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3D Affordance Detection

Complex manipulation tasks require fine-grained object
understanding
3D Affordance Detection Task

Input: 3D representation of objects/environment
(+ Textual Prompt)

Output: Affordance labels for individual regions
Affordance vocabulary types

Closed ⇒ Predefined set of labels
Open ⇒ Ranging from unseen labels to complex freeform
instructions

Figure: Example affordance labels1

1Nguyen et al., IROS 2023
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Overview

Legacy approaches offer limited generalizability
Affordance vocabulary
Object types

Recent approaches leverage pre-trained foundation models
Task-oriented scene understanding
Open-set textual task understanding
Object part segmentation
Grasp pose candidate generation

Challenges
Affordances depend on robot setup
Incomplete information
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LGAfford-Net2

Closed-vocabulary approach
Trained on 3D AffordanceNet dataset
Emphasis on local geometry

2Tabib et al., CVPR 2024
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Semantic Geometric Correlator

P - Input Point Cloud
ϕ - Local Geometric Features
PL - Learned Local Geometric Features
S - Semantic Local Geometric Features
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Local Geometric Descriptor

Create triangles from each point pi ∈ Rn and two nearest
neighbors pj1 , pj2
Gather into higher-dimensional descriptor vector:

ϕi =



pi
−→e1 = pj1 − pi
−→e2 = pj2 − pi

|−→e1 |
|−→e2 |
n̂ = −→e1 × −→e2

µi = mean(pj)
σi = std(pj)

Lasse Huber-Saffer 3D Point Cloud Affordance Detection 7 / 16



Recap LGAfford-Net CoPa Demo Conclusion

Edge Convolution3
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K-Nearest-Neighbor Edge Convolution

S - Semantic Local Geometric Features
Si = maxj∈KS [hθ(xj − xi , xi)]

3Wang et al., ACM TOG 2019
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Class-Specific Classifier

Train independent classifiers per affordance category
Output for each point: Probability scores of all affordance
categories
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CoPa4

Open-vocabulary approach
Textual task specification

Utilize foundation models for affordance detection
Outputs sequence of 6-DoF poses

4Huang et al., IROS 2024
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Grounding Module

Set-of-Mark (SoM)5 prompting for VLM
Segment image and assign numeric markers

Coarse: Find graspable object in scene
Fine: Find graspable part of object

5Yang et al., arXiv, 2023
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Task-Oriented Grasping Module

Pose candidate generation using GraspNet6

Select highest-confidence candidate within grasping part mask
6Fang et al., CVPR 2020
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Task-Aware Motion Planning Module

Task-relevant part grounding
Manipulation constraint generation

Overlay simplified geometric indicators (vectors, surfaces)
Describe spatial constraints and action sequence using VLM

Target pose planning
Nonlinear constraint solver
Sequentially compute post-grasp poses
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Demo
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Summary

Emergence of foundation models has strongly impacted 3D
affordance detection
CoPa can easily be integrated into higher-level planning
frameworks

Perform complex multi-step tasks
Explore unknown information
Adapt to dynamic scene changes
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Limitations & Future Work

Current challenges and limitations
Vector/surface constraint modeling is not sufficient for all
object types and manipulation tasks
Spatial reasoning capabilities of VLMs are limited because of a
lack of representation in input data

Future research directions
Refine geometric constraint modeling
Incorporate RGB-D data into VLM training
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