(plan)

// match operators (op) in plan with resources (res) definition
3 r_list ← [[op1,[res1,. . . ,resn]],. . . ,[opn,[res1,. . . ,resn]]];

// create Action object from each entry in r_list
4 a_list ← [Action1(op1,id,res1),. . . ,Actionn(opn,id,resn)];
5 begin ParallelizationPreparation(a_list)

// create links between op’s from res’s
6 l_list ← Link(a_list);

// remove duplicates from l_list
7 l_list ← Unique(l_list);

// generate dependencies (dep) from l_list, sorted by
Action.ID

8 foreach Action i in a_list do i.dep ← Sorted(ID,[depi,. . . ,depn]);
// generate successors (suc) from l_list

9 foreach Action i in a_list do i.suc ← [suci,. . . ,sucn];
// remove redundant links

10 foreach Action i in a_list do i.dep ← CheckDep(i);
11 foreach Action i in a_list do i.suc ← CheckSuc(i);

// find start Actions from a_list
12 s_list ← {Action ∈ a_list|len(Action.dep)=0};
13 actions_left ← {Action ∈ a_list|len(Action.dep)!=0};
14 switch len(s_list) do
15 case 0

// dead graph with no start Actions
16 raise Exception;
17 case 1

// one start Action
// begin parallelization with sequential list (SList)

18 start ← SList(s_list);
// repeat until actions_left is empty

19 ParallelizePlanRecursively(start, actions_left);
20 otherwise

// multiple start Actions
// begin parallelization with parallel list (PList)

21 start ← PList(s_list);
// repeat until actions_left is empty

22 ParallelizePlanRecursively(start, actions_left);
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This list of operators is the only input, besides the sequential JSHOP2 plan, that
is required for the parallelization. The list of operators, currently implemented as a
Python file, holding a list of the operators, each holding a list of resources, is written
by human. New operators for other planning domains may be added by appending
an item to the list, which matches the following syntax:

[!operator_name arg_1 arg_n, [’RESOURCE1’, . . . , ’RESOURCEn’]]

Resources currently implemented in the operators list are (see also chapter 3):

• H for the head

• T for the torso

• B for the base, respectively planar movement

• RA for the right arm

• LA for the left arm

The decisions made by the algorithm on which tasks may be executed in parallel, is
solely based on the required resources by the task.

The Action created after matching the resources, holds the operator as name, a
unique id and the list of resources required by the operator, which will now be
referred to as Action. The class Action (Listing A.3) also holds fields for depen-
dencies (depends) and successors (next) which will be used to link the nodes, as
well as visited_from and marked required for creating links and removing redun-
dant links (algorithm 2, lines 1 – 4). To create the links between the Actions, the
list of Actions is treated like the list of Vertices in graph theory. An algorithm
(listing A.4) similar to algorithms used to create graphs from dependencies is used
to generate the list of Edges connecting the Vertices based on the Vertices requir-
ing the same resource (Listing A.4). Unfortunately, this algorithm creates dupli-
cate links, so these need to be removed (algorithm 2, line 7). The graph algorithm
creates an Edge from each Vertice that uses the same resource. For the approach
shown in figure 3.2, the algorithm creates a link from !tuck_arms both_arms to
!move_base counter_1_pre_manipulation_pose, to !move_arm_to_side left_arm
and !move_base_blind counter_1_manipulation_pose. Since !move_arm_to_side
left_arm depends on !move_base counter_1_pre_manipulation_pose, the link be-
tween !tuck_arms both_arms and !move_arm_to_side left_arm is a redundant
link. These redundant links are removed after mapping the list of links to the de-
pends and next field of each Action (algorithm 2, lines 8 – 11). The preparation for the
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parallelization is now complete. A list of Actions with dependencies and successors
as well as a graph in set notation (G = {V, E}) exist.

Lines 12 – 22 of algorithm 2 prepare the recursive parallelizing algorithm (algorithm
3). The list of Actions is devided into a start list containing Actions with an empty
depends field and a list containing all other Actions to keep track of the Actions
already contained in the parallel list. Since the start list Actions do not depend
on any other Action, they may be executed at first. Depending on the amount of
Actions in the start list, the first container is created. In case the start list is empty,
then the graph is incorrect and the algorithm will halt. With only one Action in the
start list, a sequential container is created and the Action is placed inside. Multiple
Actions in the start list are placed in a parallel container. Note, that the Sequence
and Concurrence containers provided by SMACH (Chapter 2.4) are not used yet,
but rather objects of the type SList and PList derived from Pythons List type. The
start list and the list of left over Actions are passed to the recursive paralellization
algorithm.

