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70.5: VLA Model for Open World Tasks

Introduction Over Transformer and it's competitc Challeng

= Key Capabilities of 70.5:
= Open-World Generalization: Executes tasks in unknown
environments (e.g., different home scenes).
= Multimodal Training: Joint optimization of images, language, and
action trajectories in an end-to-end manner.
= Task Planning Ability: Automatically decomposes complex
instructions and generates action sequences.
= Experimental Performance:
= @ Successfully completes multi-step complex tasks like cleaning
kitchens and wiping surfaces.
= @ Adapts flexibly to real-world changes in layout and target objects.
= © Has difficulty opening unfamiliar drawers or cabinets.
= © Currently handles only relatively simple prompts: e.g., repeatedly
opening and closing drawers in long item-cleanup tasks.

» Click Here to Watch the Video
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video/pi05_demo.mp4

Relationship Between LLM and Robotics Actions

Introduction Overview Transformer and it's competitors Challenges Faced by Robots

Foundation Models

Alignment (
World Model LVision Language Action (VLA)]

Diffusion Policy (DP)
(comparative method)

[Vision Language Model (VLM)

T

[Large Language Model (LLM)J

Regression & Diffusion

One is predict the step by step action sequence, the other is to generate
the whole action sequence in one step.
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From LLM to MLLM

Introducti Overview Transformer and it's competitol
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Figure: Source: "Mm-lims: Overview Architecture in MLLM" [8]
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Extending Language Models: Code As Policies

Challenges Faced by Robots

Introduction Overview Transformer and it's competitors

= Providing Fundamental Large

Functional Modules (APIs):
Clearly defined interfaces
including Perception APIs and
Control APlIs.

High-Level Planning: LLMs

<—--- Stack the blocks on the empty bowl. ®

APIs
Control APIs

cts("blocks”)
£5("bowls")

Language
Model

l Policy Code
block_names =

bowl_nanes = d
for bowl_name in bowl

X bowl_na
enpty_boul = boul_nane
breal
obistopstack = [empty bowl] [+ block nanes

stack_objects(objs_ to_stack

def is_empty(name):

v
def stack_objects(obj_names)
n_objs = j_nanes.

treat these APIls as available
tools and use natural language
to generate instruction flows or
policies to accomplish tasks.

Source: Code as Policies (CaP) [5]
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Extending Vision-Language Models
(Generalization-Enhanced): VoxPoser

Overview

= Vision-Language Model (VLM) as

Open the top drawer, and
Backbone: Equipped with zero-shot @ st
generalization ability, capable of Lage &  Vision @
i i i Language Language
understanding and handling relative o e

spatial relationships such as "above",
"below", "high", and "low".

= Voxel Affordance-Based Spatial
Representation: ldentifies key anchor
locations in 3D space through voxel
analysis, enhancing generalization and
reliability in task execution. Source: VoxPoser [4]

» Click Here to Watch the Demo Video
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video/voxposer_demo.mp4

World Models (Enhanced with Physical Knowledge):
Cosmos

[OVEE

= Cosmos [10] is a world model framework proposed by NVIDIA,
consisting of three sub-models:

= §P Cosmos-Predictl: A collection of general-purpose world
foundation models used for modeling and predicting the physical world,
with the ability to fine-tune for specific applications.

= & Cosmos-Transferl: Helps bridge the perception gap between
simulation and real-world environments by generating more realistic
synthetic data, supporting more effective training of the Predict model.

= P Cosmos-Reasonl: Incorporates physical attribute training data in
the third stage of fine-tuning to enable deeper physical commonsense
reasoning, generating embodied decisions and natural language
explanations.
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World Models (Enhanced with Physical Knowledge):
Cosmos (cont.)

[OVEE

Challenges Faced b

Transformer and it

Synergy of the three: A comprehensive world modeling system
for embodied intelligence

Simulator

Generates environment
interaction scenarios

Scenario Data

L3

Reason

High-level task plan-
ning and control

Control and Prediction Calls

[
Transfer
Realistic data synthesis
Data augmentation

®
Predict State Output
Physical state mod-
eling and simulation

ata Augmentatign
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World Model
Perception x De-
cision x Prediction

Reinforcement
Learning (RL)
Behavior training and
policy optimization

Policy Results

Powers embodied intelligence
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Reasoning Model (Cosmos Reasonl)

Introduction Overview Transformer and it's competitol Challenges Faced by Robots

.’ Self-Attention Layer
.' MLP Layer
[ 1] Mamba Layer
Video )
e S
[ 1]
T ol Output
.—|'_‘h.L'|_'.h'.—'|1|| o .. <think>
-J; J;,J;“ Okay, let's see.
[ 1) _h_‘!.l + The video shows a robot
= == | has just grabbed a red
-?Wﬁ‘ @ — S apple in its right hand
T from a wooden shelf ...
@ </think>
Text @ s
LLM (Hybrid Put the apple in the
Tokens @ et right hand into the bag
@ on the table.

