64-040 Modul InfB-RSB Rechnerstrukturen und Betriebssysteme

https://tams.informatik.uni-hamburg.de/ lectures/2021ws/vorlesung/rsb

- Kapitel 8 -

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2021/2022

8 Schaltfunktionen

Schaltfunktionen

Definition

Darstellung

Normalformen

Entscheidungsbäume und OBDDs

Realisierungsaufwand und Minimierung

Minimierung mit KV-Diagrammen

Literatur

▶ **Schaltfunktion**: eine eindeutige Zuordnungsvorschrift f, die jeder Wertekombination $(b_1, b_2, ..., b_n)$ von Schaltvariablen einen Wert zuweist:

$$y = f(b_1, b_2, \ldots, b_n) \in \{0, 1\}$$

- ► **Schaltvariable**: eine Variable, die nur endlich viele Werte annehmen kann typisch sind binäre Schaltvariablen
- ► Ausgangsvariable: die Schaltvariable am Ausgang der Funktion, die den Wert y annimmt
- ▶ bereits bekannt: *elementare Schaltfunktionen* (AND, OR usw.) wir betrachten jetzt Funktionen von *n* Variablen

- textuelle Beschreibungen formale Notation, Schaltalgebra, Beschreibungssprachen
- tabellarische Beschreibungen
 Funktionstabelle, KV-Diagramme . . .
- graphische BeschreibungenKantorovic-Baum (Datenflussgraph), Schaltbild . . .
- ightharpoonup Verhaltensbeschreibungen \Rightarrow "was"
- ▶ Strukturbeschreibungen ⇒ "wie"

- ▶ Tabelle mit Eingängen x_i und Ausgangswert y = f(x)
- ▶ Zeilen im Binärcode sortiert
- zugehöriger Ausgangswert eingetragen

<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	f(x)
<i>x</i> ₃	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

► Kurzschreibweise: nur die Funktionswerte notiert

$$f(x_2, x_1, x_0) = \{0, 0, 1, 1, 0, 0, 1, 0\}$$

- ▶ *n* Eingänge: Funktionstabelle umfasst 2ⁿ Einträge
- ▶ Speicherbedarf wächst exponentiell mit n z.B.: 2³³ Bit für 16-bit Addierer (16+16+1 Eingänge)
- ⇒ daher nur für kleine Funktionen geeignet
 - ► Erweiterung auf don't-care Terme, s.u.

- ▶ Beschreibung einer Funktion als Text über ihr Verhalten
- ▶ Problem: umgangssprachliche Formulierungen oft mehrdeutig
- ▶ logische Ausdrücke in Programmiersprachen
- Einsatz spezieller (Hardware-) Beschreibungssprachen z.B.: Verilog, VHDL, SystemC

"Das Schiebedach ist ok (y), wenn der Öffnungskontakt (x_0) oder der Schließkontakt (x_1) funktionieren oder beide nicht aktiv sind (Mittelstellung des Daches)"

K. Henke, H.-D. Wuttke: Schaltsysteme [WH03]

zwei mögliche Missverständnisse

- oder: als OR oder XOR?
- beide nicht: x_1 und x_0 nicht oder x_1 nicht und x_0 nicht?
- ⇒ je nach Interpretation völlig unterschiedliche Schaltung

64-040 Rechnerstrukturen und Betriebssysteme

- ► **Strukturbeschreibung**: eine Spezifikation der konkreten Realisierung einer Schaltfunktion
- vollständig geklammerte algebraische Ausdrücke

$$f = x_1 \oplus (x_2 \vee x_3)$$

- ► Datenflussgraphen
- ► Schaltpläne mit Gattern (s.u.)
- ► PLA-Format für zweistufige AND-OR Schaltungen (s.u.)
- **.**..

8.2 Schaltfunktionen - Darstellung

64-040 Rechnerstrukturen und Betriebssysteme

▶ Menge M von Verknüpfungen über GF(2) heißt **funktional vollständig**, wenn die Funktionen $f, g \in T_2$:

$$f(x_1, x_2) = x_1 \oplus x_2$$

$$g(x_1, x_2) = x_1 \wedge x_2$$

allein mit den in M enthaltenen Verknüpfungen geschrieben werden können

- ▶ Boole'sche Algebra: { AND, OR, NOT }
- ► Reed-Muller Form: { AND, XOR, 1 }
- ▶ technisch relevant: { NAND }, { NOR }

