

MIN Faculty Department of Informatics

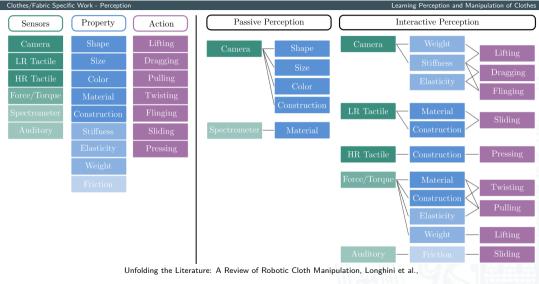
Learning Perception and Manipulation of Clothes Research Survey

Niklas Fiedler

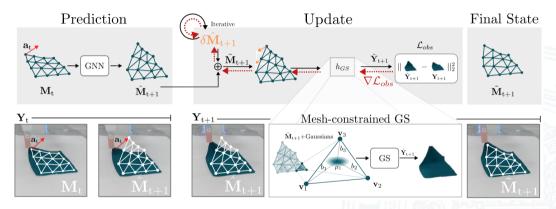
University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

January 28, 2025



- 1. Clothes/Fabric Specific Work
- 2. Diffusion Policy Advancements
- 3. My Future Plans



Clothes Perception

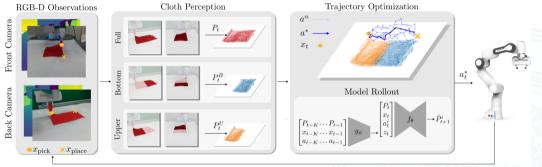
Annual Review of Control, Robotics, and Autonomous Systems 2025

Cloth-Splatting: 3D Cloth State Estimation from RGB Supervision, Longhini et al., CoRL 2024

Frequency	Household	Healthcare	Textile Industry
Frequent (4+)	Folding, Smoothing, Ironing	Dressing	
Rare (2-3)	Rare (2-3) Wiping		Recycling
Unaddressed (0-1)	Storing	Buttoning	Manufacturing, Dyeing, Quality control, Coloring, Washing

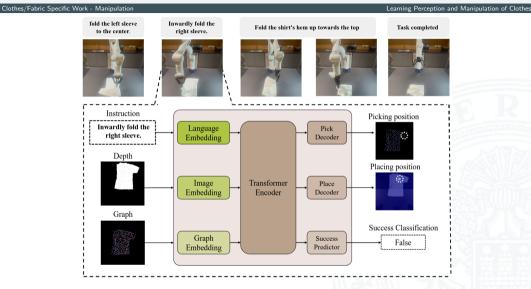
Unfolding the Literature: A Review of Robotic Cloth Manipulation, Longhini et al.,

Annual Review of Control, Robotics, and Autonomous Systems 2025

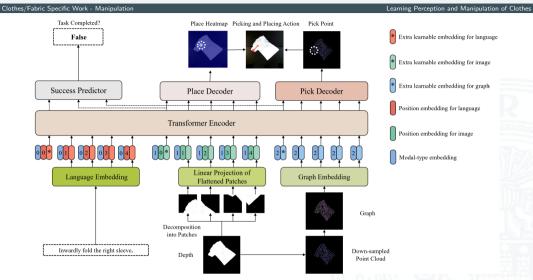

Clothes/Fabric Specific Work - Manipulation

AdaFold: Adapting Folding Trajectories of Cloths via Feedback-loop Manipulation, Longhini et al.,

Robotics and Automation Letters 2024



AdaFold: Adapting Folding Trajectories of Cloths via Feedback-loop Manipulation, Longhini et al.,


Robotics and Automation Letters 2024

Language-Conditioned Deformable Object Manipulation

Learning Language-Conditioned Deformable Object Manipulation with Graph Dynamics, Deng et al., ICRA 2024

Language-Conditioned Deformable Object Manipulation

Learning Language-Conditioned Deformable Object Manipulation with Graph Dynamics, Deng et al., ICRA 2024

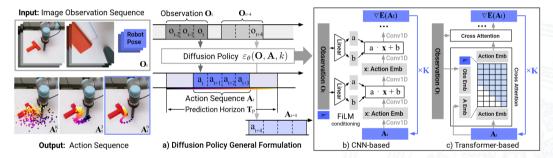
Diffusion Policy Advancements - Diffusion Fundamentals


