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Introduction
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Paper Statistics

® published in year 2018

¢ 2nd Conference on Robot Learning (CoRL 2018), Zurich,
Switzerland.

® people associated with NVIDIA

® around 500 citations

. First g . . . Gph
Title & author § % Year & Citations references ©
Vision-based robotic grasping from object localization, object pose T 2020 - o
estimation to grasp estimation for parallel grippers: a review.
GDR Net: Geometry-Guided Direct Regression Network for Monocular 6D T - . o
Object Pose Estimation
Deep Learning on Monocular Object Pose Detection and Tracking: A Jasonzhaowin 01 . o
Comprehensive Overview

. . . . Benjamin .

I Like to Move It: 6D Pose Estimation as an Action Decision Process e 2020 14 19
DPODV2: Dense Correspondence-Based 6 DoF Pose Estimation Shigrov 2021 13 19
SAR-Net: Shape Alignment and Recovery Network for Category-level 6D —. - B o
Object Pose and Size Estimation
Occlusion-Robust Object Pose Estimation with Holistic Representation Bo Chen 2021 1 2
Neural Correspondence Field for Object Pose Estimation Lin Huang 2022 0 19

Figure: Papers that cited DOPE in blue-underlaid. [1]

hristian M. Salam 3/32



Introduction
0000000

2-Dimensional Object Detection

Figure: 2-D Object Annotation [2]

® rectangular bounding box shape

® created using two coordinates on the image
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6 DOF / 3-D Object Detection

(a) 6-Degree of Freedom (b) 3-Dimensional Object Annotation
(2]
e three dimensions (x, y, z axes); plus three rotational axes (roll,
pitch, yaw) (a)
® 8 vertices needed (b)
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Sum up 2-D to 3-D

Figure: 2-D to 3-D [2].
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YCB Objects

¢ Yale-CMU-Berkeley (YCB)
e daily life objects

Figure: YCB objects [3].
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Motivation

Figure: [4]

® find meshes in a coordinate system
e find pose (position and orientation) relative to the camera

® implicit representations of the above
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Reality Gap

Real annotated Data

® lighting conditions

® noise (e.g. camera)

richness of images (e.g. | Simulated Data |
background textures)

performance issues on real data

v

Figure: Simulated vs. Real
Data [5].
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Contributions

® propose photorealistic data for training
® combined with Domain Randomization

¢ propose DOPE (Deep Object Pose Estimation) algorithm
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Methods
.

Domain Randomization

Domain Randomization

® existing method dealing with !EE
reality gap 1
lighting conditions .ﬂ

® objects positions . g
non-realistic textures [

distractor objects

® random camera positions

Figure: Domain
Randomization. Train and
Test data. [6].
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Photorealistic Data

Photorealistic Data

placing the foreground objects in
3D background scenes with
physical constraints

standard backgrounds from
UnrealEngine4
YCB Objects

allowed to fall and to collide
within the scene

changing camera position while

falling Figure: Photorealistic Data
Falling Things (FAT) data set [4].
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00
Deep Object Pose Estlmatlon (DOPE)

DOPE Framework

belief maps
i
CONV CONV ’——'

gl L L+| il

p— CONV | .
etz rorrera N )

vector fields

Figure: DOPE Network Architecture [7].

Image features computed VGG-19 network
build belief maps (8 vertices + 1 centroid)

build 8 vector fields directing to centroid of an object

process is done in multiple stages (field of reception)
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Deep Object Pose Estimation (DOPE)

Perspective-n-Point Extraction

e find local peaks in the belief maps
above a threshold

® evaluate vector field direction and
assign to closest centroid (angular
threshold)

® estimate 6-DOF using a PnP
algorithm (Rotation and
Translation matrix)

Introduction Contributions Methods Experiments and Results

State-of-the-Art Conclusion

X object

image  x

\
camera

o

Figure: PnP-Problem [8].
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Training

® 60k domain-randomized image frames mixed with 60k
photorealistic image frames

® 60k DR (class specific) + 60k photorealistic

® calculate L2 for belief maps and vector fields after each stage
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[e] lelele}

Average Distance Metric (ADD)

e ADD and ADD matching score

LS [Re 4+ T) - (Rx + )| (1)

ADD =
’M‘ xeM

1 . o
ADD-S = M Z ming,em||(Rx1 +T) = (Rx2 + T)||  (2)
x1EM

® R and T are ground truth rotation and translation matrices

® R and T are estimated rotation and translation matrices
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Experiments and Results
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Results

® authors limited to cracker box, sugar box, tomato soup can,
mustard bottle and potted meat

® reasons: graspability and texture

® threshold 2cm

005_tomato_soup_can

003 _cracker_box . 004_sugar_box .

