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Source: [4] Source: [2]

M. Hartz – MP in dynamic environments using MPC 3 / 24



Path Planning vs Motion Planning
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Path Planning Motion Planning
▶ find shortest path from A to B

(globally)
▶ (near) optimal solution
▶ long computation
▶ avoid static but (often) no dynamic

obstacles
▶ no time
▶ result is a path

▶ a series of points

▶ find a smooth path
▶ follow constrains (speed, angles)
▶ avoid any obstacle
▶ incorporate time
▶ result is a trajectory

▶ a series of points at specific times
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Global vs Local
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Global Planning Local Planning

▶ may take longer
▶ optimize trajectory

▶ real time
▶ react to sensor feedback
▶ deterministic
▶ needs reference trajectory
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Approaches
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▶ Traditional optimization techniques
▶ CHOMP
▶ TrajOpt

▶ Sampling based optimization techniques
▶ STOMP

▶ Global optimization with local planner
▶ MPC
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Problem Description
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▶ known start and goal state
▶ K degrees of freedom
▶ T time-steps
▶ optimize trajectory u ∈ RK×T

▶ ut state at time t
min

u
L(u)

s.t. gi(u) ≤ 0
hi(u) = 0

(1)
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CHOMP
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▶ Covariant Hamiltonian Optimization for Motion Planning
▶ Optimization of cost function
▶ Gradient Descent
▶ L(u) = Lobs(u) + Lprior (u)
▶ obstacle cost Lobs(u)
▶ smoothness Lprior (u)

M. Hartz – MP in dynamic environments using MPC 8 / 24



CHOMP: obstacle cost
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Source: [6]
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CHOMP: smoothness
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▶ acts as regularization
▶ derivative from finite difference
▶ any number of derivatives

▶ Lprior (u) = 1
2
∑T

t=0

∥∥∥ut+1−ut
∆t

∥∥∥2
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CHOMP: Joint Limits
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Source: [6]
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TrajOpt
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▶ Sequential Convex
Optimization

▶ solve approximated convex
problem

▶ improve original problem

min f (u)
s.t. gi(u) ≤ 0

hi(u) = 0

min f̃ (u) + µ
∑

max(g̃i(u), 0) + µ
∑

|h̃i(u)|

s.t. ||(u − u∗)|| < s
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TrajOpt: Algorithm
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▶ Trust region size s
▶ increases if x∗ is better
▶ decreases until x∗ is better

▶ constrains might be broken
▶ check after optimization
▶ not satisfied ⇒ increase µ

Source: [5]
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STOMP
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▶ random sample based
▶ Algorithm:

▶ initial trajectory
▶ generate multiple noisy trajectories
▶ evaluate the cost function
▶ compute probability
▶ update the through a weighted average

▶ non-differentiable
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STOMP: Noise
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▶ ũk = u + ϵk
▶ ϵk = N (0,R−1)

▶ Covariance dependent on finite
difference matrix
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STOMP: Costs and Limits
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▶ Obstacle Costs
▶ like CHOMP

▶ Constraint Costs
▶ end-effector position and orientation

▶ Torque Costs
▶ requires dynamics model

▶ Joint Limits
▶ clipping noisy trajectories
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STOMP: Comparison
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Scenario
STOMP CHOMP STOMP

Unconstrained Unconstrained Constrained

Number of
210 / 210 149 / 210 196 / 210successful plans

Avg. planning time
0.88 ± 0.40 0.71 ± 0.25 1.86 ± 1.25to success (sec)

Avg. iterations
52.1 ± 26.6 167.1 ± 113.8 110.1 ± 78.0to success

Source: [3]
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MPC
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▶ Model Predictive Control
▶ predict system into future
▶ optimize actions u
▶ only apply first action u1
▶ recompute often
▶ react to inaccuracies
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MPC: Horizon
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▶ prediction for [t, t + Tp]

▶ control for [t, t + Tc ]

▶ receding horizon

Source: [1]
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MPC: System Model
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▶ Requires system Model
▶ must be linear
▶ xt+1 = Axt + But
▶ many systems are non-linear

▶ approximately linear
▶ solve non-linear model predictive control (NMPC)
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Comparison
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▶ CHOMP
▶ smooth
▶ local minima

▶ TrajOpt
▶ higher success ratio
▶ local minima

▶ STOMP
▶ no local minima
▶ higher success ratio
▶ arbitrary constrains

▶ MPC
▶ real-time
▶ requires system model
▶ local minima
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