- Originally Text-to-Image generative models
- Alternative to Generative Adversarial Networks (GANs)
 - Several useful advancements
 - Higher image resolution
 - More stability during training

https://insights.daffodilsw.com/blog/all-you-need-to-know-about-diffusion-models

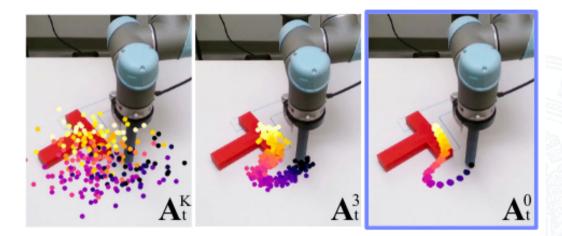
Diffusion Fundamentals

Diffusion Policy Advancements - Diffusion Fundamentals

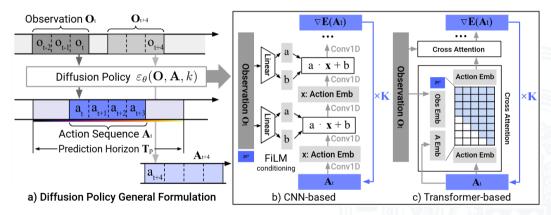


Resolution Image Synthesis with Latent Diffusion Models, Rombach et al., CVPR 2022

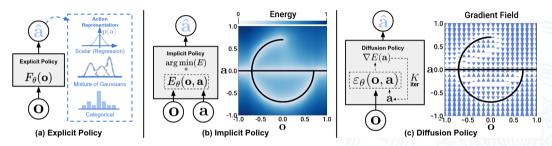

- Basic idea: Generate robot actions instead of images
- Use system state encoding as denoising conditions
- Use demonstrations as training data



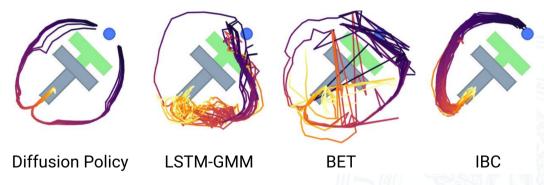
Diffusion Policy Advancements - Diffusion Policy

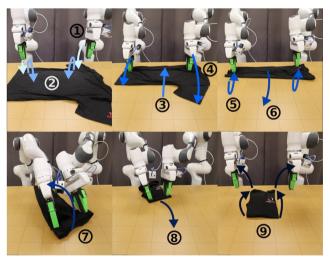


Diffusion Policy Output


Diffusion Policy Advancements - Diffusion Policy

Diffusion Policy Architecture

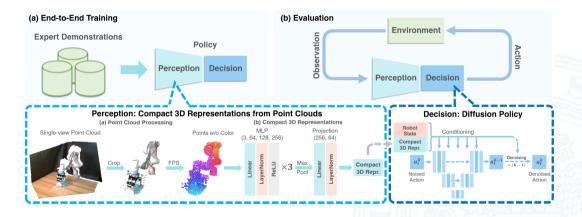



Multimodal Behavior

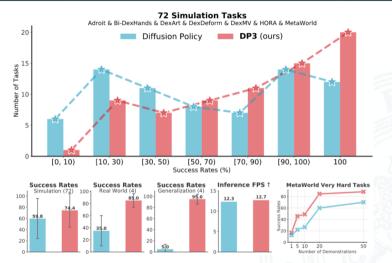
Diffusion Policy Advancements - Diffusion Policy

Diffusion Policy for Clothes

Diffusion Policy Advancements - Diffusion Policy



- Folding one specific T-shirt (same as in demonstration)
- 284 demonstrations for training
- Success rate of 75% over 20 trials
- Demonstration and policy rollout using VR controllers and collision avoidance (similar to TAMS setup)


3D Diffusion Policy

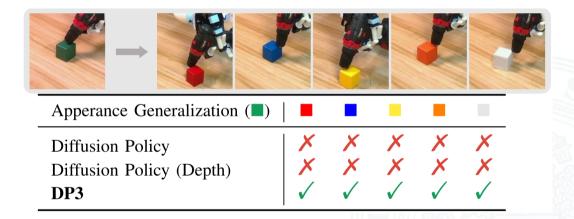
Diffusion Policy Advancements - Diffusion Policy