▶ Jede Funktion kann auf beliebig viele Arten beschrieben werden

Suche nach Standardformen

- ▶ in denen man alle Funktionen darstellen kann
- ▶ Darstellung mit universellen Eigenschaften
- ▶ eindeutige Repräsentation ⇒ einfache Überprüfung, ob (mehrere) gegebene Funktionen übereinstimmen
- Beispiel: Darstellung ganzrationaler Funktionen

$$f(x) = \sum_{i=0}^{n} a_i x^i$$
 a_i : Koeffizienten x^i : Basisfunktionen

Normalform einer Boole'schen Funktion

- analog zur Potenzreihe
- ▶ als Summe über Koeffizienten {0, 1} und Basisfunktionen

$$f = \sum_{i=1}^{2^n} \hat{f_i} \hat{B}_i, \quad \hat{f_i} \in \mathsf{GF}(2)$$

mit $\hat{B}_1, \ldots, \hat{B}_{2^n}$ einer Basis des T^n

- ▶ funktional vollständige Menge V der Verknüpfungen von {0,1}
- ▶ Seien \oplus , \otimes ∈ V und assoziativ
- ▶ Wenn sich alle $f \in T^n$ in der Form

$$f = (\hat{f}_1 \otimes \hat{B}_1) \oplus \ldots \oplus (\hat{f}_{2^n} \otimes \hat{B}_{2^n})$$

schreiben lassen, so wird die Form als **Normalform** und die Menge der \hat{B}_i als **Basis** bezeichnet.

► Menge von 2^n Basisfunktionen \hat{B}_i Menge von 2^{2^n} möglichen Funktionen f

- Minterm: die UND-Verknüpfung aller Schaltvariablen einer Schaltfunktion, die Variablen dürfen dabei negiert oder nicht negiert auftreten
- ▶ Disjunktive Normalform: die disjunktive Verknüpfung aller Minterme m mit dem Funktionswert 1

$$f = \bigvee_{i=1}^{2^n} \hat{f}_i \cdot m(i)$$
, mit $m(i)$: Minterm (i)

auch: kanonische disjunktive Normalform sum-of-products (SOP)

Disjunktive Normalform: Minterme

8.3 Schaltfunktionen - Normalformer

64-040 Rechnerstrukturen und Betriebssysteme

- ▶ Beispiel: alle 2³ Minterme für drei Variablen
- ▶ jeder Minterm nimmt nur für eine Belegung der Eingangsvariablen den Wert 1 an

<i>x</i> ₃	<i>x</i> ₂	x_1	Minterme
0	0	0	$\overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1}$
0	0	1	$\overline{x_3} \wedge \overline{x_2} \wedge x_1$
0	1	0	$\overline{x_3} \wedge x_2 \wedge \overline{x_1}$
0	1	1	$\overline{x_3} \wedge x_2 \wedge x_1$
1	0	0	$x_3 \wedge \overline{x_2} \wedge \overline{x_1}$
1	0	1	$x_3 \wedge \overline{x_2} \wedge x_1$
1	1	0	$x_3 \wedge x_2 \wedge \overline{x_1}$
1	1	1	$x_3 \wedge x_2 \wedge x_1$

8.3 Schaltfunktionen - Normalformen

64-040 Rechnerstrukturen und Betriebssysteme

<i>X</i> 3	<i>X</i> ₂	<i>x</i> ₁	f(x)
<i>x</i> ₃	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- ▶ Funktionstabelle: Minterm $0 \equiv \overline{x_i}$ $1 \equiv x_i$
- ▶ für f sind nur drei Koeffizienten der DNF gleich 1
- \Rightarrow DNF: $f(x) = (\overline{x_3} \land x_2 \land \overline{x_1}) \lor (\overline{x_3} \land x_2 \land x_1) \lor (x_3 \land x_2 \land \overline{x_1})$

- disjunktive Form (sum-of-products): die disjunktive Verknüpfung (ODER) von Termen. Jeder Term besteht aus der UND-Verknüpfung von Schaltvariablen, die entweder direkt oder negiert auftreten können
- entspricht dem Zusammenfassen ("Minimierung") von Termen aus der disjunktiven Normalform
- disjunktive Form ist nicht eindeutig (keine Normalform)
- Beispiel

DNF
$$f(x) = (\overline{x_3} \wedge x_2 \wedge \overline{x_1}) \vee (\overline{x_3} \wedge x_2 \wedge x_1) \vee (x_3 \wedge x_2 \wedge \overline{x_1})$$

minimierte disjunktive Form $f(x) = (\overline{x_3} \wedge x_2) \vee (x_3 \wedge x_2 \wedge \overline{x_1})$