4.2.2. Parallelizing

Algorithm 3 shows a simplified representation of the recursive parallelization al-
gorithm. Each time the algorithm adds an Action from the list of left over Actions
(referred to as actions_left), the current item is run through the algorithm again and
the algorithm is run until actions_left contains no more Actions. ParallelizePlan-
Recursively() runs through its input, which may be an SList or a PList, containing
Actions, SLists and PLists. Each element in the top-level list is examined depending
on its type. The element will be referred to as item:

Action has three sub-types:

I. The item has exactly one successive Action, this successor has exactly one
dependency and this dependency is the item. Obviously, the two Actions
are linked with a single link and no interferences. If the item is already
contained in a SList, then the Action may simply be appended to the
SList behind the item. If the item is contained in a PList, the Action
may not be inserted into the PList, so a SList is created to wrap the
PList and the Action.

II. The item has multiple successors, all these successors have a single de-
pendency, which is the item. This case is quite similar to the first, the
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Algorithm 3: ParallelizePlanRecursively()
input: s_list; actions_left

1 foreach item in s_list do
2 switch Type(item) do
3 case Action
4 if len(item.suc) = 1 and len(item.suc[0].dep) = 1 and item.suc[0].dep =

item then
5 if item contained in SList then SList.append(item);
6 else if item contained in PList then
7 PList.append(new SList(PList.pop(item),item.suc));

8 else if len(item.suc) > 1 and All(i in item.suc: i.dep = 1 and i.dep[0] =
item) then

9 if item contained in SList then
10 SList.insert(behind item: new PList(item.suc[0 . . . n]));
11 else if item contained in PList then
12 PList.append(new SList(PList.pop(item), new PList(item.suc[0

. . . n])));

13 else if len(item.suc) = 1 and len(item.suc[0].dep) > 1 then
14 new SList, newPList;
15 foreach element in s_list do
16 if element ∈ item.suc[0].dep then PList.append(element);
17 else SList.append(element);
18 s_list ← new SList(PList, item, SList[0 ...n]);

19 case PList
20 if len(item.suc) = 1 and All(item.suc[0] = item.suc[0]) and

len(item.suc[0].dep) = len(item) then
21 PList.parent.append(item.suc[0]);
22 if len(item.suc) > 1 and All(item.suc.dep ∈ item) then
23 PList.parent.append(new PList(item.suc));

24 case SList
25 if len(item.suc) > 1 and All(len(item.suc.dep) = 1 and item.suc.dep[0] =

last(item)) then
26 SList.parent.append(new PList(item.suc[0 . . . n]));
27 if len(item.suc) = 1 then
28 if len(item.suc[0].dep) = 1 and item.suc[0].dep[0] = last(item) then
29 s_list ← new List(new SList(item, item.suc[0].dep[0]),

All(element ∈ actions_left|element /∈ SList));
30 if len(item.suc[0].dep) > 1 and item.suc[0].dep[0 . . . n] /∈ actions_left

then
31 s_list ← new List(new SList(item, new PList(item.suc[0].dep[0

. . . n]), All(element ∈ actions_left|element /∈ PList)));
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only difference is, that the multiple successive Actions are encapsulated
into a PList before appending or wrapping them.

III. The item has a single successor, but this successor has multiple depen-
dencies. All elements in the start list (respectively the s_list) are sorted
into elements that the successors depends on, and those that it does not.
The elements that the successor depends on are placed in a PList, the
others in a SList. The s_list is replaced by the PList, the item and the
elements of the SList.

PList has two subtypes:

I. Each element of the item has exactly one successive Action, this Action
is the same for each successor and each successor has the same amount of
dependencies as the item has elements. The successive Action is inserted
behind the item in the same list containing the item.

II. Each element has multiple successors and all dependencies of these suc-
cessors are contained in the item. This denotes two parallel sections in
direct dependance, thus, all successors can be placed in a new PList and
can be treated like the single Action in I.

SList has three subtypes. The successor of an SList is the successor of the last item
in the SList, the dependency obviously is the dependency of the first item:

I. The item has multiple successors and all successors have a single depen-
dency, which is the item. All successors may be placed in a PList and
this list is appended to the list containg the item behind that.

