
Technical Aspects of Multimodal Systems
Department of Informatics

Robot Practical Course Bachelor

CheatSheet #1

This is the first Cheat Sheet. It is supposed to help you to understand some basic things
about ROS and other things like how to use a terminal. We are also going to give you a basic
understanding of how git works. This sheet is supposed to help you remember the things we
have talked about in the beginning.

tldr;

Typical format of a shell command:

$ command -flags file1 file2

• flags: specify commands e.g. display all (also hidden) files l -a

• file1: often input file e.g. cp test.txt test-copy.txt

• file2: often destination/ output

Often used shell commands:

man <cmd> opens manual for cmd (often also <cmd> -h)
cd change directory

ll or l -al lists all files and directories
chmod allows to add or remove permissions

cp copies things
rm removes things PERMANENTLY
mv moves things

pwd path of working directory
mkdir creates a new directory ("folder")

cat displays content of a file (if possible)
touch creates new file
clear clears window - looks like newly opened

Topic 1.1 Bash: Most Linux Distributions as well as MacOS open as a standard login shell
something called bash. It is a Unix Shell and a command language which can also read and
execute commands from a file (shell scripts). If you have worked with a shell before you won’t
need this part of the sheet. Most programmers use a shell sooner or later in there career. As a
CLI it is quite efficient and fast once you understand how to use it correctly.

On Ubuntu you can open a terminal (which connects to a console where the shell is pre-
sented) with Strg + Alt + T. Commands entered here will be executed by your operating system.
If you’ve opened your terminal, you will see something like this:



Robot Practical Course Bachelor
CheatSheet #1

It is important to understand that the shell is line-based, so if you hit enter, you execute your
command. The dollar sign $ you see at the end of the line is called prompt. After the prompt
you enter your commands. What is displayed before the prompt varies, but it often gives you the
main informations like user, device-name and it also shows you where in the file system you are.
This is called the working directory. If you are not sure if you can see it, there is a command
which displays it:
$ pwd

After executing it you will see something like

/home/user

Now that you know where you are, we will find out how to get somewhere else. If you want to
change the directory you are in you use the command cd. Once you opened a new terminal, you
will always start in your home directory which is represented as ∼. From there you might wanna
move into your Documents/ directory. The command to do this is:
$ cd Documents

A file in your shell can be anything, it doesn’t have to be a text file, every unit of something will be
seen as a file. Images, Scripts, Text-Files are all files. As you would expect in your regular File-
Explorer, you can move, copy, remove and duplicate files. You can change their name and also
change who is allowed to read, write or execute them. Especially this last point is important when
it comes to files that contain your programs. Per default your new file will only be allowed to be
read and written too but it will not be executable! So you have to change this. But before we do
that I want you to understand how you can see all files in your directory. We use the l command
for that. With the flags -al it will display all files in your directory with additional information like
the file size, a time stamp and the permissions we talked about before. They have a very simple
format and look kind of like this:



Robot Practical Course Bachelor
CheatSheet #1

As you can see, directories are slightly different than normal files. They don’t have an suffix like
.txt but end with a slash (e.g. my folder/ in blue in the screenshot). They are often highlighted in
another way as well. In this case bold and blue. The letters you can see in the beginning of the
line shows you the permissions of the user, the group and others (which are neither the user nor
in its group). In this order the permissions are displayed (first r is user, second is group and so
on...). It looks something like this:

-rwxrw-r--

The r stands for a reading permission. The w for a writing permission. The x for a execution
permission, which is quite important to have when the file contains code that you want to run.
You might have also noticed that sometimes this line starts with a d. It in indicates that this is a
directory. Another thing you can see here are the directories that start with a period. Those are
hidden directories that you normally can’t see.
The chmod command allow you to change permissions. In the example underneath, x stands
hereby for executable and the plus sign simply means that you want to add this permission rather
than remove it.

$ chmod +x <filename>

Topic 1.2 ROS explained: ROS 2 is not an operating system and more like a framework that
helps to abstract and reuse code between different platforms. There are different concepts you
have to understand to work with ROS:

• Nodes: Nodes are processes that perform computation. ROS is designed to be modular at
a fine-grained scale; a robot control system usually comprises many nodes. For example,
one node controls a laser range-finder, one node controls the wheel motors, one node
performs localization, one node performs path planning, one Node provides a graphical
view of the system, and so on. A ROS node is written with the use of a ROS client library,
such as rclcpp or rclpy.

• Topics: Messages are routed via a transport system with publish / subscribe semantics. A
node sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’ existence. The
idea is to decouple the production of information from its consumption. Logically, one can
think of a topic as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the right type.

• Services: The publish / subscribe model is a very flexible communication paradigm, but its
many-to-many, one-way transport is not appropriate for request / reply interactions, which
are often required in a distributed system. Request / reply is done via services, which are
defined by a pair of message structures: one for the request and one for the reply. A provid-
ing node offers a service under a name and a client uses the service by sending the request
message and awaiting the reply. ROS client libraries generally present this interaction to the
programmer as if it were a remote procedure call. Calling a service is a blocking operation.
Due to internals in ROS2 this blocks the executing thread and leads to a deadlock as the



Robot Practical Course Bachelor
CheatSheet #1

answer callback can not be executed if we wait in the same thread. To avoid this, use done
callbacks that get executed when the answer arrives or use an async python function and
await the answer.

• Messages: Nodes communicate with each other by passing messages. A message is
simply a data structure, comprising typed fields. Standard primitive types (integer, floating
point, boolean, etc.) are supported, as are arrays of primitive types. Messages can include
arbitrarily nested structures and arrays (much like C structs).

• Launch Files: Launch files are XML files that define the configuration of a ROS system.
They specify which nodes to launch, their parameters, and any necessary remappings of
topics. Launch files allow for easy orchestration of complex robot systems by providing a
single entry point for starting all necessary components.