Diffusion Policy Advancements - Diffusion Policy

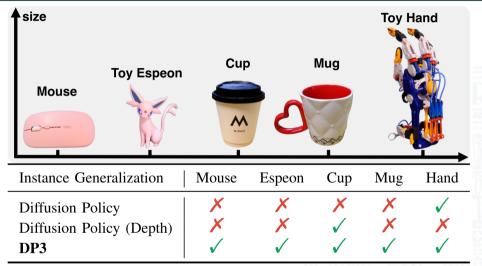
3D Diffusion Policy

Diffusion Policy Advancements - Diffusion Policy

Encoders	Conv	w/ T-Net	w/ BN	1024 Dim	Average
PointNet	 ✓ 	\checkmark	\checkmark	\checkmark	15.7
	×	\checkmark	\checkmark	\checkmark	15.7
	\checkmark	×	\checkmark	\checkmark	16.0
	×	×	\checkmark	\checkmark	26.0
	×	\checkmark	\checkmark	×	18.2
Turnaroud!	\checkmark	×	×	\checkmark	72.5
	×	×	\checkmark	×	19.8
	×	\checkmark	×	×	26.8
	×	×	×	×	72.3



Designs	H	D	Р	А	DA	SP	Average
DP3	100 ± 0	62 ± 4	43 ± 6	$99{\pm}1$	$69{\pm}4$	$97{\pm}4$	78.3
w/o cropping	98 ± 1	$69{\pm}3$	14 ± 1	19 ± 9	32 ± 6	40 ± 2	45.3
w/o LayerNorm	100 ± 0	56 ± 4	44 ± 3	96 ± 2	51 ± 3	$91{\pm}5$	73.0
w/o sample pred	68 ± 3	67 ± 8	37 ± 12	96 ± 2	58 ± 9	76 ± 9	67.0
w/o projection	$100\pm o$	61 ± 2	$47{\pm}3$	$99{\pm}1$	$60{\pm}8$	$99{\pm}2$	77.7
w/ color	100 ± 1	67 ± 3	46 ± 4	$76{\pm}8$	$75{\pm}5$	68 ± 3	72.0
DDIM→DPM-solver++	12 ± 4	$9{\pm}5$	26 ± 5	93 ± 3	58 ± 6	$92{\pm}14$	48.3

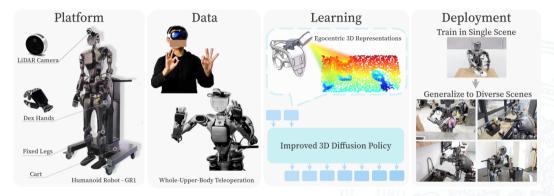

3D Diffusion Policy Generalization

Diffusion Policy Advancements - Diffusion Policy

3D Diffusion Policy Generalization

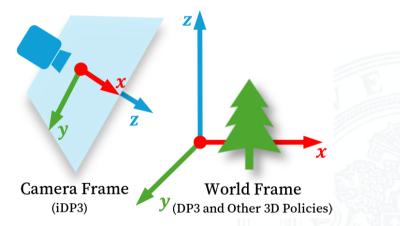
Diffusion Policy Advancements - Diffusion Policy

3D Diffusion Policy Generalization


Diffusion Policy Advancements - Diffusion Policy

RGB	Point Cl	oud	Test Objects		
				Charger Cy Rope	vlinder
Task Progress					
Cluttered Scenes Dif	fusion Polic	y DP3 w	/ PointNeXt	DP3 w/ color	DP3
Success Rate	60		0	80	80
Train with Cube			Charger	Cylinder	Rope
DP3 w/ color DP3	× ✓	× × √ √	× /	× √	× √

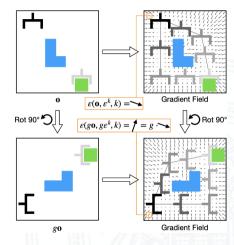
Mobile Robot 3D Diffusion Policy



Generalizable Humanoid Manipulation with Improved 3D Diffusion Policies, Ze et al., arXiv 2024

Mobile Robot 3D Diffusion Policy

Diffusion Policy Advancements - Diffusion Policy

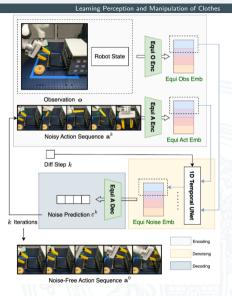


Generalizable Humanoid Manipulation with Improved 3D Diffusion Policies, Ze et al., arXiv 2024

Equivariant Diffusion Policy

Diffusion Policy Advancements - Diffusion Policy

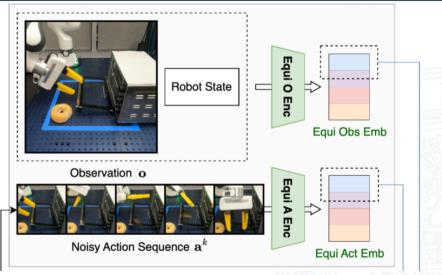
- Utilize domain symmetries
- Increases sample efficiency and generalization


