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Goals

= Provide answers/insights to the following:
= Prehensile Throwing vs. Non-Prehensile Throwing
= Current Research
* Prehensile Throwing with Delta Robot
= Prehensile Throwing with Robotic Arm
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Delta Robots

Picture: https://mwww.abb.com/global/en/areas/robotics/products/robots/delta-robots/irb-36
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Absolute coordinate system
—world coordinates

Coordinate system of the
machine
— angles of drives

Relative coordinate system
— relative coordinates
(towards the platform)

Picture: M. Opl et al., DELTA - Robot with Parallel Kinematics, Springer 2014
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Articulated Robotic Arms
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PICtU '€ https://www.universal-robots.com/manuals/EN/HTML/SW5_20/Content/prod-usr-man/complianceUR20/comp-introduction/comp-preface.htm

Picture: TAMS UR5 Setup, UHH 2025
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Non-Prehensile Throwing

= Object motion is controlled without grasping.

= Examples include juggling, pitching, and batting.

= Typically limited to certain object geometries (spheres or flat objects).

» Relies on dynamic interaction rather than secure holding.

= Simpler release than grasp-based throwing due to instantaneous release.

= While release is simpler, to keep the object in place non-prehensile
throwing can require:

= More accurate dynamic modelling
= Careful trajectory and contact force planning
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Prehensile Throwing

= Object motion is controlled using an active grasp.

= Examples include pick-and-throw for material sorting.
= Applicable to a wide range of object shapes and sizes.
= Requires stable grasping and precise release timing.

= Complex to implement due to gripper dynamics, and release delay.
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Related Work

Picture: Y. Liu and A. Billard, IEEE TRO 2024
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TOSS I n g bOt (A. Zeng et al, Tossingbot: Learning to throw arbitrary objects with redsidual physics, RSS 2019)

A

v

GRASPING AND THROWING PERFORMANCE IN REAL (MEAN %)

y Al ﬁ* -u‘- ~,
“ '/) Grasping Throwing

-
N Method Seen Unseen  Seen Unseen
Target Box Unst ed
R 3 Bin of o Human-baseline - - - 80.1+10.8
e . . Regression-PoP 83.4 75.6 542 52.0
> i o Physics-only 857 764 613 58.5
Residual-physics ~ 86.9 73.2 84.7 82.3

of

= Training via self-supervision through trial-and-error.
= Beyond tossing it learns robust grasps for throwing.

= Adapts to objects of varying shapes and inertia.
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Throwing objects into a moving basket while avoiding
ObStaCIQS = (H. Kasaei and M. Kasaei, ICRA 2023)

= Learning end-to-end grasping and throwing policies, similar to TossingBot but
trained using reinforcement learning.

= Smaller set of thrown objects.

= Successful solutions to more challenging task variants:
» Robust throwing with obstacles in front of the target.
» Prediction and interception of moving targets

And, it becomes even harder
when obstacles are present
in the environment.

v

Picture:
https://www.youtube.com/watch?v=VmIFF ¢ 84

UH
S
a8 Universitdt Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG 1 1


https://www.youtube.com/watch?v=VmIFF__c_84
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Tube Acceleration

(Yang Liu and Aude Billard, Tube acceleration: Robust dexterous throwing against release uncertainty, TRO 2024)
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= Apply a constant acceleration after the gripper opens.

= Reduces scatter in the landing position of the object.

= May increase tracking error in the robotic arm trajectory
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LANDING POSITION ERROR STATISTICS OF THE TWO ROBOT MOTION
STRATEGIES (TUBE AND ZERO) AFTER THE NOMINAL RELEASE STATE

Mean (mm) Std. (mm)
Object Tube Zero Tube Zero
grey_ball 7452 53.70 9.51 15.60
small_box_heavy 87.12  95.30 747  44.57
tennis_ball 66.23 121.07 955  25.97
overall 75.88  88.11 12.04  40.74

Each strategy-object pair is repeated 5 to 6 times.
The bold means smaller landing position error Mean/Std., indicating
better performance.
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REINFORCEMENT LEARNING TO IMPROVE DELTA ROBOT
THROWS FOR SORTING SCRAP METAL (oueteeta. 2020

« Bin position
* Release position
= Target position

Speed

O / - i
. < | & Target Bucket
f ,"/
. g
\ Obj
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= Reinforcement learning to optimize delta robot throwing strategies.

= Evaluated in a real-world scrap-sorting scenario.
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Dynamic throwing with robotic material handling machines

(L. Werner et al., IROS 2024)

Pitch
Telescope _  (passive)
a

O I/ ‘"?‘
/ "

a7,

= Reinforcement learning—based control of an underactuated
excavation machine for dynamic throwing.

