3D Point Cloud Affordance Detection for Robotics Applications

Application Level Presentation

Lasse Huber-Saffer

Master Seminar Intelligent Robotics Technical Aspects of Multimodal Systems Department of Informatics University of Hamburg

June 5, 2025

Table of Contents

1 Introduction

- 2 Closed Vocabulary Approaches
- **3** Open Vocabulary Approaches

4 Conclusion

Manipulation Task Planning

Scenario

- Robot arm, camera
- Unseen environment
- Textual task specification
- Goal: Plan trajectory for manipulation task

Motivation

- Many tasks require fine-grained understanding of scene and prompt
 - "Pick up the knife"
 - Avoid touching the blade
 - "Put the flower into the vase"
 - Avoid touching the petals
 - Find vase opening
 - "Lift the handbag"
 - Grip on handle to avoid dropping contained items
- ⇒ Object detection alone not sufficient
 - Emergent task: Visually identify task-specific actionable areas

3D Affordance Detection

Input: 3D representation of objects/environment

- i.e., depth camera point cloud
- Output: Affordance labels for individual regions
 - Affordance = Possible action exhibited by object or environment¹

Figure: Example affordance labels²

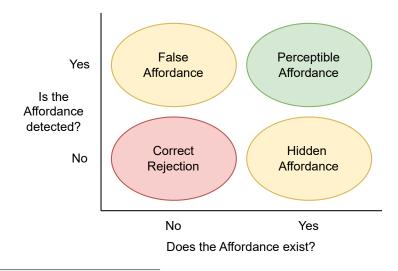
¹Gibson, 1966 ²Nguyen et al., IROS 2023

Lasse Huber-Saffer

3D Point Cloud Affordance Detection for Robotics Applications

Introduction

Affordance Types³



³Gaver, CHI 1991

Lasse Huber-Saffer

Challenges

- Affordances depend on observer's capabilities
 - Different gripper/robot types facilitate different actions
- False affordances
 - Touch blade of knife ⇒ damage robot
 - Pick up flower by the petals ⇒ damage object
- Incomplete information & hidden affordances
 - ! Sensors only produce partial scene representations
 - "Pull the green lever" ⇒ What if it isn't visible?
 - "Open the drawer half-way" ⇒ How far can it extend?
 - "Pick up the heaviest cube" \Rightarrow How heavy are the cubes?
 - May require multi-step exploration/experimentation with continuous feedback

Closed Vocabulary Approaches

- Predetermined closed set of affordances
 - i.e., "grasp", "lift", "pour", "cut"
- Generalizability limited by dataset scope
 - Known affordance types limit possible actions
 - Known object types limit viable environments
 - ! Broadening the scope drastically complicates data collection
- Typically object-level
 - Disregard contextual information of scene

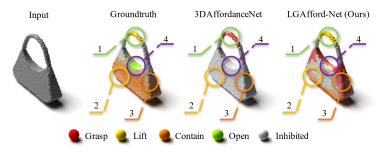
3D AffordanceNet⁴

- Object-level dataset
 - 23 object types
 - 18 affordance types
 - 23k full-shape point clouds
 - 56k affordance annotations
- Common benchmark for 3D affordance detection
 - 2 baseline methods (PointNet++, DGCNN)

⁴Deng et al., CVPR 2021

LGAfford-Net⁵

- Trained on 3D AffordanceNet dataset
- Emphasis on local geometry
- Improved accuracy and object type generalizability



⁵Tabib et al., CVPR 2024

Lasse Huber-Saffer

Open Vocabulary Approaches

- Generalization to open-set text prompts
- Varying degrees of complexity
 - Unseen affordance labels ("increase volume")
 - Referring expressions ("open the smallest green glass bottle")
 - Physical understanding ("place on a stable surface")
 - Freeform instructions ("First, unpack the shopping bags and place the items in their correct fridge compartments. Then prepare a vegetarian sandwich for me.")

Requires profound understanding of prompt and environment

⇒ Previously infeasible

Foundation Models

- Large machine learning models
- Pre-trained on extensive and diverse datasets
 - Costly dataset collection, training and inference
- Achieve human-level understanding of their tasks

Recent breakthrough!