II. The item has a single successor, this successor has a single dependency
which is the last item in item. s_list is replaced by a list containing the
item, the successor of item and the other Actions contained in s_list. The
list types depend on the previously contained list types and the amount
of Actions and lists contained in s_list.

III. The item has a single successor with multiple dependencies, which are not
in actions_left. Similar to II., s_list is replaced by a list containing the
item, the successors and the other Actions. Other than II., the successors
are contained in a PList.
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Algorithm 4: ExecuteStateMachine()
input: parallelized list of Actions

1 begin CreateSMACH(a_list)
2 while a_list do
3 switch a_list.pop(0) do
4 case [
5 create new Concurrence;
6 insert Concurrence into currently opened Container;
7 open Concurrence

8 case (
9 create new Sequence;

10 insert Sequence into currently opened Container;
11 open Sequence

12 case ]
13 close Concurrence;
14 open Concurrence.parentContainer;
15 case )
16 close Sequence;
17 open Sequence.parentContainer;
18 case Action
19 insert State(Action) into currently opened Container;

20 if CreateSMACH then
21 state_machine.run

4.3. Creating and Executing SMACH State Machine

As seen in algorithm 1, ExecuteStateMachine() is passed the parallelized plan result-
ing from algorithm 2 and 3. This list now contains elements that identify a container
or an Action. The algorithm runs through the complete list until it is empty, remov-
ing the elements in order from the first to the last. There are five possibilites for the
element:

I. [ denotes opening a PList, respectively a parallel container or a SMACH Con-
currence. The Concurrence is created, appended to a list of open containers to
keep track of the current depth, and Concurrence.open() opens the container.
Every Action is now inserted into this container until it is closed.

II. ( denotes opening a SList, respectively a SMACH Sequence. See I.
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III. ] denotes closing a PList. The Concurrence is closed using Concurrence.close().
Since this container is completed, it is removed from the list of open containers,
reducing the depth. The last container in the list of open containers is then
opened (lastContainer.open()).

IV. ) denotes closing a SList. See I.

V. Action denotes an Action. Actions are transformed into SMACH states de-
pending on the type of Action and added to the currently opened container.

Once the algorithm reached the end of the list, the list of opened containers contains
only the top-level container. This container is the SMACH state machine to be
executed.

For all currently possible planning scenarios, all possible split and join events are
covered by the algorithm, evolution in planning scenarios will have to be covered by
changes in the algorithm.
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In this chapter the experiments for the Serving Beverages (Chapter 3.1) and for the
Loading Dishwasher scenario are evaluated. While the Serving Beverages scenario
was simulated and carried out practically with the robot itself, the experiments for
Loading Dishwasher are only theoretical. Afterwards, global capabilities concerning
the RACE architecture are discussed.

The first step is the parallelization process itself. Listing 5.1 shows the parallelized
result for the approach with no security constraints. This approach will be referred
to as offensive approach. Listing 5.2 shows the result for the approach with security
constraint, forcing the robot to wait for arm and torso actions to complete before
moving the base, which will be referred to as defensive approach. For the offensive
approach, the optimal parallelization by human was presented in figure 3.3, 3.1, and
also in figure A.1. In figure A.1 (as well as figures A.2, A.3 and A.4), containers
are highlighted with a transparent background box. A box containing vertically
aligned Actions or sub-boxes represents a Sequence container, while a box containing
horizontally aligned items represents a Concurrence container. The plans returned by
the algorithm in listings 5.1, 5.2, A.5 and 5.3 on the other hand represent containers
in pairs of parentheses. Round brackets represent a Sequence container, squared
brackets represent a Concurrence container. The indent of the Action represents
the container depth discussed in chapter 4.3. The container depth in the human-
optimized plans is represented by the grey level.

5.1. RACE Scenario: Serving beverages

5.1.1. Parallelization

Comparing listing 5.1 and figure A.1 reveals a flawless parallelization. The algo-
rithm created the exact same container tree as the human optimization did. The
first opening bracket represents the lightest grey box in figure A.1. Both contain
the seven sequential elements and a parallel container represented by the pair of
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squared brackets. This parallel container contains the !move_base Action and the
two sequential containers.