= Extended operational range beyond conventional placement.
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Learning to throw-flip |

(Y. Liu and A. Billard, 2025)

= Parameterization of the throw trajectory using three variables:
= Pitch angle
= Speed
= Damping

= Learning the relationship between throw parameters and the resulting:
= Landing position
= Final orientation

= Model-based / data-driven learning of parameter—outcome correlations

= (Goal: Accurate throwing of an object to a target with a desired position
and orientation
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Learning to throw-flip Il

(Y. Liu and A. Billard, Learning to throw-flip, 2025)

Population of Landing Poses
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Delta Robot
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Absolute coordinate system
—world coordinates

Coordinate system of the
machine
— angles of drives

Relative coordinate system
— relative coordinates
(towards the platform)

Picture: M. Opl et al., DELTA - Robot with Parallel Kinematics, Springer 2014



Method

= Acceleration Phase:
= Straight-line motion in Cartesian space.
= Constant acceleration in Cartesian space.
= Variable pitch angle, increasing from 45° until a feasible target hit is achieved.

= Release Phase:
= Gripper opening.
» Horizontal velocity is kept constant.
= Downward acceleration of 1g.
= Duration deepends on the gripper characteristics.
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Trajectory |: Implementation

= A simple bisection search is used to determine the duration of constant
acceleration, iterating over launch angles from 45° to 89° until a feasible
solution is found.

= The trajectory is discretized; therefore, interpolation is applied at the first
acceleration step using a reduced acceleration to exactly match the final
position and velocity at the end of the acceleration phase.

= Additional constant-velocity steps are appended after the acceleration phase:

= Horizontal velocity is held constant at the value from the final acceleration
step.

= Vertical velocity is reduced by 1 g at the end of the final acceleration
step.
= Moving back to grasp next object
= Returning to grasp the next object is not implemented, the robot simply

stops.
S
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Trajectory Il: Cartesian Space

3D Throw Trajectory (Elevation = 45.0°, Acceleration = 50.0m/s?, Release Duration = 0.1s)

Working Space
= Acceleration phase
Gravity phase
— Ballistic phase

@ Start (po)
@ Target (pt)
Z [mm] 0.30
00 ~
0.25
-200 ~ 0.20
7.4
300 0.15
0.10
400 0.05
—— 0.00
600 ~{ 0.5
700 ~
-800 >4
&0 600

]

o 200
Yimm] 2 X [mm]

Picture: M. Opl et al., DELTA - Robot with Parallel Kinematics, Springer 2014 Picture: Example Trajectory in Cartesian Space
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Trajectory lll: Joint Space (Mujoco Simulation)

Joint Velocity Over Time Joint Effort Over Time
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Task Demonstration in Simulation
| R f‘{x‘ .
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6-DoF Arm

UH
S
¥ Universitit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG



Throw Configuration

= Objective: Robust throwing performance while avoiding acceleration-
induced tracking errors (e.g., from tube dynamics)

= Approach: Identify throw configurations—joint positions and velocities—
that improve robustness to release-time uncertainty under constant end-
effector velocity.

= Benefit: Enables reliable throwing without aggressive control or high-
bandwidth tracking.
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Method |

1. Initialize a random joint configuration q.

2. Compute joint velocity ¢ at q to hit the target.
= If no feasible g is found, return to Step 1

3. Compute ¢, at q,, =q+ q = rt, where rt is the release time.
= If no feasible g, found, return to Step 1.

4. Compute mean values:

" Qmean = (@ + qre) / 2.
" Amean = (@ + 4r0) / 2.
5. Update Configuration:
" qd < 9Qmean — qmean * (T't/Z).
= Evaluate Performance:
=  Sum of distances between landing position and target position.

= Measured at q and q,; USING @ean-
=  Return to Step 2.
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Method Il

= The heuristic from the previous slide is applied independently at grid
points with 10 cm spacing around the robot to evaluate the algorithm.

= Qualitative results will be demonstrated later in simulation.

Toss to target with identical trajectories: gripper opens 30 ms before q (left),
and gripper opens 70 ms after q (right); both successfully hit the target.
i'l. Universitit Hamburg
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Ongoing Work

=  Evaluate Performance metrics:
= Distance to the target (as proposed previously).
= Difference between g and q,+ 10 qmean-

= Computation:

=  Evaluate the heuristic on a grid and re-run using neighbouring intersection configurations instead of random
sampling.

= Interpolate configurations between grid points.

= Compute robust throw configurations along a line extending from the robot base and generalize via shoulder pan
rotation.

=  Evaluation:
= Compare results against related work.

=  Assess potential contributions toward improving methods such as “Learning to Throw-Flip” (Y. Liu & A. Billard,
2025).
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Task Demonstration in Simulation
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Gripper Normal Force (N)
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