- disjunktive Form (sum-of-products): die disjunktive Verknüpfung (ODER) von Termen. Jeder Term besteht aus der UND-Verknüpfung von Schaltvariablen, die entweder direkt oder negiert auftreten können
- entspricht dem Zusammenfassen ("Minimierung") von Termen aus der disjunktiven Normalform
- disjunktive Form ist nicht eindeutig (keine Normalform)
- Beispiel

DNF
$$f(x) = (\overline{x_3} \wedge x_2 \wedge \overline{x_1}) \vee (\overline{x_3} \wedge x_2 \wedge x_1) \vee (x_3 \wedge x_2 \wedge \overline{x_1})$$

minimierte disjunktive Form $f(x) = (\overline{x_3} \wedge x_2) \vee (x_3 \wedge x_2 \wedge \overline{x_1})$
 $f(x) = (x_2 \wedge \overline{x_1}) \vee (\overline{x_3} \wedge x_2 \wedge x_1)$

- Maxterm: die ODER-Verknüpfung aller Schaltvariablen einer Schaltfunktion, die Variablen dürfen dabei negiert oder nicht negiert auftreten
- Konjunktive Normalform: die konjunktive Verknüpfung aller Maxterme μ mit dem Funktionswert 0

$$f = \bigwedge_{i=1}^{2^n} \hat{f}_i \cdot \mu(i)$$
, mit $\mu(i)$: Maxterm (i)

auch: kanonische konjunktive Normalform product-of-sums (POS)

- ▶ Beispiel: alle 2³ Maxterme für drei Variablen
- ▶ jeder Maxterm nimmt nur für eine Belegung der Eingangsvariablen den Wert 0 an

<i>X</i> ₃	<i>x</i> ₂	<i>x</i> ₁	Maxterme
0	0	0	$x_3 \lor x_2 \lor x_1$
0	0	1	$x_3 \lor x_2 \lor \overline{x_1}$
0	1	0	$x_3 \vee \overline{x_2} \vee x_1$
0	1	1	$x_3 \vee \overline{x_2} \vee \overline{x_1}$
1	0	0	$\overline{x_3} \lor x_2 \lor x_1$
1	0	1	$\overline{x_3} \lor x_2 \lor \overline{x_1}$
1	1	0	$\overline{x_3} \vee \overline{x_2} \vee x_1$
1	1	1	$\overline{x_3} \vee \overline{x_2} \vee \overline{x_1}$

Konjunktive Normalform: Beispiel

8.3 Schaltfunktionen - Normalformen

64-040 Rechnerstrukturen und Betriebssysteme

<i>X</i> 3	<i>X</i> ₂	<i>x</i> ₁	f(x)
<i>x</i> ₃	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- ▶ Funktionstabelle: Maxterm $0 \equiv x_i$ $1 \equiv \overline{x_i}$
- ▶ für f sind fünf Koeffizienten der KNF gleich 0

$$\Rightarrow \mathsf{KNF:} \quad f(x) = (x_3 \lor x_2 \lor x_1) \land (x_3 \lor x_2 \lor \overline{x_1}) \land (\overline{x_3} \lor x_2 \lor x_1) \land (\overline{x_3} \lor x_2 \lor \overline{x_1}) \land (\overline{x_3} \lor x_2 \lor \overline{x_1})$$

- konjunktive Form (product-of-sums): die konjunktive Verknüpfung (UND) von Termen. Jeder Term besteht aus der ODER-Verknüpfung von Schaltvariablen, die entweder direkt oder negiert auftreten können
- entspricht dem Zusammenfassen ("Minimierung") von Termen aus der konjunktiven Normalform
- konjunktive Form ist nicht eindeutig (keine Normalform)
- Beispiel

$$\mathsf{KNF} \quad f(x) = (x_3 \lor x_2 \lor x_1) \land (x_3 \lor x_2 \lor \overline{x_1}) \land (\overline{x_3} \lor x_2 \lor x_1) \land (\overline{x_3} \lor x_2 \lor \overline{x_1}) \land (\overline{x_3} \lor \overline{x_2} \lor \overline{x_1})$$

minimierte konjunktive Form

$$f(x) = (x_3 \vee x_2) \wedge (x_2 \vee x_1) \wedge (\overline{x_3} \vee \overline{x_1})$$

A. Måder 471

► Reed-Muller Form: die additive Verknüpfung aller Reed-Muller-Terme mit dem Funktionswert 1

$$f = \bigoplus_{i=1}^{2^n} \hat{f}_i \cdot RM(i)$$

- ▶ mit den Reed-Muller Basisfunktionen RM(i)
- ▶ Erinnerung: Addition im GF(2) ist die XOR-Operation

8.3 Schaltfunktionen - Normalformen

64-040 Rechnerstrukturen und Betriebssysteme

Basisfunktionen sind:

rekursive Bildung: bei n bit alle Basisfunktionen von (n-1)-bit und zusätzlich das Produkt von x_n mit den Basisfunktionen von (n-1)-bit

Umrechnung von gegebenem Ausdruck in Reed-Muller Form?

