
Technical Aspects of Multimodal Systems
Department of Informatics

Project Intelligent Robotics
Assignment #3

The previous assignments introduced the basic ROS framework and its interfaces. The next as-
signment requires you to utilize 3rd-party packages built with ROS to control the actions of a
robot arm. The most prominent project to do that in the context of ROS is called “MoveIt”. Most
of its documentation can be found through http://moveit.ros.org.

Make sure to look at MoveIt 1 documentation for ROS noetic.

Task 3.1 Install the description and configuration packages for TAMS’s UR5 setup:
You have to download and build the packages specific to our UR5 robot setup. The easiest way
to add them to your workspace is, again, via a workspace management (here, vcs):

• Navigate to http://github.com/TAMS-Group/rosinstalls and download the file
noetic-tams-ur5-setup-demo-mode.rosinstall.

• Go to your workspace’s src folder and run:
vcs import --input noetic-tams-ur5-setup-demo-mode.rosinstall

• Build your workspace

• Source your workspace again to make sure all new packages are available.

Task 3.2 Geometric Simulation, Kinematics and Path Planning:

3.2.1: Now you should be able to launch the geometric simulation, i.e. “demo mode”, for the setup:
roslaunch tams_ur5_setup_moveit_config demo.launch

This command launches the MoveIt demo mode with TAMS’s configuration together with the
RViz based visualization for the framework. You will need to have this launch file running for all
further tasks on this assignment sheet.

3.2.2: You can move the colored interactive marker in RViz to select a goal configuration the arm
should reach. The visualization automatically computes inverse kinematics (IK) for you. Thus,
you only specify the pose of the end-effector and the orange robot model visualizes the chosen
robot pose (the joint configuration) to reach that pose. To allow dragging the marker freely even
if there is no IK solution for the current state, select “Approximate IK Solutions” in the MoveIt
RViz panel at the bottom left.

3.2.3: On the left side of the MoveIt RViz panel you can request MoveIt to plan (and execute)
a collision-free path from the current state of the arm to your goal state. You can choose the
planner used to compute the path in the “Context” tab. Assess the quality and success of different
planners given different start/goal states and planning time.

http://moveit.ros.org
http://github.com/TAMS-Group/rosinstalls


Project Intelligent Robotics
Assignment #3

Task 3.3 Code Interfaces:

3.3.1: Implement a C++ ROS node that moves the arm. Once you worked through this task, you
might be interested to achieve the same through MoveIt’s python bindings.

• Create a ROS package that depends on the packages

– roscpp
– moveit_ros_planning_interface

• Create a C++ ROS node in this package

• Create an instance of the class moveit::planning_interface::MoveGroupInterface to interface
with MoveIt. You can find API documentation on the class on the website.
The name of the planning group for the UR5 arm (without the attached gripper) is “arm”.

• Use the move() method of the class instance to plan and execute a motion to a previously
set goal state

• There are many ways to define a goal before calling move(). Use at least two of the following:

– Use setNamedTarget(const std::string&) to set the goal to one of the pre-specified robot
poses available for the setup. You can find a list in the “Goal State”-field in RViz.

– The current joint states of the robot are published to the topic /joint_states. Use
rostopic echo /joint_states to find the current values of all ur5-related joints. Set them
as the goal using one of the setJointValueTarget methods.

– Use the setJointValueTarget(const geometry_msgs::PoseStamped& p) method to re-
quest a target pose p for the end-effector.
Set p.header.frame_id to “table_top” in order to specify the pose with respect to the
ROS frame table_top. To visualize this frame in RViz, you can add an “Axis” display
and set the frame as its reference.
For now, don’t change the orientation of your target pose. Instead specify
p.pose.orientation.w as 1.0 and leave the other three components at 0.0.

3.3.2: Write another node that adds a collision object, i.e., an obstacle the arm should avoid, to
the planning scene in MoveIt.

• Create an instance of the class moveit::planning_interface::PlanningSceneInterface. Again,
the API documentation can be found on the website.

• Use the method applyCollisionObject(const moveit_msgs::CollisionObject&) to spawn the
obstacle. To do so, create a moveit_msgs::CollisionObject message, fill in the fields to specify
a tall object on top of the table and pass it to the method.

• Plan and execute paths in the modified scene. The arm should not collide with the specified
collision object, but successful trajectories will move the arm around the object (if possible).