- Impressive transfer capabilities
 - Zero-shot \Rightarrow Directly use pre-trained model
 - Few-shot \Rightarrow Fine-tune on small dataset

Foundation Models (Cont.)

Examples

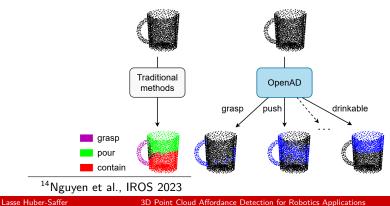
- Language: GPT⁶, LLaMA⁷, DeepSeek-R1⁸
- Vision: SAM 2⁹, DINO-X¹⁰
- Multimodal: LLaVA¹¹, GPT-4V¹², CLIP¹³

⇒ Useful for affordance detection and other robotics applications

⁶Radford et al., OpenAI, 2018
⁷Touvron et al., arXiv, 2023
⁸Guo et al., arXiv, 2025
⁹Ravi et al., arXiv, 2024
¹⁰Ren et al., arXiv, 2024
¹¹Liu et al., NeurIPS 2023
¹²Achiam et al., OpenAI, 2023
¹³Radford et al., arXiv, 2021

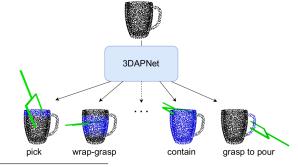
OpenAD^{14}

- Generalization of closed vocabulary approaches
- Prompt scope: Unseen affordance labels
 - i.e., "drinkable", "display", "take a seat"
- Inherits text encoder from CLIP
- Improved multi-affordance detection



3DAPNet¹⁵

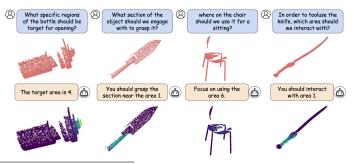
- Evolution of OpenAD
- Prompt scope: Unseen affordance labels
- Simultaneously predicts affordance and 6-DoF grasp pose
- Improved benchmark performance



¹⁵Nguyen et al., ICRA 2024

PAVLM¹⁶

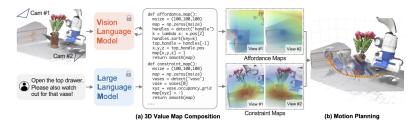
- Prompt scope: Freeform instructions
 - i.e., "Which part of the scissors should be used for grasping?"
- Utilizes separate LLM and VLM components
- Improved benchmark results and open-world generalization capabilities
- Handles partial point clouds particularly well



¹⁶Liu et al., arXiv, 2024

VoxPoser¹⁷

- Prompt scope: Freeform instructions
- Separate LLM and VLM components (zero-shot transfer!)
- Predicts task-specific cost/reward function on scene voxel grid
- Synthesizes trajectories for task
- Closed-loop visual feedback enables robustness to dynamic environmental changes



¹⁷Huang et al., CoRL 2023

CoPa²⁰

- Prompt scope: Freeform instructions
- More advanced VLM component
 - \Rightarrow No need for separate LLM
- Pose candidate generation using GraspNet¹⁸
- Motion planning module solves for spatial constraints of relevant object parts
 - \Rightarrow How should they move in relation to eachother?
- Broad zero-shot generalization capabilities
- Integration into high-level planning method like ViLa¹⁹ enables solving of long-horizon tasks

¹⁸Fang et al., CVPR 2020
 ¹⁹Hu et al., arXiv, 2023
 ²⁰Huang et al., IROS 2024

CoPa (Cont.)

Results

- Coffee machine demo (Video)
- Romantic dinner demo (Video)

Summary

- Complex manipulation tasks require fine-grained object understanding
- Legacy approaches offer limited generalizability
 - Affordance vocabulary
 - Object types
- Recent approaches leverage pre-trained foundation models
 - Task-oriented scene understanding
 - Open-set textual task understanding
 - Object part segmentation
 - Grasp pose candidate generation
- Applicability of high-level planning and continuous feedback
 - Explore missing/ambiguous information
 - Adapt to dynamic changes

Conclusion