What'’s the next action?

Input Video Input Text

Figure: Cosmos-Reasonl Architecture Diagram [12]
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Transfer Model (Cosmos Transferl)

Introduction Overview

Transformer and it's com

y Robots

Control Weights

‘A man is working in a well-organized bicycle repair shop,
focusing on maintaining a bicycle mounted on a repair stand. The
shop is equipped with various tools and equipment, including
shelves filled with parts and accessories, and a workbench with
neatly arranged tools...”

Generated

Figure: Concept Diagram of Cosmos Transferl [11]

Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER SILOUNG. S. Liu — World Model & Embodied Al 11/29



Data Generation W|th Cosmos Transferl

Introduction Overview it's competitors Challeng

Input Output

Prompt 2

Single
Control

N Multimodal
Control

Single
Control

Multimodal
Control

Figure: Workflow of Synthetic Data Generation Using Cosmos Transferl [11]
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Prediction Model (Cosmos Predictl)

Overview

Lot ————
World Foundation Model: W ———— dt41

> i
P
Overview of Inputs and Outputs in B

Cosmos Predictl [10] Animation: Simulated Output
Sequence of the Prediction Model

= Used for RLAIF (Reinforcement Learning with Al Feedback).

= Provides environment simulation and feedback signals to help the
reasoning model explore as many future paths as possible while
filtering out infeasible options.
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Interim Summary

Introduction Overview

= The evolution of Multimodal Large Language Models (MLLMs) has
expanded generalization capabilities: the more modalities, the
stronger the generalization.

= We can leverage the successful experiences of MLLMs to build world
models required for embodied intelligence.
= A world model integrates:
= High-level physical planning engines (for abstract decision-making and
task decomposition);
= Low-level reasoning and state prediction modules;
® Scheduled model-based methods to support robots in executing
long-horizon, complex tasks.
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VLA

Overview

= VLA (Vision-Language-Action) is an extended form of
Multimodal Large Language Models (MLLMs).

® |nput: Multi-view visual scenes + instruction-based language
descriptions
Output: Rotation angles (in radians) for each joint servo.
® |n robotic manipulation tasks, the VLA framework has been widely
adopted:
= RDT from Tsinghua University [6] (Robotics Diffusion Transformer)

= GROOT from NVIDIA [13] (Generalist Robot)
= The 7 series models from Physical Intelligence [15]
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Vision-Language Navigation (VLN): Navid Framework

Introduction Overview Transformer and it's competitors Challenges Faced by Robots

Overview

It integrates multimodal inputs to guide agents navigating through
complex indoor environments. [9]
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VLN: UniGoal

Introduction Overview Transformer and it's competitors

UniGoal Method
= UniGoal uses scene graphs as additional prior knowledge to improve

navigation performance. [14]

» Click Here to Watch Demo Video

Bl 8|

OB T n
Objoct Image "Tm" | Graph Correction Goal Verification
I8 Stage 3: Perfect Matching
H
Goal Graph 1 g
| {Ey
Bl > Global Policy | |
b (8 Stage 2: Partial Matching
Observation N
RGB-D L j o ) F
0
L o H
Goal Decomposition Select Frontier

Stage 1: Zero Matching

Scene Graph
[Hang Yin et al. CVPR 2025]
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video/unigoal_demo.mp4

Recap Transformer Architecture

Introduction / Transformer and it's competitors Challenges Faced by R

Transformer Architecture [1]
Qutput
Core Idea Probabillies
= Models relationships between
words in a sequence using
attention mechanisms.

= Fully based on attention — no
RNNs or CNNs.

Add & Norm
Mutti-Head

Add & Norm
Attention .
' Forward M
= Basic Components: - Tk o
Masked
= Encoder: Understands the Mot riea Mkl o
. Attention Attention
input content. [ F [ 7
= Decoder: Generates the _ ~ g
Positional @—G Positional
output. Encoding q Encoding
= The two are connected ([ Bas
through the attention
H Inputs Cutputs
meCh anism. [shifted right)
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Scaled Dot-Product Attention

Self-Attention

Multi-Head Attention

Multi-Head Attention

Understanding the Self-Attention
Mechanism

= Tokenizing: Converts input text into
tokens (numerical representations).