1 (
2 [
3 (
4 −!tuck_arms both_arms−
5 −!move_arm_to_side left_arm−
6 )
7 (
8 −!move_torso torso_down_position−
9 −!move_torso torso_up_position−

10 )
11 −!move_base counter_1_pre_manipulation_pose−
12 ]
13 −!move_base_blind counter_1_manipulation_pose−
14 −!pick_up_object coffee_cup_1 left_arm−
15 −!move_base_blind counter_1_pre_manipulation_pose−
16 −!move_base table_1_pre_manipulation_pose−
17 −!move_base_blind table_1_manipulation_pose−
18 −!place_object coffee_cup_1 left_arm table_1−
19 −!move_base_blind table_1_pre_manipulation_pose−
20 )

Listing 5.1: Plan resulting from the parallelization algorithm optimizing the Serving
Beverages scenario using no security constraints.

Listing 5.2 though shows a minimal difference. While the beginning is the same
as figure A.2, starting with the overall sequential container, containing the first
parallel container, followed by the single !move_base Action, after this Action, an
unnecessary Sequence is inserted. This container is the result of merging the lists
in algorithm 3, lines 27 – 29. Although the automated parallelization returns a plan
with an additional sequential container, this does not effect the parallel execution
of the plan, as the additional Sequence is contained in a Sequence itself and only
contains sequential Actions. The resulting parallel execution can be expected to be
the same as the human optimized plan.

5.1.2. Simulated Experiment

As the gazebo simulator returns the same results as the practical experiments and is
only used to determine if the execution of the plan performs correctly and presents
no threat to humans, the environment or the robot itself, the experiment itself is
not described. The only important result from the simulated experiment concerns
the type of plan to be executed in the practical experiment. During the simulated
experiment, while executing the offensive approach, the robot had multiple collisions
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1 (
2 [
3 −!tuck_arms both_arms−
4 −!move_torso torso_down_position−
5 ]
6 −!move_base counter_1_pre_manipulation_pose−
7 (
8 [
9 −!move_torso torso_up_position−

10 −!move_arm_to_side left_arm−
11 ]
12 −!move_base_blind counter_1_manipulation_pose−
13 −!pick_up_object coffee_cup_1 left_arm−
14 −!move_base_blind counter_1_pre_manipulation_pose−
15 −!move_base table_1_pre_manipulation_pose−
16 −!move_base_blind table_1_manipulation_pose−
17 −!place_object coffee_cup_1 left_arm table_1−
18 −!move_base_blind table_1_pre_manipulation_pose−
19 )
20 )

Listing 5.2: Plan resulting from the parallelization algorithm optimizing the Serving
Beverages scenario using security constraints.

with the environment while moving with yet untucked arms. Thus, the offensive
approach cannot be evaluated in a practical experiment since it will damage the
robot. Further collision avoidance development is required in order to detect collision
of the dynamic elements of the robot with the environment.

5.1.3. Practical Experiment

Resulting from chapter 5.1.2, only the defensive approach (listing 5.2 and figure A.2
is executed. Figure 5.1 presents the execution duration of the sequential plan with
and without parallelization. The complete parallel execution takes 269 seconds, while
the sequential execution takes 371 seconds. The parallelization saves 27.5% on the
execution of the Serving Beverages scenario. Since this is the only scenario evaluated
in a practical experiment in this work, the first two tasks will be examined as well.
These two tasks, !tuck_arms both_arms and !move_torso torso_down_position, are
elementary tasks to any scenario involving movement, which is again elementary to
any mobile robot. For collision avoidance and stability during acceleration, the PR2
must tuck its arms and move the torso down before travelling. Thus almost any
possible scenario involves these first two tasks. Execution of these tasks takes 39
seconds in the classic sequential plan and 24 seconds in the optimized parallel plan,
offering a benefit of 15 seconds (39.5%) to almost any scenario, even if the scenario
does not hold any other parallelization capabilities.
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Figure 5.1.: Result from the practical experiment of the Serving Beverages scenario.
The upper section shows the overall execution time and the execution
time of each task in the sequential order. The lower section shows the
overall execution time, the execution time of each task and the parallel
ordering of the parallelized plan. A significant difference of 102 seconds,
respectively 27.5% is observed after optimizing the sequential plan.

Figure 5.2 shows the CPU load in percent of the robot during execution of the paral-
lel, respectively sequential plan. Besides a small shift to the right for the sequential
graph, caused by the increased duration of the first five tasks, no significant dif-
ference is observed. Both execution types produce similar processor load over time,
but since the parallel execution requires 27.5% less execution time, it also requires
about 27.5% less processor capacity. Additionally, this result offers the ability to
further increase parallelization.