▶ Ersetzen der Negation: $\overline{a} = a \oplus 1$

Ersetzen der Disjunktion: $a \lor b = a \oplus b \oplus ab$

Ausnutzen von: $a \oplus a = 0$

Beispiel

$$f(x_1, x_2, x_3) = (\overline{x_1} \lor x_2)x_3$$

$$= (\overline{x_1} \oplus x_2 \oplus \overline{x_1}x_2)x_3$$

$$= ((1 \oplus x_1) \oplus x_2 \oplus (1 \oplus x_1)x_2)x_3$$

$$= (1 \oplus x_1 \oplus x_2 \oplus x_2 \oplus x_1x_2)x_3$$

$$= x_3 \oplus x_1x_3 \oplus x_1x_2x_3$$

- ▶ lineare Umrechnung zwischen Funktion f, bzw. der Funktionstabelle (disjunktive Normalform), und RMF
- ▶ Transformationsmatrix A kann rekursiv definiert werden (wie die RMF-Basisfunktionen)
- Multiplikation von A mit f ergibt Koeffizientenvektor r der RMF

$$r = A \cdot f$$
 und $f = A \cdot r$

gilt wegen: $r = A \cdot f$ und $A \cdot A = I$, also $f = A \cdot r$!

$$A_0 = (1)$$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Reed-Muller Form: Transformationsmatrix (cont.)

8.3 Schaltfunktionen - Normalformen

64-040 Rechnerstrukturen und Betriebssysteme

$$A_2 = egin{pmatrix} 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

. . .

$$A_n = \begin{pmatrix} A_{n-1} & 0 \\ A_{n-1} & A_{n-1} \end{pmatrix}$$

<i>X</i> 3	<i>X</i> ₂	x_1	f(x)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- ▶ Berechnung durch Rechenregeln der Boole'schen Algebra oder Aufstellen von A_3 und Ausmultiplizieren: $f(x) = x_2 \oplus x_3x_2x_1$
- ▶ häufig kompaktere Darstellung als DNF oder KNF

- $f(x_3, x_2, x_1) = \{0, 0, 1, 1, 0, 0, 1, 0\}$ (Funktionstabelle)
- ▶ Aufstellen von A₃ und Ausmultiplizieren

$$r = A_3 \cdot f = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Basisfunktionen: $\{1, x_1, x_2, x_2x_1, x_3, x_3x_1, x_3x_2, x_3x_2x_1\}$ führt zur gesuchten RMF:

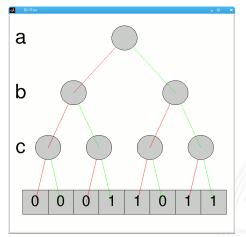
$$f(x_3, x_2, x_1) = r \cdot RM(3) = x_2 \oplus x_3x_2x_1$$

- ▶ Darstellung einer Schaltfunktion als Baum/Graph
- jeder Knoten ist einer Variablen zugeordnet
 jede Verzweigung entspricht einer if-then-else-Entscheidung
- vollständige Baum realisiert Funktionstabelle
- + einfaches Entfernen/Zusammenfassen redundanter Knoten
- ▶ Beispiel: Multiplexer $f(a, b, c) = (a \wedge \overline{c}) \vee (b \wedge c)$

Entscheidungsbaum: Beispiel

8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

64-040 Rechnerstrukturen und Betriebssysteme



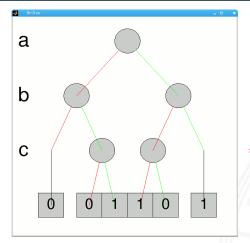
$$f(a,b,c) = (a \wedge \overline{c}) \vee (b \wedge c)$$

▶ rot: 0-Zweig grün: 1-Zweig

Entscheidungsbaum: Beispiel (cont.)

