

Calibrating a low-cost, 5 Axis 3D Printer

Tom Schmolzi 7047758 - tom.schmolzi@uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

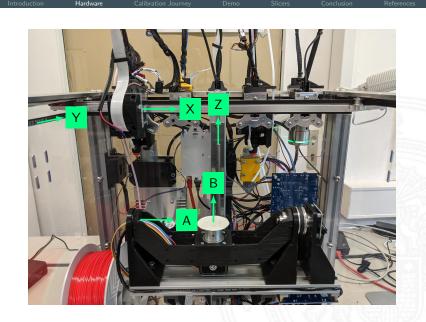

May 28th 2024

Calibration Journey Introduction Hardware Calibration Journey Demo Slicers Conclusion

What is 5 axis 3D printing?

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

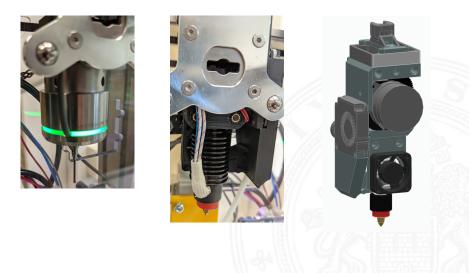
- two additional rotational axes
- using standard 3d print-head
- similar to 5 axis cnc
- two positions of same print process
- using this surfaces can be followed


Potential of 5 axis 3D printing

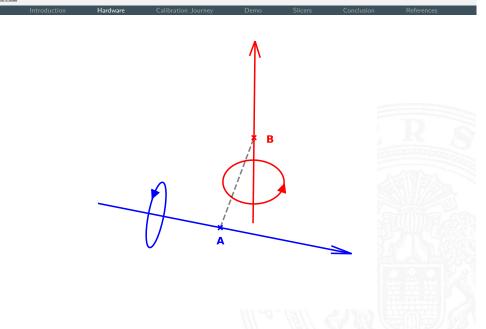
References

- Better surface quality [8]
- Less supports [8]
- Desirable mechanical properties [6]
- Printed electronics [1]
- Efficient multi-material printing

- surfaces can be printed directly, not with layer lines
- less supports as the direction of gravity can be controlled
- better strength by controlling layer direction
- printed electronics using conductive materials directly on surfaces
- multi-material with less switching

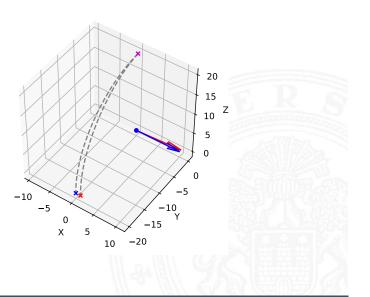

Hardware Overview

- overview, whole system based on project open5x
 -> E3D frame
- adapted at the 3D printing lab
- XY in top
- Z holds A and B
- B attached to A



Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- 3D touch probe
- can measure in X and Y directions and downwards Z
- small ruby sphere diameter 2mm
- introduce the most important tool for checking
- custom long extruder
- developed by German
- high clearance allows extensive 5x use


Printer Model

- Two axes in space
- closest position of both
- offset between closest
- axes don't intersect
- b position is defined as 0,0,0

Why is calibration needed?

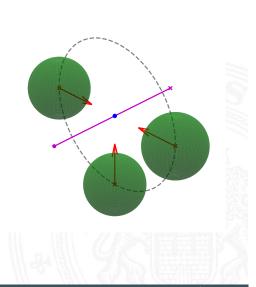
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- point 2cm from rotation axis
- axis is 2° off
- 1mm error in 90° rotation

Ours System Cost: ≈10.000€

Measure Instrument: 500€ Others

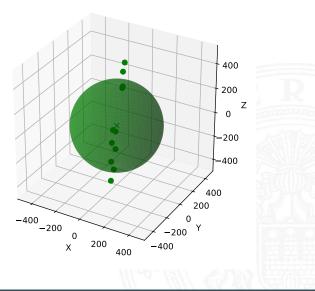
System Cost: >30,000€


Measure Instrument: >3,500€

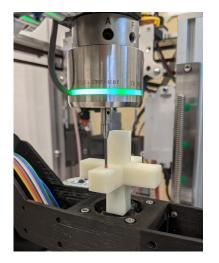
- other option, pay for it
- our system cost around 10k
- tool only 500 -> main part really cheap
- others usually use modified cncs (cost approximated)
- expensive laser scanners
- though more generally speaking -> one paper with a cheap printer + conductive probe -> results ok
- often either instrument or machine expensive

