Approaches to Imitation Learning and their Applications Intelligent Robotics Seminar SS25

Sven Schreiber

TAMS Group Department of Informatics MIN Faculty University of Hamburg

May 22, 2025

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Table of Contents

1 Motivation

2 Imitation Learning

- Behavioral Cloning
- Inverse Reinforcement Learning
- Generative Adversarial Imitation Learning
- Imitation from Observation
- 3 Applications
 - DexMimicGen
 - RialTo

4 Conclusion

Motivation

- Unstructured environments are hard to navigate
 - Autonomous driving, household, construction sites,...
- Challenging to specify
 - **1** a set of rules (manual programming)
 - 2 a reward function (reinforcement learning)
- Solution: learn directly from demonstrations

Imitation Learning

- Imitation of expert demonstrations
- Learn mapping from observations to actions
- Generalize policies for unstructured environments

Figure: Jiang et al.¹

 $^{^1}$ Jiang et al. 'DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning', ICRA'25

Behavioral Cloning

Applications

Behavioral Cloning (BC)

- Imitation directly from state-action pairs
- Input: state information
 - Sensory data (camera, lidar, audio)
 - Positions, TF frames
- Output: actions
 - "Move to position X"
 - "Open gipper"

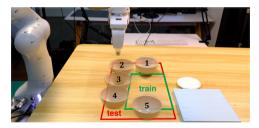


Figure: Ze et al.¹

¹Ze et al. '3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations', RSS'24

Behavioral Cloning

Applications

Formal Description

Definition

Let $\mathcal{D} = \{\tau_1, \ldots, \tau_n\}$ be a set of *n* demonstrations, with $\tau_i = \{(s_1, a_1), \ldots, (s_{N_i}, a_{N_i})\}$ being state-action pair sequences of length N_i . To learn policy π , we minimize the negative log-likelihood for action $a \in \mathcal{A}$ given state $s \in \mathcal{S}$:

 $\mathcal{L}(\pi) = -\mathbb{E}_{(s,a)\sim p_{\mathcal{D}}}[\log \pi(a \mid s)]$

Behavioral Cloning

Applications

Covariate Shift Problem

- Agent only sees expert states during training
- Encounters unseen states during deployment
- \Rightarrow Agent doesn't know how to return to demonstrated states
 - High risk in safety-critical tasks
 - E.g. autonomous driving

Behavioral Cloning

Handling Covariate Shift

Dataset Aggregation (DAgger)¹

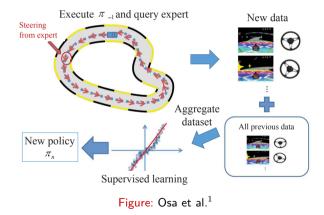
- 1 Train policy on dataset
- 2 Let policy play out
- 3 Expert labels new data
- 4 Dataset is aggregated
- Robot-gated²: robot predicts uncertainty
 - \Rightarrow expert only queried when uncertainty is high
- Still resource and labor intensive

¹Ross et al. 'A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning', AISTATS'11

²Zhang et al. 'Query-Efficient Imitation Learning for End-to-End Autonomous Driving', AAAI'17

	Imitation Learning	Applications	Conclusion
	00000000000000	00000	O
Behavioral Cloning			

DAgger



 $^{^1 \}textsc{Osa}$ et al. 'An Algorithmic Perspective on Imitation Learning', Foundations and Trends® in Robotics 2018

Inverse Reinforcement Learning

Reinforcement Learning (RL)

- Agent interacts with environment to maximize cumulative reward
- Actions bringing agent closer to goal get rewarded
- Uses trial-and-error feedback

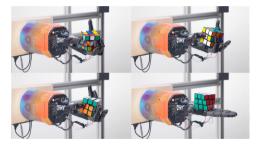


Figure: Ilge et al.¹

¹Ilge et al. 'Solving Rubik's Cube with a Robot Hand', arXiv preprint'19

Imitation Learning

Applications

Inverse Reinforcement Learning

Reinforcement Learning (cont.)

Definition

Let $R(s_t, a_t)$ be a reward function. Learn policy π that maximizes expected return:

$$\mathbb{E}\left[\sum_t \gamma^t R(s_t, a_t)\right],\,$$

where t is the time step and $\gamma \in [0; 1]$ a discount factor.