= Self-Attention Task:

Use input to formulate a query
Q).

Compare the query with keys
(K) to measure relationships
among words.

Apply a mask to exclude padding
or future tokens (if decoding).
Normalize using SoftMax to
compute attention weights.
Multiply attention weights with
values (V) to obtain new
contextualized embeddings.

= Multi-Head Attention: Combines
multiple attention heads to learn
different aspects of the input context.



Introductlon to Linear Attention [2]

Introduction Overview Transformer and it's competitors Challenges Faced b

RNN Ye Linear Yt m |nspired by sequence processing
eenten ] in RNNS.
for fe
ﬁ' _’ = Reduces from O(N2) to O(N).
foe fie = Advantages: Efficient and
l;l't I;]'I suitable for modeling long
t ' sequences.
RNN (Linear Attention) ) ® Limitations: Lacks reflection
[ " [ o ]+[ " ] EI EH (reverse context integration),
which restricts performance.
dididiE = Further Development:

= |n 2023, Mamba [3] was
proposed, combining state
space models to address
limitations.
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Mamba and Mamba?2

Introductiol ) Transformer and it's competitors

hallenges Faced by Robots

® Mamba reintroduces the reflection mechanism on top of linear

attention.

= Mamba?2 further addresses efficiency bottlenecks in parallel training.

® The Mamba series significantly outperforms traditional Transformers

in terms of speed.

® |t also surpasses Transformers in performance across multiple tasks.

Scaling Laws on The Pile Length 8192)

+

Perplexity (log scale)

6x10°

100 oo
FLOPs (log scale)

Model Speed Comparison
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1500

1000

Throughput (tokens / s)

Inference throughput on A100 80GB (prompt length 2048)

= Mamba 1.48

s Transformer 1.38

s Mamba 6.98 -
= Transformer 6.78

H 16
Batch size

Model Accuracy Comparison
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DeltaNet[7]: Update Rule as Gradient Descent -> Test
Time Tralnlng (TTT)

Introduction er Transformer and it's competitors

Loss Function and Gradient:

1
Le(H) = Z||Hke — vel)?,  VLe(He-1) = (He—1ke — ve)k{
2

Update Derivation:
Start: Hy = He_1 +vik{
Rewrite: H; = H;_ 1 — vt,o|dk;r + vtk;r
with:  v¢olg = He—1ke
Add LR: H; = Hi 1 — Biveoak; + Bevik,
Substitute: He = Hi_1 — BeHi_1kek, + Bevek,
Final: H: = H; 1 — B:(Hi_1ke — ve)k{

Gradient Descent Structure:

£
He =Hi—1i— B - (Ht—lkt 1T Vt)kt

~—~ ~—. N —m,

updated old LR gradient

Goa/: Improve H so that projection of k; approximates v; better.
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Liquid Neural Networks (LNN)

Introduction v Transformer and it's competitors Challenges Faced by Robots

m |nspired by the Reservoir o
Computing architecture.
Advantage E,/\/\%\) ® o

Most low-weight neurons can o b

self-suppress under input
variation and are excluded from
computation, improving energy
efficiency.

—— [ ]

Figure: Figure: Schematic Diagram of the

= Limitation: Scalability and T et it

performance optimization of
the network remain active
research challenges.
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Summary: Comparison of Transformer and Its Successors

Transformer and it's competitors Challenges Faced by Robots

Introduction

Model Complexity Capability Efficiency Performance
Transformer O(N?) Moderate Medium Baseline
Linear Attention O(N) Stronger High Close to Transformer
Mamba O(N) Strong Very High Often Outperforms Transformer
TTT O(N) Strong Very High Outperforms Mamba
LNN O(N) (Dynamic) | Very Strong | Extremely High Leads in some tasks

oomsta QY ceepseok !

MINIMAX
Meta DeepSeek MiniMax Liquid Al
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Challenges Faced by Robots

Challenges Faced by Robots

Cloud Brain

World Communication
Brain Update

Model-Based
Models

cerebrum

15T (Million Million) Body Balance |

MLLM Reasoning Movement

Real-World Data &\ 10 Million (<7B, <2Hz) Decision Making Coordination |
. State
Pattern Recognition Estimation

o n B

Ovoiube & reddit Action Model World Model
(20+Hz) -

’ Life-Long Learning

Real-World

.
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