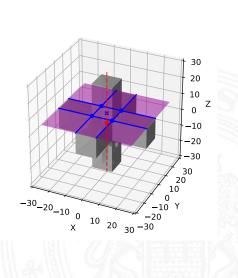
Calibration of Axes Model: Round 1

|--|



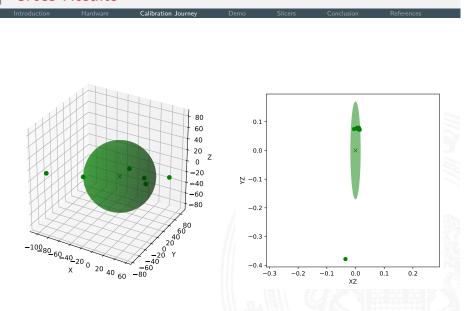
- first using a sphere \rightarrow finding center point
- rotating axes and finding multiple centers
- axes are found in result structure


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

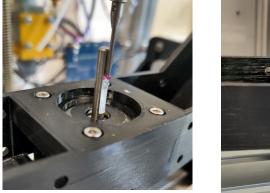


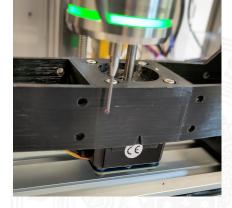
- not reliable (11 measure)
- axes are in microns
- plot shows center points and biggest standard dev as sphere
- but would only use standard Z switch

Calibration of Axes Model: Round 2


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References
--------------	----------	---------------------	------	---------	------------	------------

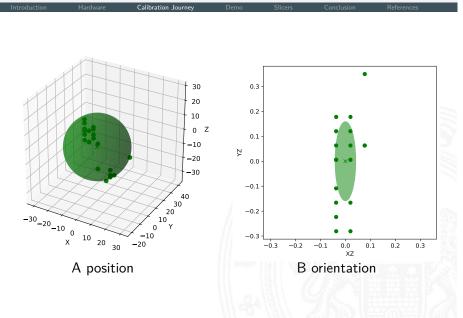
- similar for cross \rightarrow center and orientation
- using a plane fitted to probed points and projecting points into it





- center and orientation ok (though >100mu) (6 measurements)
- but, only worked for B, not A -> motor loaded / wiggle
- -> problem with calibration objects not being reliable
- (able to measure more properties)

Calibration of Axes Model: Round 3


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- conclusion -> use objects already on printer
- B metal axle + 3d printed structure of A axis
- split into 4 measure -> position and orientation for each

Step-by-step Results

- worst components
- A position is good -> movement probably because of the probe structure holding -> Y variation
- B orientation is too varied -> good enough in practice though
- expected to be Y movement too, but no certain
- simple -> works really well

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

Axes Precision:

 $pprox 10 \mu m$

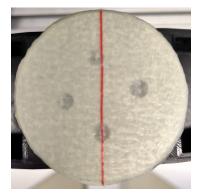
Pickup Repeatability: $\approx 10 - 20 \mu m$

Probe Precision: $\approx 10-20 \mu m$

A position: $\approx 55 \mu m$ B position: $\approx 35 \mu m$

- comparing the position res to machine precision
- for pickup and probe this includes axes
- for pickup manu says 4

- tool have to be calibrated to each other
- camera mounted to the Z bed
- probed moved to center of camera
- position of camera saved
- extruder moved into center
- now relative to probe -> probe measures everything

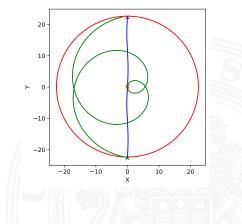


		Calibration Journey	Demo	Slicers	Conclusion	References
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References
А	oposition	l		A d	lirection	

- position by drawing line on both sides of obj and comparing height only using A rotations
- direction by drawing straight line on surface

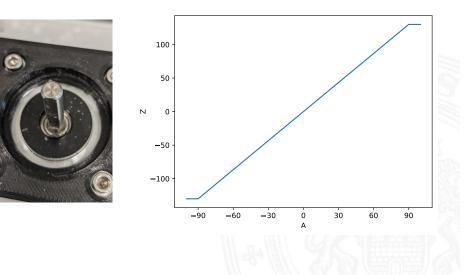
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

B position


B direction

- position by trying to draw a straight line on rotating table
- orientation line on rotated surface

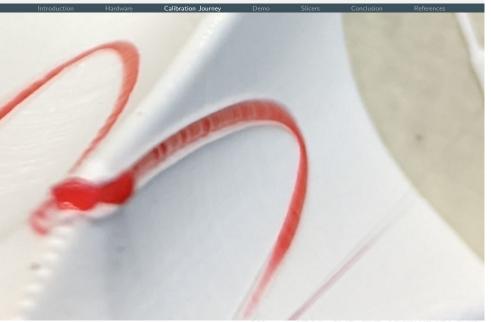
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References	