8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

64-040 Rechnerstrukturen und Betriebssysteme



 $f(a,b,c) = (a \wedge \overline{c}) \vee (b \wedge c)$

→ Knoten entfernt

▶ rot: 0-Zweig grün: 1-Zweig

Reduced Ordered Binary-Decision Diagrams (ROBDD) Binäres Entscheidungsdiagramm

8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

64-040 Rechnerstrukturen und Betriebssysteme

- Variante des Entscheidungsbaums
- ▶ vorab gewählte Variablenordnung (ordered)
- ► redundante Knoten werden entfernt (reduced)
- ▶ ein ROBDD ist eine Normalform für eine Funktion
- ▶ viele praxisrelevante Funktionen sehr kompakt darstellbar $\mathcal{O}(n) \dots \mathcal{O}(n^2)$ Knoten bei n Variablen
- wichtige Ausnahme: *n*-bit Multiplizierer ist $\mathcal{O}(2^n)$
- derzeit das Standardverfahren zur Manipulation von (großen) Schaltfunktionen

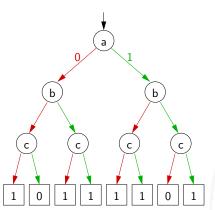
R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, [Bry86]

8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

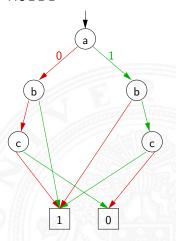
64-040 Rechnerstrukturen und Betriebssysteme

Entscheidungsbaum

$$f = (abc) \lor (a\overline{b}) \lor (\overline{a}b) \lor (\overline{a}\overline{b}\overline{c})$$



ROBDD

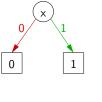


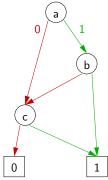
64-040 Rechnerstrukturen und Betriebssysteme

8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

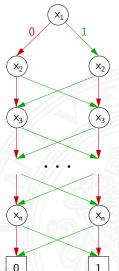
$$f(x) = x$$

$$f(x) = x$$
 $g = (ab) \lor c$





Parität $p = x_1 \oplus x_2 \oplus \dots x_n$



ROBDD: Problem der Variablenordnung

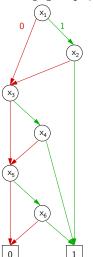
8.4 Schaltfunktionen - Entscheidungsbäume und OBDDs

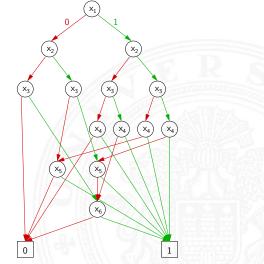
64-040 Rechnerstrukturen und Betriebssysteme

Anzahl der Knoten oft stark abhängig von der Variablenordnung

$$f = x_1 x_2 \lor x_3 x_4 \lor x_5 x_6$$
 $g = x_1 x_4 \lor x_2 x_5 \lor x_3 x_6$

$$g = x_1 x_4 \vee x_2 x_5 \vee x_3 x_6$$





 mehrere (beliebig viele) Varianten zur Realisierung einer gegebenen Schaltfunktion bzw. eines Schaltnetzes

Minimierung des Realisierungsaufwandes:

▶ diverse Kriterien, technologieabhängig

Hardwarekosten

Hardwareeffizienz

Geschwindigkeit

Testbarkeit

Robustheit

Anzahl der Gatter

z.B. NAND statt XOR

Anzahl der Stufen, Laufzeiten

Erkennung von Produktionsfehlern

z.B. ionisierende Strahlung

8.5 Schaltfunktionen - Realisierungsaufwand und Minimierung

64-040 Rechnerstrukturen und Betriebssysteme

- Vereinfachung der gegebenen Schaltfunktionen durch Anwendung der Gesetze der Boole'schen Algebra
- ▶ im Allgemeinen nur durch Ausprobieren
- ohne Rechner sehr mühsam
- ▶ keine allgemeingültigen Algorithmen bekannt
- Heuristische Verfahren
 - ► Suche nach *Primimplikanten* (= kürzeste Konjunktionsterme)
 - Quine-McCluskey-Verfahren und Erweiterungen

8.5 Schaltfunktionen - Realisierungsaufwand und Minimierung

64-040 Rechnerstrukturen und Betriebssysteme

Ausgangsfunktion in DNF

$$y(x) = \overline{x_3} x_2 x_1 \overline{x_0} \vee \overline{x_3} x_2 x_1 x_0 \vee x_3 \overline{x_2} \overline{x_1} x_0 \vee x_3 \overline{x_2} x_1 \overline{x_0} \vee x_3 \overline{x_2} x_1 x_0 \vee x_3 x_2 \overline{x_1} x_0 \vee x_3 x_2 x_1 \overline{x_0} \vee x_3 x_2 x_1 x_0$$