5.2. Theoretic Scenario: Loading a dishwasher

5.2.1. Parallelization

Chapter 5.1.2 showed that the offensive approach for the Serving Beverages scenario
is not applicable. Since the difference between the offensive and the defensive ap-
proach is in the first section of both scenarios and the first section of both scenarios
are nearly the same (chapter 3.2.3), it can be assumed, that the offensive approach
for the Loading Dishwasher scenario is not applicable as well. For the sake of com-
pleteness, the result of the automated parallelization for the offensive approach can
be found in listing A.5 and a close look shows the accordance with figure A.3. Note,
that listings 5.3 and A.5 are missing the tasks from 14 to 20 (chapter 3.2.3), which
have been removed to improve clarity of the representation. In the defensive ap-
proach in listing 5.3 and figure A.4, the result of the automated parallelization shows
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Figure 5.2.: Processor load during the practical experiment of the Serving Beverages
scenario. Actually measured values of the computer cluster have been
smoothed with a Beziér polynom and the arithmetic average was cal-
culated. Both graphs show similiar result, the sequential line is shifted
to the right due to increased execution time within the first five tasks.
Overall processor load is steady comparing the sequential and the paral-
lel execution of tasks. Figure A.5 shows processor load of both computers
in the cluster for both experiments.

similiar deviation from the human-optimized plan as the Serving Beverages scenario
did before. Unnecessary but redundant sequential containers are opened on lines 7
and 27 and closed on the lines 40 – 41. On a first glimpse, lines 29 – 33 look out of
order, but a closer look shows that the tasks !pick_up_cup cup5 and !place_cup
cup5 being encapsulated in a sequential container does not effect the execution du-
ration of the parallelized plan. In fact, it is the only possible execution order, as
the automated parallelization algorithm is not able to create links that leap over
tasks.

5.2.2. Experiments

As the Loading Dishwasher scenario is a theoretic scenario, simulated and practical
experiments can not yet be performed. The result from chapter 5.2.1 gives an idea on
the possibilities of the parallelization algorithm. Reduction of approximately 40%
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1 (
2 [
3 −!tuck_arms both_arms−
4 −!move_torso torso_down_position−
5 ]
6 −!move_base pre_manipulation_pose−
7 (
8 [
9 −!move_torso torso_manipulation_position−

10 −!move_arm_to_side left_arm−
11 −!move_arm_to_side right_arm−
12 ]
13 −!move_base_blind manipulation_pose−
14 −!pick_up_cup cup1−
15 [
16 −!place_cup cup1−
17 −!pick_up_plate plate1−
18 ]
19 [
20 −!pick_up_cup cup2−
21 −!place_plate plate1−
22 ]
23 [
24 −!pick_up_plate plate2−
25 −!place_cup cup4−
26 ]
27 (
28 [
29 (
30 −!pick_up_cup cup5−
31 −!place_cup cup5−
32 )
33 −!place_plate plate4−
34 ]
35 −!move_base_blind pre_manipulation_pose−
36 [
37 −!tuck_arms both_arms−
38 −!move_torso torso_down_position−
39 ]
40 )
41 )
42 )

Listing 5.3: Plan resulting from parallelization algorithm on the Loading Dishwasher
scenario using security constraints. Note, that between line 24 and 25
portions of the repetitive output have been skipped.

can be expected. This can be derived from: (1) The measured benefits in the first
section of the Serving Beverages scenario, which is similar in both scenarios; (2)
The shortening of the tasks list length by 50% in the object manipulation section
by always executing two tasks in parallel. In (2), an overhead due to uneqal task
length of picking and placing is expected.

5.3. Integration into current Architecture of RACE Project

Although the results from automated parallelization look promising, capabilities are
currently very limited. With the current setup, only the operators in listing A.2 may
be contained in the planning domain for the HTN planner. In case a new operator is
added to the domain, the operator and its required resources have to be added to the
list. Additionally, the current operators may be decomposed into smaller operators
which provide more parallelization capabilities. This “size” of the atomic tasks and
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5.3. Integration into current Architecture of RACE Project

the need for a human to decide on the required resources of an operator pose a
drawback to the efficiency and the applicability of the parallelization algorithm to
real world problems.
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Figure 5.3.: Global architecture of the RACE project. A Blackboard is the center
of the structure managing the communication. Block A highlights the
Reasoners, blocks B and C hold the modules used in this work.

