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Motivation

Unstructured environments are hard to navigate
Autonomous driving, household, construction sites,...

Challenging to specify
1 a set of rules (manual programming)
2 a reward function (reinforcement learning)

Solution: learn directly from demonstrations
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Imitation Learning

Imitation of expert demonstrations
Learn mapping from observations to
actions
Generalize policies for unstructured
environments

Figure: Jiang et al.1

1Jiang et al. ’DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning’, ICRA’25
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Behavioral Cloning

Behavioral Cloning (BC)

Imitation directly from state-action
pairs
Input: state information

Sensory data (camera, lidar, audio)
Positions, TF frames

Output: actions
"Move to position X"
"Open gipper"

train

test

Figure: Ze et al.1

1Ze et al. ’3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations’, RSS’24
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Behavioral Cloning

Formal Description

Definition
Let D = {τ1, . . . , τn} be a set of n demonstrations, with τi = {(s1, a1), . . . , (sNi , aNi )}
being state-action pair sequences of length Ni . To learn policy π, we minimize the
negative log-likelihood for action a ∈ A given state s ∈ S:

L(π) = −E(s,a)∼pD [log π(a | s)]
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Behavioral Cloning

Covariate Shift Problem

Agent only sees expert states during
training
Encounters unseen states during
deployment

⇒ Agent doesn’t know how to return to
demonstrated states
High risk in safety-critical tasks

E.g. autonomous driving

?
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Behavioral Cloning

Handling Covariate Shift

Dataset Aggregation (DAgger)1

1 Train policy on dataset
2 Let policy play out
3 Expert labels new data
4 Dataset is aggregated

Robot-gated2: robot predicts uncertainty
⇒ expert only queried when uncertainty is high

Still resource and labor intensive

1Ross et al. ’A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning’, AISTATS’11
2Zhang et al. ’Query-Efficient Imitation Learning for End-to-End Autonomous Driving’, AAAI’17
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Behavioral Cloning

DAgger

New data

Aggregate
dataset

Supervised learning

All previous data

New policy
n

Execute        and query expert1

Steering 
from expert

Figure: Osa et al.1

1Osa et al. ’An Algorithmic Perspective on Imitation Learning’, Foundations and Trends® in Robotics 2018
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Inverse Reinforcement Learning

Reinforcement Learning (RL)

Agent interacts with environment to
maximize cumulative reward
Actions bringing agent closer to goal
get rewarded
Uses trial-and-error feedback

Figure: Ilge et al.1

1Ilge et al. ’Solving Rubik’s Cube with a Robot Hand’, arXiv preprint’19
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Inverse Reinforcement Learning

Reinforcement Learning (cont.)

Definition
Let R(st , at) be a reward function. Learn policy π that maximizes expected return:

E
[∑

t
γtR(st , at)

]
,

where t is the time step and γ ∈ [0; 1] a discount factor.

Explorative training mitigates covariate shift
But: RL needs reward function
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Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL)

Find reward function that explains the expert behavior
Input: feature vectors ϕ(st , at)
Output: reward function

Definition
Let R(st , at) be a reward function learned by linearly combining feature vectors ϕ(st , at)
with weights w :

R(st , at) = w⊤ϕ(st , at)

Use reward function to train policy via reinforcement learning
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Inverse Reinforcement Learning

Reward Ambiguity

Infinite reward functions explain the same behavior
⇒ How do we select the best one?

µ(π) = E
[∑

t
γtϕ(st)

]

Find w s.t. w⊤µ(πE ) ≥ w⊤µ(π) ∀π

Max-margin1: ensure function fits best by a margin
Max-entropy2: optimize for highest entropy

⇒ encourages diverse behavior → robustness

1Ratcliff et al. ’Maximum Margin Planning’, ICML’06
2Ziebart et al. ’Maximum Entropy Inverse Reinforcement Learning’, AAAI’08
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Inverse Reinforcement Learning

Max-entropy

1 3

0 4

2 2

3
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Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL)

Inspired by Generative Adversarial Networks (GANs)
Discriminator: distinguish expert vs. agent behavior
Agent: deceive discriminator by imitating expert

Input: state information
Output: actions

More robust than BC
More sample efficient than IRL, but also more unstable
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Generative Adversarial Imitation Learning

Mode Collapse

Discriminator becomes too powerful too quickly
Agent "collapses" on small range of actions

⇒ Insufficient exploration → stuck on local optimum
To mitigate: Wasserstein distance, PacGAN1,...

1Lin et al. ’PacGAN: The power of two samples in generative adversarial networks’, NIPS’18
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Imitation from Observation

Imitation from Observation (IfO)

Learn from observations only (no action labels)
Tries to address scarce data availability
Extension of BC, IRL, GAIL approaches
More human-like learning
Bypasses action space mismatch

⇒ Allows learning from agents with different hardware
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Imitation from Observation

Context Translation

Translate observation to robot context
⇒ E.g. from third person to first person view

Self-supervised representation learning
Encoder/Decoder architecture
Learn shared embeddings for different contexts
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Imitation from Observation

Context Translation (cont.)

Figure: Liu et al.1

1Liu et al. ’Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation’, ICRA’18
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DexMimicGen

DexMimicGen1

Real-to-sim-to-real approach
Data generation for dexterous
manipulation
Behavioral cloning on bimanual robots

Figure: Jiang et al.1

1Jiang et al. ’DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning’, ICRA’25
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DexMimicGen

Data Generation

Figure: Jiang et al.1

1Jiang et al. ’DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning’, ICRA’25
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RialTo

RialTo1

Assumption: Household stays mostly
the same

⇒ Make training for specific
environments easy
3D scene reconstruction
Finetuned-RL in simulation

Figure: Torne et al.1

1Torne et al. ’Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation’, RSS’24
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RialTo

3D Scene Reconstruction

Upload more objectsUpload/Scale/Move scene Cut mesh Add joint

3D reconstruction
(NeRFStudio, ARCode,

Polycam)
Scene reconstruction GUI Articulated USD

Figure: Torne et al.1

1Torne et al. ’Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation’, RSS’24
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RialTo

System Overview1
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...
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1Torne et al. ’Reconciling Reality Through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation’, RSS’24
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Conclusion

Imitation Learning provides ways to learn from expert demonstrations
Each approach addresses and has different challenges:

BC: simple but suffers from covariate shift
IRL: infers reward but ambiguous and resource intensive
GAIL: sample efficient but can be unstable
IfO: data availability, human-like, hardware-agnostic
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