- B axle as reference object
- size is known and very accurate
- used to find dimensionality errors (squished or stretched objects) with probe
- the b position test used to find X/Y bias of probe
 -> characteristic wave pattern based on error
- flat side also used to find z offset (gesture)


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References	

- scaling by finding slope of flat side in $\pm90^\circ$
- found error of $\approx 0.6^{\circ}$ -> significant effects
- thought to come from drive belt slack
- Z wobble found in test -> shift Z height of rotation axis
- beyond axes model
- linear effect worked for good results


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

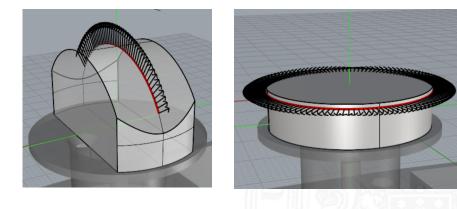
- first with 0 pos calibrated, but nothing else
- second full calibrated
- first embedded plastic into object
- second actually printed on top
- rotation error in top lines

Printed Results

- first with 0 pos calibrated, but nothing else
- second full calibrated
- first embedded plastic into object
- second actually printed on top
- rotation error in top lines

Printed Results

- first with 0 pos calibrated, but nothing else
- second full calibrated
- first embedded plastic into object
- second actually printed on top
- rotation error in top lines


Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- real world demo
- or backup video

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- 5 axis slicer is needed
- development by Florens and Daniel
- red line is the line to print
- arrows are the normals of the lines
- but open source not really present

- Development of open 5 axis slicers
- ► Using 5 axes to print electronics
- Error model based approach
- Adaptation for current printers
- Test analysis automation through image processing

- Development of open 5 axis slicers
- Using 5 axes to print electronics
- Error model based approach
- Adaptation for current printers
- Test analysis automation through image processing

Conclusion

Contributions & Outlook

References

Conclusion

- Procedure for Calibration
- ► Tests for calibration components
- Showing extensions beyond line model needed
- Proving feasibility of low-cost 5 axis

- Procedure for calibration for our printer or similar
- Tests for Calibration Components
- Showing extensions beyond line model needed
- Proving feasibility of low-cost 5 axis
- -> probably will see the technology more soon + more research

Introduction Hardware	Calibration Journey	Demo	Slicers	Conclusion	References
Potential of 5 axis 3D printing	n Conclusion References	Cost	Comparison	nev Dena Silces C	onducion References
 Better surface quality [8] Less supports [8] Desirable mechanical properties Printed electronics [1] Efficient multi-material printing 	[6]	≈10,0	m Cost: D00€ ure Instrument:	Others System Cost >30,000€ Measure Inst >3,500€	
Extense of cases a hours Why is calibration needed?		Ten Schart	s - Gilleding + St Primer ed Results zama	1 1 1 1 1 1 1 1 1 1	
Ter Market + Calibrating a 5 x Print			t dagt a bre		ола 27/27

Printing:

https://youtu.be/QCpKqnp3P4I

Calibration:

https://youtu.be/AuEFCgAx3H4

- Freddie Hong et al. "5-axis multi-material 3D printing of curved electrical traces". In: Additive Manufacturing 70 (2023), p. 103546.
- [2] Freddie Hong et al. "Open5x: Accessible 5-axis 3D printing and conformal slicing". In: *CHI Conference on Human Factors in Computing Systems Extended Abstracts*. 2022, pp. 1–6.
- [3] WT Lei and YY Hsu. "Accuracy enhancement of five-axis CNC machines through real-time error compensation". In: *International journal of machine tools and manufacture* 43.9 (2003), pp. 871–877.
- [4] WT Lei and YY Hsu. "Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: design and modeling". In: *International Journal of Machine Tools and Manufacture* 42.10 (2002), pp. 1153–1162.

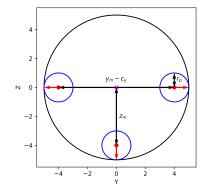
- [5] Hao Liu, Lei Liu, and Kai Shen. "Rotary axis calculation for five-axis FDM printer using a point-fitting optimization method". In: *Applied Mathematics-A Journal of Chinese Universities* 37.2 (2022), pp. 258–271.
- [6] Ren C Luo et al. "3D digital manufacturing via synchronous 5-Axes printing for strengthening printing parts". In: *IEEE* Access 8 (2020), pp. 126083–126091.
- [7] Jeevan Persad and Sean Rocke. "A survey of 3D printing technologies as applied to printed electronics". In: *IEEE Access* 10 (2022), pp. 27289–27319.
- [8] B Ramos et al. "Optimal 3D printing of complex objects in a 5-axis printer". In: *Optimization and Engineering* (2022), pp. 1–32.

