3D Point Cloud Affordance Detection Method Level Presentation

Lasse Huber-Saffer

Master Seminar Intelligent Robotics Technical Aspects of Multimodal Systems Department of Informatics University of Hamburg

June 5, 2025

Recap 00	LGAfford-Net	CoPa 0000	Demo o	Conclusion

Table of Contents

5 Conclusion

Recap	LGAfford-Net	CoPa	Demo	Conclusion
●0	00000	0000	o	00

3D Affordance Detection

- Complex manipulation tasks require fine-grained object understanding
- 3D Affordance Detection Task
 - Input: 3D representation of objects/environment
 - (+ Textual Prompt)
 - Output: Affordance labels for individual regions
- Affordance vocabulary types
 - Closed \Rightarrow Predefined set of labels
 - \blacksquare Open \Rightarrow Ranging from unseen labels to complex freeform instructions

Figure: Example affordance labels¹

¹Nguyen et al., IROS 2023

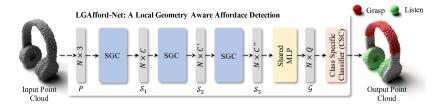
Recap	LGAfford-Net	CoPa	Demo	Conclusion
⊙●	00000	0000	o	00
Overview				

Legacy approaches offer limited generalizability

- Affordance vocabulary
- Object types
- Recent approaches leverage pre-trained foundation models
 - Task-oriented scene understanding
 - Open-set textual task understanding
 - Object part segmentation
 - Grasp pose candidate generation
- Challenges
 - Affordances depend on robot setup
 - Incomplete information

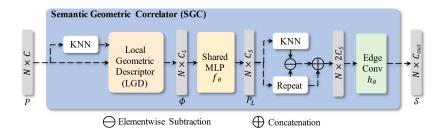
Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	●0000	0000	O	
LGAffor	d-Net ²			

- Closed-vocabulary approach
- Trained on 3D AffordanceNet dataset
- Emphasis on local geometry



Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	○●○○○	0000	O	00

Semantic Geometric Correlator



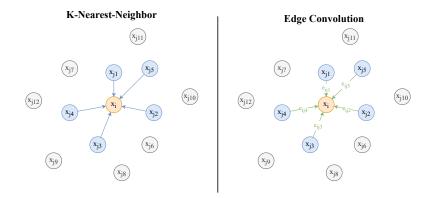
- P Input Point Cloud
- ϕ Local Geometric Features
- P_L Learned Local Geometric Features
- S Semantic Local Geometric Features

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	○○●○○	0000	O	

Local Geometric Descriptor

- Create triangles from each point $p_i \in \mathbb{R}^n$ and two nearest neighbors p_{j_1}, p_{j_2}
- Gather into higher-dimensional descriptor vector:

$$\phi_{i} = \begin{cases} p_{i} \\ \overrightarrow{e_{1}} = p_{j_{1}} - p_{i} \\ \overrightarrow{e_{2}} = p_{j_{2}} - p_{i} \\ |\overrightarrow{e_{1}}| \\ |\overrightarrow{e_{2}}| \\ \widehat{n} = \overrightarrow{e_{1}} \times \overrightarrow{e_{2}} \\ \mu_{i} = mean(p_{j}) \\ \sigma_{i} = std(p_{j}) \end{cases}$$

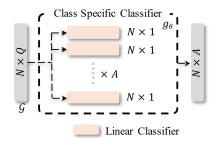


S - Semantic Local Geometric Features
S_i = max_{i∈Ks}[h_θ(x_i − x_i, x_i)]

³Wang et al., ACM TOG 2019

Lasse Huber-Saffer

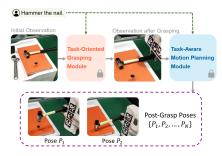
Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	0000●	0000	O	00
Class-Sr	pecific Classifier			



- Train independent classifiers per affordance category
- Output for each point: Probability scores of all affordance categories

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	●000	O	00
C - D - 4				

$CoPa^4$



"Find scissors"

"Pour water"

"Put glasses onto shelf"

"Put eraser into drawer"

"Put spoon into cup"

"Open drawer"

"Insert flower into vase

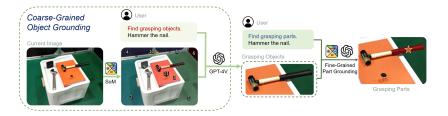
"Sweep nuts"

- Open-vocabulary approach
 - Textual task specification
- Utilize foundation models for affordance detection
- Outputs sequence of 6-DoF poses

⁴Huang et al., IROS 2024

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	o●oo	o	

Grounding Module

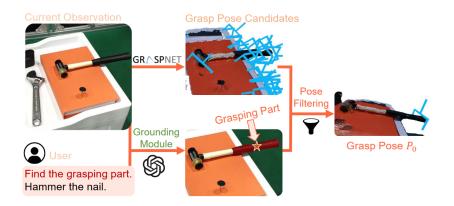


- Set-of-Mark (SoM)⁵ prompting for VLM
 - Segment image and assign numeric markers
- Coarse: Find graspable object in scene
- Fine: Find graspable part of object

⁵Yang et al., arXiv, 2023

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	00●0	O	

Task-Oriented Grasping Module

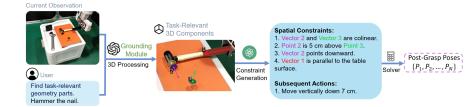


- Pose candidate generation using GraspNet⁶
- Select highest-confidence candidate within grasping part mask

⁶Fang et al., CVPR 2020

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	000●	O	

Task-Aware Motion Planning Module



- Task-relevant part grounding
- Manipulation constraint generation
 - Overlay simplified geometric indicators (vectors, surfaces)
 - Describe spatial constraints and action sequence using VLM
- Target pose planning
 - Nonlinear constraint solver
 - Sequentially compute post-grasp poses

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	0000	●	

Demo

Recap	LGAfford-Net	CoPa	Demo	Conclusion
00	00000	0000	O	●○
Summary				

- Emergence of foundation models has strongly impacted 3D affordance detection
- CoPa can easily be integrated into higher-level planning frameworks
 - Perform complex multi-step tasks
 - Explore unknown information
 - Adapt to dynamic scene changes

Limitations & Future Work

Current challenges and limitations

- Vector/surface constraint modeling is not sufficient for all object types and manipulation tasks
- Spatial reasoning capabilities of VLMs are limited because of a lack of representation in input data
- Future research directions
 - Refine geometric constraint modeling
 - Incorporate RGB-D data into VLM training