Zusammenfassen benachbarter Terme liefert

$$y(x) = \overline{x_3} x_2 x_1 \vee x_3 \overline{x_2} x_0 \vee x_3 \overline{x_2} x_1 \vee x_3 x_2 x_0 \vee x_3 x_2 x_1$$

▶ aber bessere Lösung ist möglich (weiter Umformen)

$$y(x) = x_2 x_1 \lor x_3 x_0 \lor x_3 x_1$$

- Darstellung einer Schaltfunktion im KV-Diagramm
- ► Interpretation als disjunktive Normalform (konjunktive NF)
- ► Zusammenfassen benachbarter Terme durch Schleifen
- ▶ alle 1-Terme mit möglichst wenigen Schleifen abdecken (alle 0-Terme -"- \equiv konjunktive Normalform)
- ► Ablesen der minimierten Funktion, wenn keine weiteren Schleifen gebildet werden können
- ▶ beruht auf der menschlichen Fähigkeit, benachbarte Flächen auf einen Blick zu "sehen"
- ▶ bei mehr als 6 Variablen nicht mehr praktikabel

Erinnerung: Karnaugh-Veitch Diagramm

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

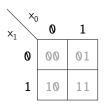
$x_3 x_2$	× ₀	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$x_3 x_2$	× ₀	01	11	10
				0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

- ▶ 2D-Diagramm mit $2^n = 2^{n_y} \times 2^{n_x}$ Feldern
- ▶ gängige Größen sind: 2×2, 2×4, 4×4 darüber hinaus: mehrere Diagramme der Größe 4×4
- ▶ Anordnung der Indizes ist im einschrittigen-Code / Gray-Code
- ⇒ benachbarte Felder unterscheiden sich gerade um 1 Bit

KV-Diagramme: 2...4 Variable $(2\times2, 2\times4, 4\times4)$

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen



x_1	× ₀	01	11	10
0	000	001	011	010
1	100	101	111	110

x ₃ x ₂	× ₀	01	11	10
	0000			
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

- ► Funktionswerte in zugehöriges Feld im KV-Diagramm eintragen
- Werte 0 und 1 Don't-Care "*" für nicht spezifizierte Werte

wichtig!

- ► 2D-Äquivalent zur Funktionstabelle
- ▶ praktikabel für 3...6 Eingänge
- ▶ fünf Eingänge: zwei Diagramme à 4×4 Felder sechs Eingänge: vier Diagramme à 4×4 Felder
- ▶ viele Strukturen "auf einen Blick" erkennbar

KV-Diagramm: Zuordnung zur Funktionstabelle

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

10

110

x ₁	× ₀	y=f(x)				
0	0	f(0 0)	•	x ₁	0	1
0	1	f(0 1)		0	00	0.1
1	0	f(1 0)		U	00	0.1
1	1	f(1 1)		1	10	11

x ₂	x_1	x_0	y=f(x)				
0	0	0	f(0 0 0)				
0	0	1	f(0 0 1)		× ₀	401	11
0	1	0	f(0 1 0)	x ₂	WW .	01	11
0	1	1	f(0 1 1) -	0	000	001	011
1	0	0	f(1 0 0)	1	100	101	111
1	0	1	f(1 0 1)			4	
1	1	0	f(1 1 0)				~ /
1	1	1	f(1 1 1)			_	

KV-Diagramm: Eintragen aus Funktionstabelle

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

11 10

x ₁	× ₀	y=f(x)		
0	0	0 -	x ₀	1
0	1	0 -		•
1	0	1 -	0 0	0
1	1	1 -	1 1	1

x ₂	x ₁	x ₀	y=f(x)					
0	0	0	0	_					
0	0	1	0	+			X ₁	X ₀	
0	1	0	1	+			x_2	00	10
0	1	1	1	+			0	0	0
1	0	0	0	+	_	111	1	0	0
1	0	1	0	+	_	 -411			1
1	1	0	1	_		 -44			^
1	1	1	0	_		\neg			_

$x_3 x_2$	× ₀	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

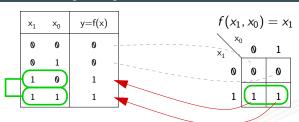
$x_3 x_2$ $x_1 x_0$ 00 01 11 10									
$x_3 x_2$	00	01	11	10					
00	1	0	0	1					
01	0	0	0	0					
11	0	0	1	0					
10	0	0	1	0					