References

[9] Yujie Shan et al. "Additive manufacturing of non-planar layers using isothermal surface slicing". In: *Journal of Manufacturing Processes* 86 (2023), pp. 326–335.

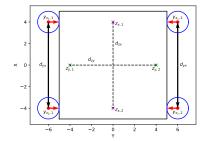
References

Introduction Hardware Calibration Journey Demo Slicers Conclusion References Good quality prints


- \blacktriangleright < 100 μm position error
- \blacktriangleright < 0.2° orientation error

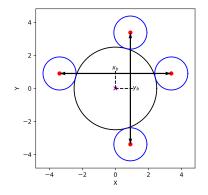
- Good quality prints
- $< 100 \mu m$ position error
- $<0.2^\circ$ orientation error

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References



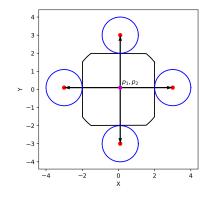
- internal circle by rotating axis
- 3 rotations
- approximation, but low expected error (single digit µm)

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

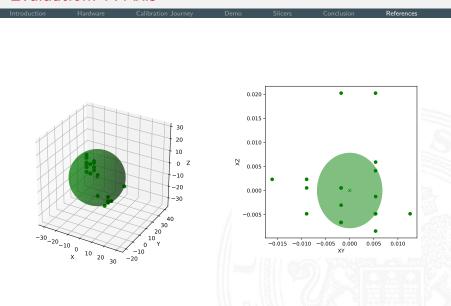


- measuring 3D printed structure
- first from top to get slope in X and Y
- the sides to get rotation in Z

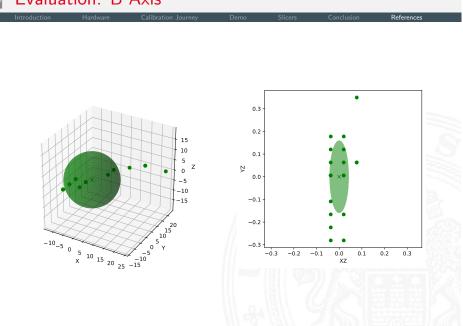
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References




- using the b motor axle
- rotating it to create cylinder shape (has flat side)
- finding center

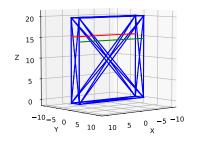

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- Using the flat side to find two points at diff heights
- find vector between in orientation



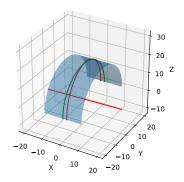
Evaluation: A Axis

- 20 measurements
- first positional error in μm
- second angle error in projected plane from mean
- position to less than $30 \mu m$
- orientation very stable



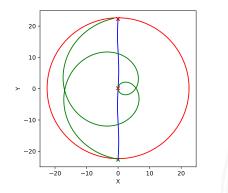
- for b axis
- position really good
- orientation less stable $> 0.2^\circ$

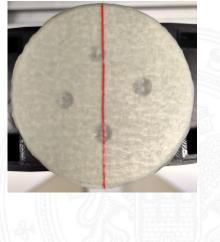
			References


- line heights
- equal extrusion
- good result (extrusion needed a bit to stabilize)

A Direction Test

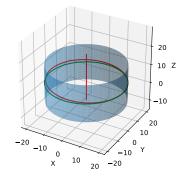
Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

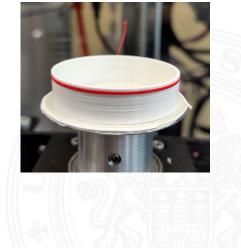




- a direction by drawing in rotation
- green is good \rightarrow red example error
- result with excellent line (checked with caliper)

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References





- trying to draw line while rotating print-bed
- if position is off, line waves
- blue is simulated result, green is 3D space movement of nozzle
- actual result shows almost straight line with error less 100mu
- very important test, as it allows conclusion about offset
- ${\scriptstyle \bullet \ } \rightarrow$ used to find error in the measurement probe

B Direction Test

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References

- drawing line on rotating cylinder
- orientation is wrong, distance from top will change
- did not observe such error

Model Extension

Introduction	Hardware	Calibration Journey	Demo	Slicers	Conclusion	References
				-90 -60	-30 <u>ò</u> 30	60 90

- A Axis Rotation axis wobble
- Beyond the line model
- linear z height correction
- theory for problem is not really round axis