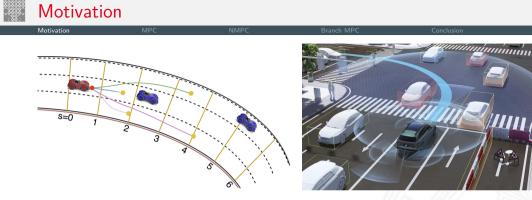


MIN Faculty Department of Informatics

Model Predictive Control for online Motion Planning

Maximilian Hartz


University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

15. August 2016

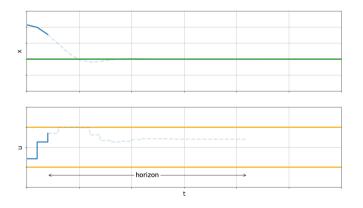
Motivation	MPC	NMPC	Branch MPC	Conclusion	References
Motivation					
MPC					
NMPC					
Branch MPC					
Conclusion					

Source: Hui [2018]

Source: ResearchInChina [2024]

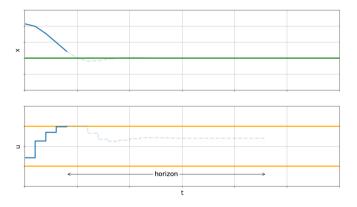
	MPC		

- Model Predictive Control
- predict system into future
- optimize actions $\mathbf{u} = [u_0, u_1, ..., u_n]$
- only apply first action u_0
- recompute often
- react to inaccuracies

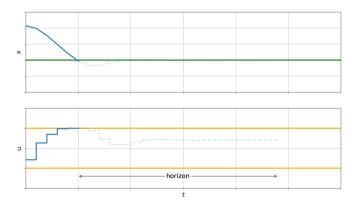


Motivation	MPC	NMPC	Branch MPC	Conclusion	Reference
	×			_	
	3	i		2	
		horizon —			
	↓i	t	i		

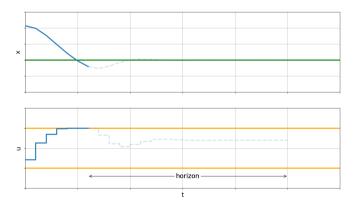
Motivation	MPC	NMPC	Branch MPC	Conclusion	References



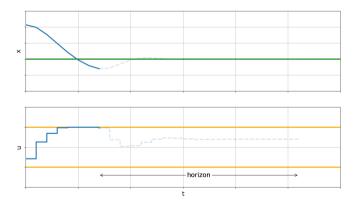
	MPC	NMPC			References
Motivation	MPC	NIVIPC	Branch MPC	Conclusion	References
	×				
	-				
	<	horizon —			
			t		


Motivation	MPC		

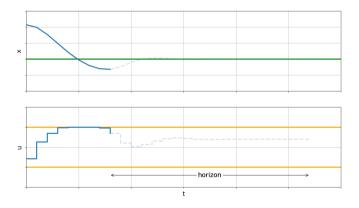
Adapted from Fiedler et al. [2023]



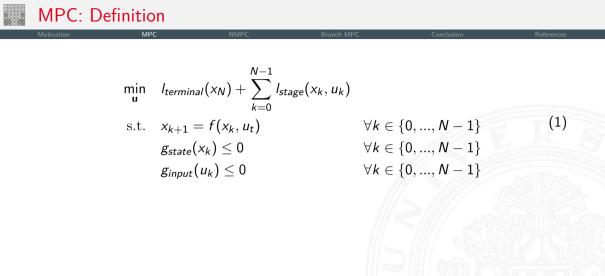
Motivation	MPC	NMPC	Branch MPC	Conclusion	References

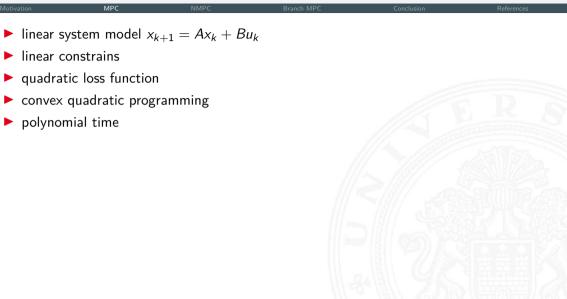


Motivation	MPC	NMPC	Branch MPC	Conclusion	References

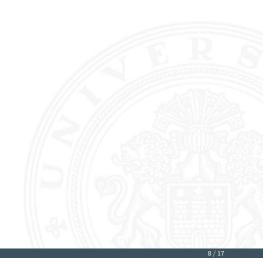


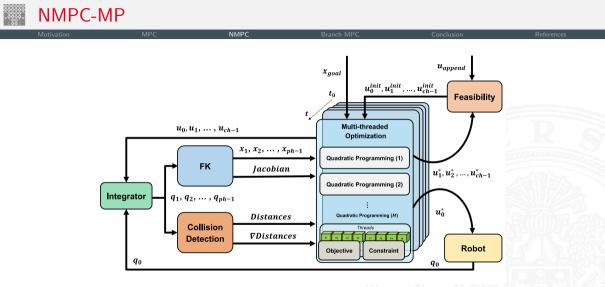
Motivation	MPC	NMPC	Branch MPC	Conclusion	References




