Proactive Multimodal Perception for Feature Based Anchoring of Complex Objects

Martin Weser, Jianwei Zhang

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Cross-modal Interactions in Natural and Artificial Cognitive Systems

15-18 December 2007. IEEE Robio, Sanya, China

Outline

Motivation

Related Work Symbol Anchoring Framework Goal of this Work

Action Oriented Perception

Feature Based Approach
Action in the Service of Perception
Preliminary Experiments
Summary

Motivation

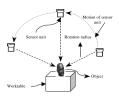
Action and Perception - Two Sides of one Coin

- Action needs perception
 - mobile motion requires localization
 - communication requires attention and understanding
 - manipulation requires object recognition
- Perception is highly influenced by action

- ▶ Robot perception is almost exclusively used for action
- ▶ Robot perception still lacks in complex environments

Motivation

Action and Perception - Two Sides of one Coin


- Action needs perception
 - mobile motion requires localization
 - communication requires attention and understanding
 - manipulation requires object recognition
- Perception is highly influenced by action

but

- ▶ Robot perception is almost exclusively used for action
- Robot perception still lacks in complex environments

Approaches for Action Oriented Perception

Next best view:

Source: [Li et all, Meas. Sci. Technol. 2005]

Localization:

Source: [Thrun et all, Artificial Intelligence, 2001]

IEEE Robio 2007, Sanva, China

Review: Anchoring Framework Coradeschi and Saffiotti (2003)

- Two distinct systems: perceptual and symbol system
- ▶ Bottom-Up information flow. Information tokens are
 - percepts: "Subset of perceptual data that is originated by one object"
 - measurable attributes of percepts
 - predicate symbols derived from attributes
- Symbol system keeps track of objects and assign predicate symbols to objects

Motivation - Symbol Anchoring Framework -

Evaluation / Discussion

Inapplicable in complex systems

In the domain of service robots arise following problems

- Grouping of sensor data to percepts
- ▶ Bottom-up approach is not sufficient
- ► Hierarchical partonomy / taxonomy

pan = 3° : tilt = 0° : Task: Find percept of table!

Towards Complex Perception

- ► Constraint: insufficient Sensors and Algorithms
- Conventional solution: more sensors (modalities)

Action oriented feature based approach

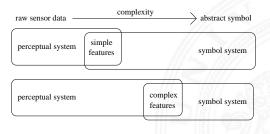
- ▶ Use simple features to narrow search space for complex features
- Use directed action for better utilization of given sensors

Outline

Symbol Anchoring Framework

Action Oriented Perception

Feature Based Approach Action in the Service of Perception

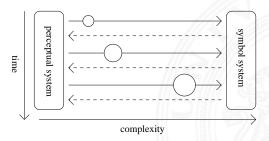


Object Perception via Feature Recognition

Objects are perceived via sets of features that may

- deliver different amount of information
- differ in complexity

Complexity of features is inverse relational to information gain



IEEE Robio 2007, Sanya, China

- 1. Recognition of feature
- 2. Extract assumptions that narrow search space
- 3. Execute action if necessary
- 4. Go to step 1

Size of the circles denote the complexity of features measured by the perceptual system

IEEE Robio 2007, Sanva, China

Active Object Inspection

- Changing parameter of
 - camera focus, shutter, . . .
 - operation mode of sensors, preprocessing algorithms, ...
- Position and orientation of flexible mounted sensors
 - camera with pan tilt unit
 - force sensor at manipulator
- Reduce distance to target object candidate

IEEE Robio 2007, Sanya, China

Outline

Symbol Anchoring Framework

Action Oriented Perception

Preliminary Experiments

Preliminary Experiments

Example Objects

Table

- ▶ laserscan:table-leg
- mobile:driveTo
- ptu:lookAt
- ptucam:verifyLeg
- mobile:driveTo
- arm:move
- hand:perceiveForce

Door

- ▶ laserscan:indentation
- mobile:driveTo
- arm:move
- handcam:findDoorknob
- arm:move
- hand:pushDoor
- ▶ hand:perceiveForce

Example Objects

Table

- ▶ laserscan:table-leg
- ▶ mobile:driveTo
- ▶ ptu:lookAt
- ptucam:verifyLeg
- ▶ mobile:driveTo
- arm:move
- hand:perceiveForce

Door

- ▶ laserscan:indentation
- ▶ mobile:driveTo
- arm:move
- handcam:findDoorknob
- arm:move
- ▶ hand:pushDoor
- ▶ hand:perceiveForce

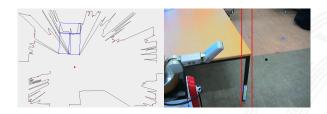
Preliminary Experiments

Table Anchoring Experiment Proof of concept

Somewhere in the lab

Table Anchoring Experiment Proof of concept

In front of table



Preliminary Experiments

Table Anchoring Experiment Proof of concept

Grab image

IEEE Robio 2007, Sanya, China

Preliminary Experiments

Table Anchoring Experiment Proof of concept

Push table

IEEE Robio 2007, Sanya, China

- ► Current anchoring frameworks are not sufficient for complex multimodal perception
- ▶ Sequence of feature recognition allow use of more complex features
- ▶ Action in the service of perception improve reliability and robustness of object recognition

Thank you for your attention!

Martin Weser, Jianwei Zhang {weser, zhang}@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Cross-modal Interactions in Natural and Artificial Cognitive Systems

