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I Increased workspace by using both manipulators
I Allows easier re-orientation of objects
I Shadow hand is difficult to control for grasping objects
I PR2 has a limited workspace where both manipulators can act
I Run everything on the real robot without simulation
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Manipulation
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I Liang et al., Multifingered Grasping
I Use reinforcement learning to learn to grasp various objects
I Utilize synergies to control the Shadow hand
I Already available dataset for synergies
I Not tested for bimanual system

Liang et al., “Multifingered Grasping Based on Multimodal Reinforcement
Learning”, RA-L 2022
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Synergies
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I Human-inspired dimensionality reduction method for humanoid
hands

I Record humans grasping various objects in different ways
I Run a Principal Component Analysis on recorded poses
I Use a weighted combination of first x eigenvectors to control

hand
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Bimanual Manipulation
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I Li et al., Efficient Bimanual Handover
I Multiple handovers using two panda arms
I Utilize symmetry between the two arms for efficient training
I SAC as backbone algorithm
I Only equipped with two finger grippers
I Simple block shapes as objects

Li et al., “Efficient Bimanual Handover and Rearrangement via Symmetry-Aware
Actor-Critic Learning”, ICRA 2023
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Bimanual Manipulation
Introduction Introduction Related Work Approach Grasp Point Handover Pose Reinforcement Learning Conclusion

I Pavlichenko et al., Bimanual functional regrasping
I First generate and execute support grasp, then perform

functional re-grasping
I Use mesh reshaping to handle objects from the same category
I Different multi-fingered manipulators used
I Functional grasp predetermined
I Difficult to expand to more object categories

Pavlichenko et al., “Autonomous Bimanual Functional Regrasping of Novel Object
Class Instances”, Humanoids 2019
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Setup
Introduction Introduction Related Work Approach Grasp Point Handover Pose Reinforcement Learning Conclusion

I Utilize PR2
I Enable the robot to hand over from left to right manipulator
I Different manipulators provide unique challenges in both

directions
I Assumption to have an object already in the gripper at the start
I No external sensors
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Grasp point

Object in gripper

Sample handover poses
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Test grasp
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Pointcloud Filter
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I Apply fixed cropbox filter around the gripper
I Filter remaining robot through robot self-filter package
I Reduction from 3145728 points to 37183 points
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Grasp Point Generation
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I Initial training used the highest point in point cloud
I For can use rotation invariant IK pose generation
I With changing handover poses switched to fixed translation

relative to the gripper
I Possibly utilize GPD on filtered object point cloud in the future
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Handover Pose Workspace Analysis
Introduction Introduction Related Work Approach Grasp Point Handover Pose Reinforcement Learning Conclusion

I Need to decide where to perform the handover process
I Investigate the best region to sample
I Workspace analysis to determine the optimal sampling area
I Use handover points as the middle point between the gripper

and hand

Björn Sygo – Bimanual Handover 14 / 36



Handover Pose Workspace Analysis
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I Sample every 6cm along all axes
I 30◦steps rotation around each axis from -90◦to 90◦for gripper

and hand, resulting in 343 orientations per position
I Rotations relative to the handover point
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Handover Pose Workspace Analysis Visualization
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I From red to green increasing the number of valid configurations
I Shown positions are handover points
I For each position, all gripper and hand orientations were tested
I Best region towards gripper side
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Handover Pose Cost Assignment
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I Decide which valid pose to choose
I Cost function used by Pavlichenko et al.
I Find configuration far from joint limits
I Ensures enough flexibility for grasp testing/retracting gripper
I Use lowest cost pose for handover

δ(θ) = min(|θupper − θ|, |θ − θlower |)

θ : joint values
θupper ,lower : upper/lower joint limit

c(θ) = 1
|δ(θ)|

|δ(θ)|∑
i=1

1
ε2i
(δ(θi))

2 − 2
εi
δ(θi) + 1

εi :
1
2(θupper − θlower ) for joint i
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Reinforcement Learning Motivation
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I Popular grasping method, also used by Liang et al.
I Maybe generalize/quickly adapt to new objects
I No hard coded grasps for individual objects
I Able to adapt to object movement during handover
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Reinforcement Learning Implementation
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I Training is done only on the real robot
I The goal is to have the shadow hand grasp the currently held

object
I Each step adds a predicted synergy step to the current joint

state
I Episode stop after all fingers have contact or step limit
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Reinforcement Learning Formulation
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State Space:
st = {pca3t , efft , oh}
pca3t : first three synergy values of joint state at time t
efft : effort values of closing joints at time t
closing joints : joints 2,3 for fingers and joint 5 for thumb
oh : one-hot encoding of three objects
Action Space:
at = {pca3}
pca3 : first three synergy values by which to change joint values
Reward:

rt =
{
rb + rcon, if t = Tfinal

rc , otherwise
rb : binary reward {−1, 1} depending if grasp successful
rc : closing reward, sum of change in closing joints
rcon : 0.1× number of finger contacts
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Reinforcement Learning Training Overview
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I Default network structure from stable baselines 3
I Currently training for 10000 steps
I Object change after 1000 steps
I SAC as RL algorithm
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Input layer
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Björn Sygo – Bimanual Handover 23 / 36



Reinforcement Learning Restrictions
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I Training is done on the robot instead of simulation
I Finger joints 4 fixed to limit self-collisions during training
I Wrist joints don’t get moved
I Thumb joint 4 remains at the initial configuration
I Change normalized to largest joint change maximum 9 degree
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I Trained with effort feedback and two objects
I Learned to grasp can but failed with book
I Only fixed handover and grasped pose
I Showed validity of effort values as input but needs parameter

adjustments
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Reinforcement Learning Training Video
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Training Video Effort
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Full handover
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Video full handover
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Interim Findings
Introduction Introduction Related Work Approach Grasp Point Handover Pose Reinforcement Learning Conclusion

Accomplishments:
I Implemented a bimanual object handover pipeline
I Managed to train a grasping model using only the real robot
I Analyzed the bimanual workspace of the PR2 regarding object

handover

Limitations:
I Limited to one object
I Still uses hard-coded poses for grasp pose
I Training not yet done with sampled handover poses
I Requires further evaluation of chosen parameters
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Ongoing Work
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Structure:
I Increase to multiple (YCB) objects
I Implement grasp point generation
I Investigate the possibility of a second object handover to the

gripper

Evaluation:
I Investigate different state space configurations
I Evaluate success rate
I (Investigate different cost functions)
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Thank You For Listening!

Any questions or feedback are very welcome.
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Reinforcement Learning Initial Version
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I Initially trained with biotac sensor feedback
I Can object could be grasped reliably
I Only one object and one pose
I Initial indicator for validity of approach
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Effort Training Graphs
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Tactile Training Graphs
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Handover Sample
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