Figure 5.3 shows the current architecture of the RACE Project [2012]. Communica-
tion is currently planned to run via a Blackboard system [Nii 1986]. The Blackboard
connects the areas B and C with area A. B contains the parallelization algorithm
and the interpreter for the SMACH state machine creator, C contains the JSHOP2
planning system. A contains multiple Reasoners which are currently developed by
part of the RACE project. One of the objectives of the Reasoners is to be able
to decide from its experience, whether an operator is an atomic task or should be
decomposed to smaller operators and, this is most important, which tasks require
which resources including resource-blocking security constraints as seen for the de-
fensive approach. Eventually, one of these Reasoners will be able to inherit the role
of the hard-coded operator resources in listing A.2 described in chapter 4.2.1. This
will remove the need to edit the list of operator resources by hand and remove the
last non-autonomous part from the planning process, since judging on the atomic
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tasks will also allow the Reasoner to create the planning domain for JSHOP2. An-
other possibility presented by the Reasoner is the dynamic adaption of resources
required by an operator. The offensive approach described in chapter 3.1.3 with no
security constraints may be applicable in an environment with no or few obstacles,
while environments with many obstacles and narrow passages require the defensive
approach with security constraints. Variables in the environment, like the size of
the object, the height of the obstacles, the lighting conditions and others, may also
change the required resources for some tasks. The Reasoner will be able to decide
which operator requires which resources based on experiences made in similar envi-
ronments before. The Reasoner will also be able to decide from its experience gained
during previous executions, which task is the best atomic operator for a specific sce-
nario. Depending on the scenario, the size of the atomic operator for the same task
may differ. The Reasoner will also be able to create new scenario planning domains
from its knowledge base. This will not only allow the parallelization of nearly any
problem without human interaction but also increase the parallelization capabilities,
as the Reasoner finds the optimal atomic tasks for the parallel execution of the plan.
Effienceny may thus increase to even more than 27.5%.

JSHOP2 and other SHOP2 implementations are available for multiple platforms and
the Python programming language also supports multiple operating systems. Since
the parallelization itself is not dependend on the interpreter for the SMACH state
machine the parallelization itself is available for any platform supporting Java and
Python and only requires an automatically or human generated resource mapping.

This chapter examined the equivalency of the automated parallelization algorithm
presented in chapter 4 and the human-optimized parallel order presented in chap-
ter 3, showed the increased efficiency concering execution time and processor load
and pointed out the opportunities inside the RACE project concerning autonomous
parallelization.
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6. Conclusion

This work aims to improve execution time and resource management on mobile
robots. Not only to increase efficiency and reduce expenses for resources and energy,
but also reduce the duration of development cycles for applied research. Up to the
authors knowledge there are currently no applicable solutions to improving the task
execution on mobile robots using Hierarchical Task Network planners by executing
tasks in parallel.

Although this work was created and evaluated on the mobile platform Personal Robot
2, the results are applicable to almost any platform running the Robot Operating
System and other systems supporting the SMACH state machines, since JSHOP2
and other HTN planners run on any platform. A quick introduction to JSHOP2
and SMACH was presented in chapter 2 and two scenarios for the evaluation were
analysed in chapter 3. After a simplified look into the implementation in chapter 4,
the parallel execution was evaluated in chapter 5.

The evaluation identified security issues due to the parallelization of planar move-
ments and torso and joint movement which could be resolved. For one of the scenarios
discussed in this work, the evaluation of the parallel execution revealed a time ben-
efit of 27.5% compared to the sequential execution with a constant processor load.
Last of all, a solution to the remaining shortcoming in autonomy, resulting from
the required human-written operator file, was presented with the architecture of the
RACE Project [2012] in chapter 5.3. More experiments may be required to increase
the value of the evaluation.

The parallelization approach presented is already used in the current development
process of the RACE project at group TAMS. Evaluation in chapter 5 shows the
almost universal area of application for the parallelization presented in this work.
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7. Outlook

The RACE Project [2012] aims to place a mobile robot in a catering environment.
The evaluation in chapter 5 revealed a time benefit of 102 seconds (27.5%) for a
single test run. A setting with multiple robots in a working environment with 16 or 24
working hours not only significantly lowers operating costs. A restaurant requiring
24 working hours of five robots with sequential plans not only saves energy and
maintenance costs, but also saves expenses for a whole robot, as four robots with
parallel plans might be able to carry out the same work as five sequential robots.