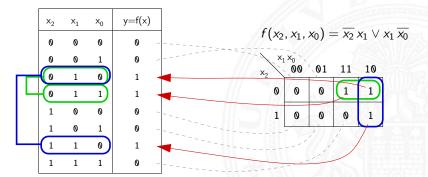
- ▶ Beispielfunktion in DNF mit vier Termen: $f(x) = (\overline{x_3} \, \overline{x_2} \, \overline{x_1} \, \overline{x_0}) \vee (\overline{x_3} \, \overline{x_2} \, x_1 \, \overline{x_0}) \vee (x_3 \, \overline{x_2} \, x_1 \, x_0) \vee (x_3 \, x_2 \, x_1 \, x_0)$
- ► Werte aus Funktionstabelle an entsprechender Stelle ins Diagramm eintragen

- benachbarte Felder unterscheiden sich um 1-Bit
- ▶ falls benachbarte Terme beide 1 sind \Rightarrow Funktion hängt an dieser Stelle nicht von der betroffenen Variable ab
- ▶ zugehörige (Min-) Terme können zusammengefasst werden
- ► Erweiterung auf vier benachbarte Felder (4x1 1x4 2x2)
 - auf acht (4x2 2x4) usw.
- ▶ aber keine Dreier- Fünfergruppen usw. (Gruppengröße 2')
- Nachbarschaft auch "außen herum"
- mehrere Schleifen dürfen sich überlappen

Schleifen: Ablesen der Schleifen

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen





Schleifen: Ablesen der Schleifen (cont.)

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

x ₃ x ₂ x ₁	× ₀	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	1	0
10	0	0	1	0

$x_3 x_2$ $x_1 x_0$ 00 01 11 10									
$x_3 x_2$	00	01	11	10					
00	1	0	0	1					
01	0	0	0	0					
11	0	0	1	0					
10	0	0	1	0					

- ▶ insgesamt zwei Schleifen möglich
- ▶ grün entspricht $(\overline{x_3} \ \overline{x_2} \ \overline{x_0}) = (\overline{x_3} \ \overline{x_2} \ \overline{x_1} \ \overline{x_0}) \lor (\overline{x_3} \ \overline{x_2} \ x_1 \ \overline{x_0})$ blau entspricht $(x_3 \ x_1 \ x_0) = (x_3 \ x_2 \ x_1 \ x_0) \lor (x_3 \ \overline{x_2} \ x_1 \ x_0)$
- ▶ minimierte disjunktive Form $f(x) = (\overline{x_3} \, \overline{x_2} \, \overline{x_0}) \vee (x_3 \, x_1 \, x_0)$

- Minimierung mit KV-Diagrammen [Kor16] tams.informatik.uni-hamburg.de/research/software/ tams-tools/kvd-editor.html
 - ► Auswahl der Funktionalität: Edit function, Edit loops
 - Explizite Eingabe: Open Diagram From Expressions

Tipp!

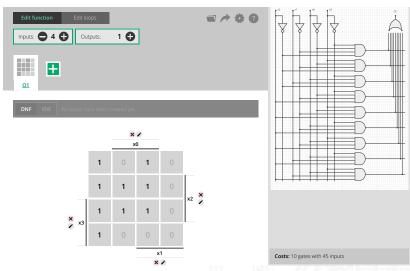
- 1 Funktion: Maustaste ändert Werte
- 2 Schleifen: Auswahl und Aufziehen mit Maustaste
- Anzeige des zugehörigen Hardwareaufwands und der Schaltung
- ► Applet zur Minimierung mit KV-Diagrammen [HenKV] tams.informatik.uni-hamburg.de/applets/kvd
 - Auswahl der Funktionalität: Edit function, Add loop . . .
 - Ändern der Ein-/Ausgänge: File Examples User define dialog
 - 1 Funktion: Maustaste ändert Werte
 - 2 Schleifen: Maustaste, shift+Maus, ctrl+Maus
 - Anzeige des zugehörigen Hardwareaufwands und der Schaltung
 - ► Achtung: andere Anordnung der Eingangsvariablen als im Skript

 \Rightarrow andere Anordnung der Terme im KV-Diagramm

KV-Diagramm Editor: Screenshots

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

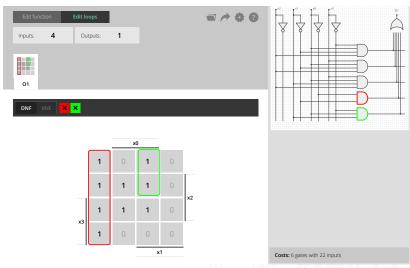


Eingabe der Schaltfunktion

KV-Diagramm Editor: Screenshots (cont.)