- Explorative training mitigates covariate shift
- But: RL needs reward function

Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL)

- Find reward function that explains the expert behavior
- Input: feature vectors $\phi(s_t, a_t)$
- Output: reward function

Definition

Let $R(s_t, a_t)$ be a reward function learned by linearly combining feature vectors $\phi(s_t, a_t)$ with weights w:

$$R(s_t, a_t) = w^{\top} \phi(s_t, a_t)$$

Use reward function to train policy via reinforcement learning

Reward Ambiguity

- Infinite reward functions explain the same behavior
- \Rightarrow How do we select the best one?

$$\mu(\pi) = \mathbb{E}\left[\sum_t \gamma^t \phi(s_t)\right]$$

Find w s.t.
$$w^{\top}\mu(\pi_{E}) \geq w^{\top}\mu(\pi) \ \forall \pi$$

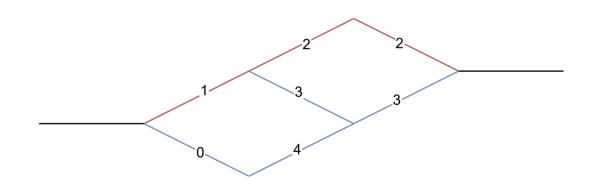
- Max-margin¹: ensure function fits best by a margin
- Max-entropy²: optimize for highest entropy
 - \Rightarrow encourages diverse behavior \rightarrow robustness

¹Ratcliff et al. 'Maximum Margin Planning', ICML'06

²Ziebart et al. 'Maximum Entropy Inverse Reinforcement Learning', AAAI'08

Motivation O	Imitation Learning	Applications 00000	Conclusion O
Inverse Reinforcement Learning			

Max-entropy



Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL)

- Inspired by Generative Adversarial Networks (GANs)
 - Discriminator: distinguish expert vs. agent behavior
 - Agent: deceive discriminator by imitating expert
- **Input**: state information
- Output: actions
- More robust than BC
- More sample efficient than IRL, but also more unstable

Generative Adversarial Imitation Learning

Mode Collapse

- Discriminator becomes too powerful too quickly
- Agent "collapses" on small range of actions
- \Rightarrow Insufficient exploration \rightarrow stuck on local optimum
 - To mitigate: Wasserstein distance, PacGAN¹,...

¹Lin et al. 'PacGAN: The power of two samples in generative adversarial networks', NIPS'18

Imitation from Observation

Imitation from Observation (IfO)

- Learn from observations only (no action labels)
- Tries to address scarce data availability
- Extension of BC, IRL, GAIL approaches
- More human-like learning
- Bypasses action space mismatch
 - \Rightarrow Allows learning from agents with different hardware

Imitation from Observation

Context Translation

- Translate observation to robot context
 - $\Rightarrow\,$ E.g. from third person to first person view
- Self-supervised representation learning
 - Encoder/Decoder architecture
 - Learn shared embeddings for different contexts

Imitation from Observation

Context Translation (cont.)

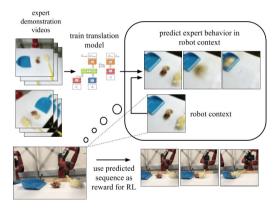


Figure: Liu et al.¹

 $^{^1}$ Liu et al. 'Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation', ICRA'18

$\mathsf{Dex}\mathsf{MimicGen}^1$

- Real-to-sim-to-real approach
- Data generation for dexterous manipulation
- Behavioral cloning on bimanual robots

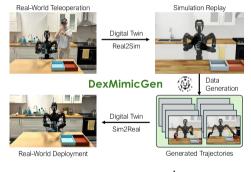


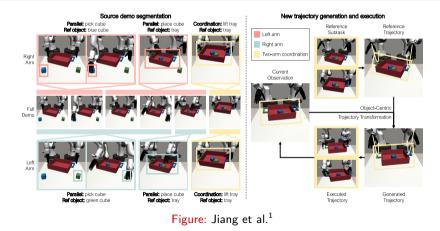
Figure: Jiang et al.¹

 $^{^1}$ Jiang et al. 'DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning', ICRA'25

Imitation Learning

Applications

Data Generation



 $^{^1}$ Jiang et al. 'DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning', ICRA'25

RialTo¹

- Assumption: Household stays mostly the same
- ⇒ Make training for specific environments easy
 - 3D scene reconstruction
 - Finetuned-RL in simulation

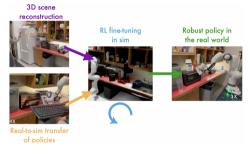


Figure: Torne et al.¹

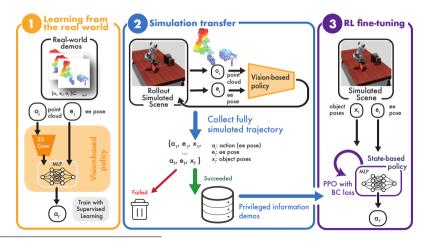
 $^{^{1}}$ Torne et al. 'Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation', RSS'24

3D Scene Reconstruction

Figure: Torne et al.¹

 $^{^1}$ Torne et al. 'Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation', RSS'24

System Overview¹



¹Torne et al. 'Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation', RSS'24

Conclusion

- Imitation Learning provides ways to learn from expert demonstrations
- Each approach addresses and has different challenges:
 - BC: simple but suffers from covariate shift
 - IRL: infers reward but ambiguous and resource intensive
 - GAIL: sample efficient but can be unstable
 - IfO: data availability, human-like, hardware-agnostic