o8 08 a8 -
Eaoe B s Eaos
] ] ]
E El ]
Fo4 204 a4 Fi
- = s — - s =
[—— D+ phoio (55.921 —— DR+photo (75,60) —— DR+photo (76.06)
BR.(10.3 N DA (63.22) i DR (70.20)
02 ~—photo [16.94) 0z —— photo {52.73} 02 F —— phato {45.72)
—— PoseCH (51.51) —— PoseCHN (60,53 —— PoseCH (66.07)
» i" |——PotaCNN (5ym) (0.00] —— PoseCNN {syn} (2.82] i —— PeseCNN {syn) {23.16)
o Lt JL o !
01 ) a0z abs o6 o.a o1 ] a0z t.0a boe oo 01

a 0.0z 004 008 .08

Average distance threshold in meters Average distance thresheld in meters

Average distance threshald in meters

Figure: Accuracy results cracker box, sugar box, tomato soup can. [4].
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Live Demo

Figure: Live demo video [9].
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[e]e]ele] }

Discussion

not provided complete results

limited to certain items (best results)
® no result table

® grasp items from different angles
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State-of-the-Art
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State-of-the-Art 6-DOF Object Detection

Self-Occlusion Pose Intuition

BE

Image CNN 2D-3D Point Matching 6D Pose

(a) Basic structure of baseline methods [12, 43]

(B= | 2
3a( (|-

Image CNN Twao-layer Model 6D Pose

Self-occlusion
Information

(b) Basic structure of our method SO-Pose.

Figure: Basic Self-Occlusion-Pose [10].
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State-of-the-Art 6-DOF Object Detection

ments and Results

State-of-the-Art

oe

ADD | AUC of | AUC of
Method PE. | Ref. s) | ADD-S | ADD(-S)
PoseCNN [45] 1 213 759 61.3
SegDriven [14] 1 39.0 - -
PVNet [28] M - - 734
S.Stage [12] M 53.9 - -
GDR-Net [43] 1 49.1 89.1 80.2
DeepIM [19] 1 ' - 88.1 81.9
CosyPose [ 18] 1 v - 89.8 84.5
Qurs(34) 1 54.6 89.7 823
Ours(50) 1 56.8 90.9 839
Figure: Results on YCB-V [10]

e ADD(-S) percentage of transformed model points whose
deviation from ground truth lies below 10% of the object's

diameter (0.1d).

® For symmetric objects, ADD(-S) measures the deviation to the
closet model point [10]

® Area Under the Curve accuracy when using different thresholds
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Conclusion

YCB objects is a robotics data set widely used

domain randomization is good

but photorealistic data improves the results a lot
DOPE is a model for predicting 6-DOF poses
SO-Pose state-of-the-art
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Conclusion

End Frame

Motivation Photorealistic Data

* placing the foreground objects in
3D background scenes with
physical constraints ~

* standard backgrounds from
UnrealEngine4

 YCB Objects

Figure: [4] * allowed to fall and to collide
within the scene

 find meshes in a coordinate system . :h”a"sms camera position while

alln

o find pose (position and orientation) relative to the camera e Figure: Photorealistic Data
* Falling Things (FAT) data set o]

© implicit representations of the above

DOPE Framework
Results
 authors limited to cracker box, sugar box, tomato soup can,
mustard bottle and potted meat
« reasons: graspability and texture
« threshold 2cm

Figure: DOPE Network Architecture [7]

* Image features computed VGG-19 network H
© build belief maps (8 vertices + 1 centroid)
* build 8 vector fields directing to centroid of an object

« process is done in multiple stages (field of reception) Figure: Accuracy results cracker box, sugar bos, tomato soup can. [4]
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Distractors

number and types of distractors, selected from a set of 3D models
(cones, pyramids, spheres, cylinders, partial toroids, arrows, etc.)
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Complete Results
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True Belief Maps, True Vector Fields

® "The ground truth belief maps were generated by placing 2D
Gaussians at the vertex locations with SIGMA = 2 pixels"

® "The ground truth vector fields were generated by setting pixels
to the normalized x- and y-components of the vector pointing
toward the object’s centroid " [4]

® => Assume Generate True locations on 400x400x8 and
downsample to 50x50x8

® assume W=400, H=400. Vector from one vertex to centroid
(x=100, y=200). Normalized:(0.25,0.5)
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Results visualized

PoseCNN [5]

DOPE (ours)

Figure: Pose estimation of YCB objects. Different lighting conditions. [4].
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Live DOPE at TAMS

Figure: Provided by Michael Gérner. [11]
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Dope Pick and Place

Figure 5: Robotic pick-and-place of a potted meat can on a cracker box. Note that the can is initially
resting on another object rather than on the table, and that the destination box is not required to be
aligned with the table, since the system estimates full 6-DoF pose of all objects. Note also that the
can is aligned with the box (as desired) and within a couple centimeters of the center of the box.

Figure: Pick and place [4].
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DOPE++

DW Cenvolution
network

Belief
maps.

o™, N N

” \ “J | Channel [\ Spatial

,1/ L/ [ ttention SRy / Attention
Vector
Flelds

Figure: DOPE++ [12].

| Output image
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SO-Pose Architecture

l D Losses @ Convolutional Layers @ Fully-connected Layers () Output = Forward Pass]

Figure: Self-Occlusion Pose Architecture [10].
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Planar Non-planar

Figure: src knowledge.autodesk.com
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