Equivariant Diffusion Policy, Wang et al., CoRL 2024

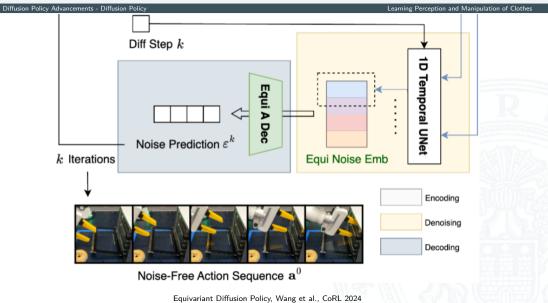
Equivariant Diffusion Policy

Diffusion Policy Advancements - Diffusion Policy

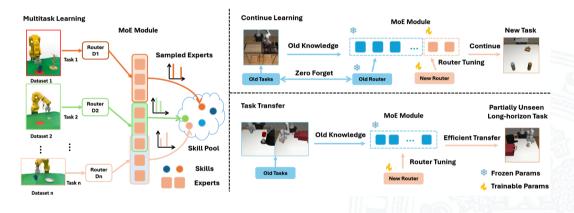
- Utilize domain symmetries
- Increases sample efficiency and generalization



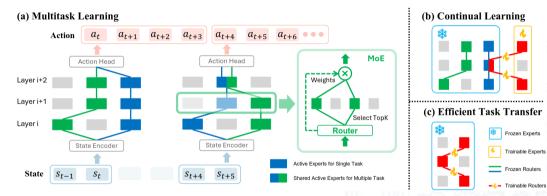
Equivariant Diffusion Policy, Wang et al., CoRL 2024


Diffusion Policy Advancements - Diffusion Policy

Learning Perception and Manipulation of Clothes

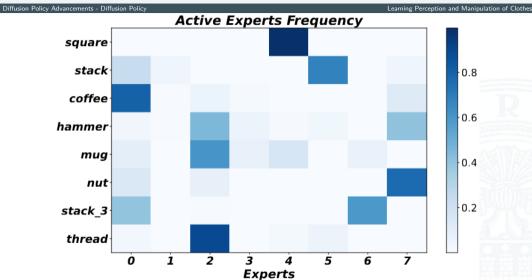

Equivariant Diffusion Policy, Wang et al., CoRL 2024

Equivariant Diffusion Policy



Diffusion Policy Advancements - Diffusion Policy

Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning, Wang et al., CoRL 2024

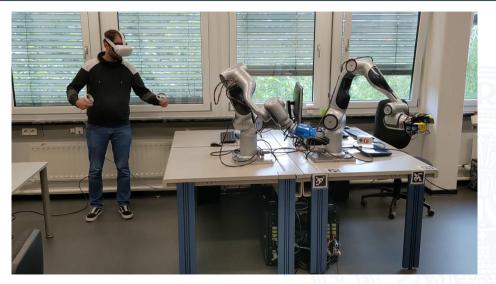

Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning, Wang et al., CoRL 2024

Frozen Experts

Trainable Experts

Frozen Routers

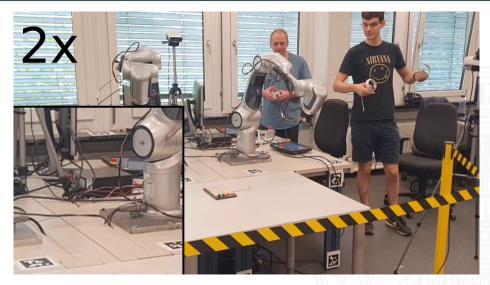
Sparse Diffusion Policy


Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning, Wang et al., CoRL 2024

Demonstrations in VR

Diffusion Policy Advancements - Diffusion Policy

Learning Perception and Manipulation of Clothes



Demonstrations using VR Controllers

Diffusion Policy Advancements - Diffusion Policy

Learning Perception and Manipulation of Clothes

My Future Plans

Frequency	Household	Healthcare	Textile Industry	
Frequent (4+)	Folding, Smoothing, Ironing	Dressing		
Rare (2-3)	Hanging, Sorting, Wiping	Bedding, Bed-making, Bandaging	Recycling	
Unaddressed (0-1)	Storing	Buttoning	Manufacturing, Dyeing, Quality control, Coloring, Washing	

Unfolding the Literature: A Review of Robotic Cloth Manipulation, Longhini et al.,

Annual Review of Control, Robotics, and Autonomous Systems 2025

My Future Plans

- Get some diffusion policy running on the dual Diana7 setup and build clothes demo
 - Initially with image input
 - Try tasks with point cloud input
 - Figure out how to use point clouds with clothes/fabrics
- Explore rarely addressed and unaddressed tasks
 - Quality control using event cameras?