The evaluation already showed the benefits from parallelization in current scenarios
with human-composed resource allocation and plans. With fully working Reasoners,
which are currently developed, the benefits from parallelization with optimized size
of atomic tasks will exceed the results from evaluation and increase autonomy of
planning and optimizing.
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A. Appendix

(!tuck_arms
both_arms)

(!move_torso
torso_down_position)

(!move_base
counter_1_

pre_
manipulation_

pose)
(!move_torso

torso_up_position)
(!move_arm_to_side

left_arm)

(!move_base_blind
counter_1_manipulation_pose)

(!pick_up_object
coffee_cup_1 left_arm)

(!move_base_blind
counter_1_pre_manipulation_pose)

(!move_base
table_1_pre_manipulation_pose)

(!move_base_blind
table_1_manipulation_pose)

(!place_object
coffee_cup_1 left_arm table_1)

(!move_base_blind
table_1_pre_manipulation_pose)

Figure A.1.: Offensive approach to parallelizing the Serving Beverages
scenario. No security constraint is added to !move_base
counter_1_pre_manipulation_pose, posing possible threat to the
environment during execution. Due to security threats by movements
without collision detection, there are no parallelization capabilities in
the latter section. The grey boxes represent parallel and sequential
sections as explained in chapter 5.
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1 class PlanExecutor():
2 def __init__(self):
3 rospy. loginfo ( ’connecting to jshop2_planner...’ )
4 self .jshop2_planner_client = actionlib.SimpleActionClient(
5 ’jshop2_planner’, PlanningAction)
6 self .jshop2_planner_client.wait_for_server()
7 rospy. loginfo ( ’ successfully connected to jshop2_planner.’)
8

9 def run( self ) :
10 rospy. loginfo ( ’ calling JSHOP2 planner...’)
11 planning_goal = PlanningGoal()
12 planning_goal.tasks = ["serve_cup table_1"]
13 self .jshop2_planner_client.send_goal(planning_goal)
14 self .jshop2_planner_client.wait_for_result()
15 planning_result = self .jshop2_planner_client.get_result()
16 rospy. loginfo ( ’JSHOP2 planner returned.’)
17 try:
18 plan = planning_result.plans.pop(0)
19 except IndexError:
20 rospy. logerr ("no plan found!")
21 return

Listing A.1: Section of the implementation showing the initialisation of the JSHOP2
planner, sending the planning goal to the JSHOP2 planner and
retrieving the plan.

1 operators = [[ ’ !tuck_arms both_arms’,[’RA’,’LA’]],
2 [ ’ !tuck_arms left_arm’,[’LA’]],
3 [ ’ !tuck_arms right_arm’,[’RA’]],
4 [ ’ !move_base ?to’,[’B’, ’RA’,’LA’,’T’ ]], #secure
5 [ ’ !move_base_blind ?to’,[’RA’, ’LA’, ’T’, ’B’, ’H’ ]],
6 [ ’ !move_torso ?position’,[ ’T’ ]],
7 [ ’ !move_arm_to_side left_arm’,[’LA’]],
8 [ ’ !move_arm_to_side right_arm’,[’RA’]],
9 [ ’ !pick_up_object ?object left_arm’,[’LA’, ’H’ ]],

10 [ ’ !pick_up_object ?object right_arm’,[’RA’, ’H’]],
11 [ ’ !place_object ?object left_arm ?to’ ,[ ’LA’, ’H’ ]],
12 [ ’ !place_object ?object right_arm ?to’,[ ’RA’, ’H’ ]],
13 # Dishwasher Operators
14 [ ’ !pick_up_plate ?object’,[’LA’, ’H’ ]],
15 [ ’ !pick_up_cup ?object’,[’RA’, ’H’ ]],
16 [ ’ !place_plate ?object’ ,[ ’LA’]],
17 [ ’ !place_cup ?object’,[ ’RA’]]]

Listing A.2: Section of the implementation showing the list of operators with
resources. #secure marks the resources for the defensive approach. The
last four operators are required by the Loading Dishwasher scenario
only.
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(!tuck_arms
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left_arm)

(!move_base_blind
counter_1_manipulation_pose)

(!pick_up_object
coffee_cup_1 left_arm)

(!move_base_blind
counter_1_pre_manipulation_pose)

(!move_base
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coffee_cup_1 left_arm table_1)

(!move_base_blind
table_1_pre_manipulation_pose)

Figure A.2.: Defensive approach to parallelizing the Serving Beverages
scenario. A security constraint is added to !move_base
counter_1_pre_manipulation_pose forcing the robot to finish
arm and torso movements before moving the base to the new position
and waiting for the base movement to finish before the arms and torso
may operate again. This prevents the robot from hitting objects or
humans in the environment, respectively increases the tilt stability
while moving due to a lower center of mass. Due to security threats
by movements without collision detection, there are no parallelization
capabilities in this section. The grey boxes represent parallel and
sequential sections as explained in chapter 5.
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!tuck_arms both_arms !move_torso torso_down_position
!move_base
pre_manipul
ation_pose