Motivation	MPC		

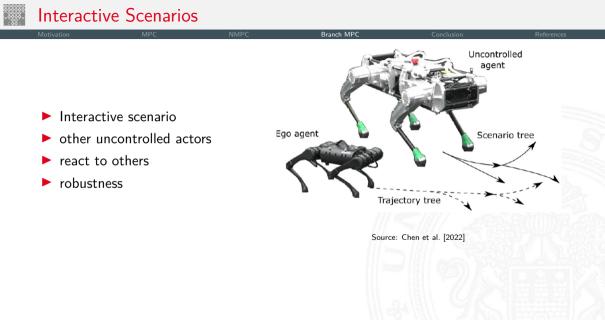
Adapted from Fiedler et al. [2023]


MPC: System Model



NMPC NMPC

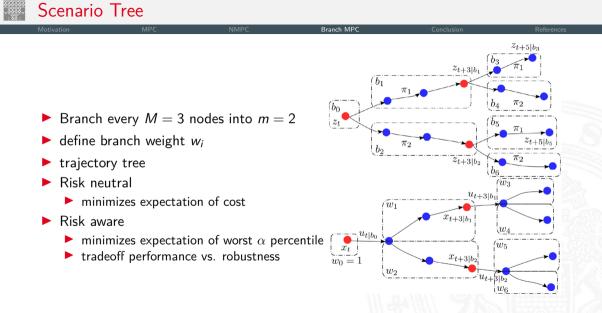
- many systems are non-linear
 - forward kinematics
- Nonlinear Model Predictive Control
- many solvers
 - Sequential Quadratic Programming
- gradient information



Warm start

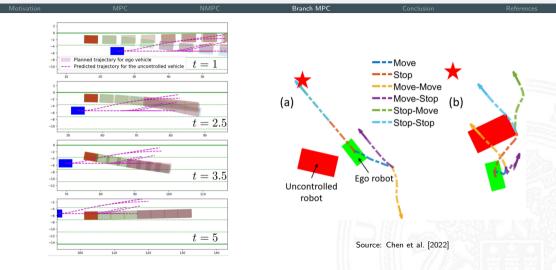
	NMPC		

- Convergence might take long time
- Good initial guess needed
- Shift prior result
- ▶ $[u_0, u_1, ..., u_{ch-1}]$
- $\blacktriangleright [u_1, ..., u_{ch-1}, u_{append}]$
- Append random input


Branch IVI	PC				
Motivation	MPC	NMPC	Branch MPC	Conclusion	References
probabilis	tic branches				
🕨 dependen	t on uncontro	olled robot			
scenario t	cree				
x state o	f controlled re	obot			
z state of	f uncontrollec	l robot			
► <i>u</i> input o	f controlled r	obot			
d immute a	funcentuelle	d wala at			

d input of uncontrolled robot

Policy definition
Motivation MPC NMPC Branch MPC Conclu


- finite set of policies π_i
 - maintain fixed speed
 - slow down
 - left lane change
 - right lane change
- feedback policies: $d = \pi_i(z)$
- multiple robots => exponential policies

Branch MPC

Conclusion

1 202 1						
	Motivation	MPC	NMPC	Branch MPC	Conclusion	References
	linear vs noreal time	onlinear MPC				
	reactive					
	system mod	del				

Branch MPC: robust

Bibliography

https://jonathan-hui.medium.com/ self-driving-car-path-planning-to-maneuver-the-traffic-ac63f5a620e2, 2018. ResearchInChina. End-to-end autonomous driving review 2024. M. Hartz - MPC for online MP

Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-Shanklin, and Aaron D. Ames. Interactive multi-modal motion planning with branch model predictive control. IEEE Robotics and Automation Letters, 7(2):5365–5372, 2022.

DOI:10.1109/LRA.2022.3156648. Felix Fiedler, Benjamin Karg, Lukas Lüken, Dean Brandner, Moritz Heinlein, Felix Brabender,

and Sergio Lucia. do-mpc: Towards fair nonlinear and robust model predictive control. Control Engineering Practice, 140:105676, 2023. ISSN 0967-0661. DOI: https://doi.org/10.1016/j.conengprac.2023.105676. URL https://www.sciencedirect.com/science/article/pii/S0967066123002459.

Sigi Hu, Edwin Babaians, Mojtaba Karimi, and Eckehard Steinbach. Nmpc-mp: Real-time nonlinear model predictive control for safe motion planning in manipulator teleoperation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8309-8316. 2021. DOI:10.1109/IROS51168.2021.9636802.

Jonathan Hui. Self-driving car: Pathplanning to maneuver the traffic.