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

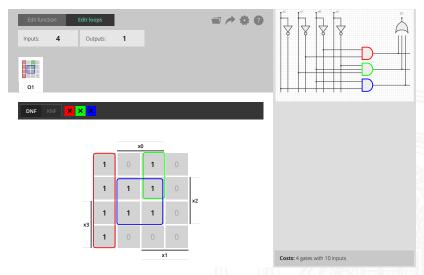


Minimierung durch Schleifenbildung

KV-Diagramm Editor: Screenshots (cont.)

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

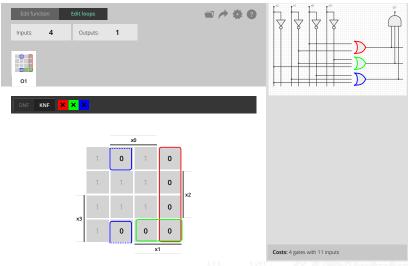


► Hardware-Kosten: # Gatter, Eingänge

KV-Diagramm Editor: Screenshots (cont.)

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen

64-040 Rechnerstrukturen und Betriebssysteme

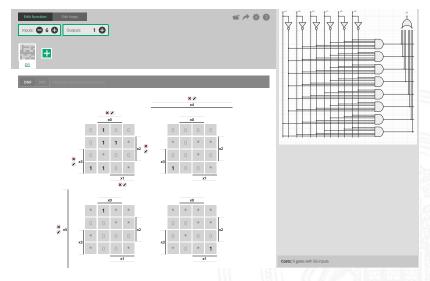


Konjunktive Form

- ▶ in der Praxis: viele Schaltfunktionen unvollständig definiert weil bestimmte Eingangskombinationen nicht vorkommen
- zugehörige Terme als *Don't-Care* markieren typisch: Sternchen "*" in Funktionstabelle/KV-Diagramm
- ▶ solche Terme bei Minimierung nach Wunsch auf 0/1 setzen
- ► Schleifen dürfen *Don't-Cares* enthalten
- ► Schleifen möglichst groß

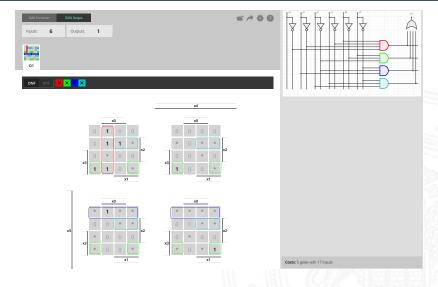
KV-Diagramm Editor: 6 Variablen, Don't-Cares

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen



KV-Diagramm Editor: 6 Variablen, *Don't-Cares* (cont.)

8.6 Schaltfunktionen - Minimierung mit KV-Diagrammen



- ► Algorithmus zur Minimierung einer Schaltfunktion
- ▶ Notation der Terme in Tabellen, n Variablen
- ► Prinzip entspricht der Minimierung im KV-Diagramm aber auch geeignet für mehr als sechs Variablen
- Grundlage gängiger Minimierungsprogramme
- ► Sortieren der Terme nach Hamming-Abstand
- ► Erkennen der unverzichtbaren Terme ("Primimplikanten")
- Aufstellen von Gruppen benachbarter Terme (mit Distanz 1)
- ► Zusammenfassen geeigneter benachbarter Terme

Becker, Molitor: Technische Informatik – eine einführende Darstellung [BM08]

Schiffmann, Schmitz: Technische Informatik I [SS04]

- [BM08] B. Becker, P. Molitor: *Technische Informatik* eine einführende Darstellung. 2. Auflage, Oldenbourg, 2008. ISBN 978-3-486-58650-3
- [SS04] W. Schiffmann, R. Schmitz: Technische Informatik 1 –
 Grundlagen der digitalen Elektronik.
 5. Auflage, Springer-Verlag, 2004. ISBN 978–3–540–40418–7
- Division in Education in the Control of the Control
- [WH03] H.D. Wuttke, K. Henke: Schaltsysteme Eine automatenorientierte Einführung. Pearson Studium, 2003. ISBN 978–3–8273–7035–8
- [Bry86] R.E. Bryant: *Graph-Based Algorithms for Boolean Function Manipulation*. in: *IEEE Trans. Computers* 35 (1986), Nr. 8, S. 677–691

- [Kor16] Laszlo Korte: TAMS Tools for eLearning.
 Universität Hamburg, FB Informatik, 2016, BSc Thesis. tams.
 informatik.uni-hamburg.de/research/software/tams-tools
- [HenKV] N. Hendrich: KV-Diagram Simulation.
 Universität Hamburg, FB Informatik, Lehrmaterial.
 tams.informatik.uni-hamburg.de/applets/kvd
- [Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/ vorlesung/t1