!move_torso
torso_manipulation_

position

!move_arm_to_side
left_arm

!move_arm_to_side
right_arm

!move_base_blind
manipulation_pose

!pick_up_cup cup1

!place_cup cup1 !pick_up_plate plate1

!place_plate plate1!pick_up_cup cup2

!place_cup cup2 !pick_up_plate plate2

!place_plate plate2!pick_up_cup cup3

!place_cup cup3 !pick_up_plate plate3

!place_plate plate3!pick_up_cup cup4

!place_cup cup4 !pick_up_plate plate4

!place_plate plate4!pick_up_cup cup5

!place_cup cup5

!move_base_blind
pre_manipulation_pose

!tuck_arms both_arms2 !move_torso torso_down_position2

Figure A.3.: Offensive approach to parallelizing the Loading Dishwasher scenario. No
security constraint is added, posing possible threat to the environment.
The grey boxes represent parallel and sequential sections as explained
in chapter 5.
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torso_manipulation_position !move_arm_to_side left_arm !move_arm_to_side
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manipulation_pose

!pick_up_cup cup1

!place_cup cup1 !pick_up_plate plate1

!place_plate plate1!pick_up_cup cup2

!place_cup cup2 !pick_up_plate plate2
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Figure A.4.: Defensive approach to parallelizing the Loading Dishwasher
scenario. A security constraint is added to !move_base
counter_1_pre_manipulation_pose. The grey boxes represent parallel
and sequential sections as explained in chapter 5.
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Figure A.5.: The upper figure shows the processor load during the experiment with
sequential execution for the two computers c1 and c2 in the computer
cluster of the PR2, the lower figure shows the processor load during
the experiment with the parallel execution. Actually measured values
of the computer cluster have been smoothed with a Beziér polynom.
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1 class Action(object):
2 def __init__(self, name, id_nr, ressources=[], depends=[]):
3 self . id = id_nr
4 self .name = name
5 self . ressources = ressources
6 self .depends = depends
7 self .visited_from = 0
8 self .next = []
9 self .marked = 0

10

11 def depends_on(self, b):
12 return b in self .depends
13

14 def ressource_req(self , res_type):
15 return res_type in self . ressources
16

17 def __repr__(self):
18 return self .name

Listing A.3: Section of the implementation showing the Action class required by the
complete parallelization process. The class holds fields for resources,
depencies, successors, name and ID, as well as fields for the algorithm
to remove redundances.

1 def plan(actions) :
2 links = []
3 for action in actions :
4 for ressource in action. ressources :
5 for dep_on in actions:
6 if dep_on == action:
7 break
8 if ressource in dep_on.ressources:
9 links .append([action, dep_on])

10 return links

Listing A.4: Section of the implementation showing the algorithm to create links
between Actions depending on the resources required by the Action.
This algorithm is similar to algorithms to create graphs.
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1 (
2 [
3 (
4 −!tuck_arms both_arms−
5 [
6 −!move_arm_to_side left_arm−
7 −!move_arm_to_side right_arm−
8 ]
9 )

10 (
11 −!move_torso torso_down_position−
12 −!move_torso torso_manipulation_position−
13 )
14 −!move_base pre_manipulation_pose−
15 ]
16 −!move_base_blind manipulation_pose−
17 −!pick_up_cup cup1−
18 [
19 −!place_cup cup1−
20 −!pick_up_plate plate1−
21 ]
22 [
23 −!pick_up_cup cup2−
24 −!place_plate plate1−
25 ]
26 [
27 −!pick_up_plate plate2−
28 −!place_cup cup4−
29 ]
30 (
31 [
32 (
33 −!pick_up_cup cup5−
34 −!place_cup cup5−
35 )
36 −!place_plate plate4−
37 ]
38 −!move_base_blind pre_manipulation_pose−
39 [
40 −!tuck_arms both_arms−
41 −!move_torso torso_down_position−
42 ]
43 )
44 )

Listing A.5: Plan resulting from parallelization algorithm on the Loading Dishwasher
scenario using no security constraints. Note, that between line 27 and
28 portions of the repetitive output have been skipped

viii Lasse Einig
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