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Imagine throwing a basketball
Motivation Related Work Approach Results

Source: https://blog.playo.co/how-to-improve-free-throw-shooting/
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Motivation: Latent Imagination
Motivation Related Work Approach Results

Continuous control
I In complex environments

I Uncertainties
I Dynamic environments
I Unpredictable situations

I With contact forces
I Peg-insertion, Assembly
I Locomotion (bipedal robots)

Left: Human-Robot collaboration (https://interactive-

robotics.engineering.asu.edu/autonomous-robots-special-issue/),

Right: Locomotion in uncertain environment

(https://www.youtube.com/watch?v=k7s1sr4JdlI)
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Reinforcement Learning - Overview
Motivation Related Work Approach Results
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Related Work - Model-free
Motivation Related Work Approach Results

Playing Atari with Deep Reinforcement
Learning [MKS+13]
I DQN
I Input direct from images

I Converted to greyscale
I Downscaled/Cropped to 84x84

I Uses non-continuous actions

Performance comparison of DQN and other approaches in different

Atari games. [MKS+13]

Different Atari games learned by DQN. [MKS+13]
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Related Work - Model-free
Motivation Related Work Approach Results

Continuous Control with Deep Rein-
forcement Learning [LHP+19]
I Uses continuous actions
I Actor-critic
I Q-Learning

Overview of the actor critic approach in reinforcement learning.
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Related Work - Model-based
Motivation Related Work Approach Results

World Models [HS18]
I Learns world model using Variational Auto Encoder (VAE)
I Two training phases

I 1. Encoding World
I 2. Predict future states

VAE encodes an image to a small latent vector representing the world. [HS18]
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Related Work - Model-based
Motivation Related Work Approach Results

Process overview of PlaNet. [HS18]
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Related Work - Model-based
Motivation Related Work Approach Results

Learning Latent Dynamics for Planning from
Pixels [HLF+19]

I Deep Planning Network (PlaNet)
I Recurrent State Space Model (RSSM)
I Same Encoder/Decoder from World

models [HS18]
I Predicts multiple (few 1000) solutions

and pick the best at each time step
I No policy required Overview of the Recurrent State Space Model. [HLF+19]
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Dreamer Overview
Motivation Related Work Approach Results

Concept: Train directly in latent space
I Saves computational resources skipping the image encoding
The three stages
I 1. Learn to encode world from past experience
I 2. Learn to pick best actions in latent space
I 3. Perform in new scenarios and collect new data

Difference to previous approaches
Training iterates through all stages multiple times
I Own performance influences experience
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Dreamer Overview
Motivation Related Work Approach Results

The three training stages of the Dreamer architecture. [HLBN20]
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Dreamer Architecture
Motivation Related Work Approach Results

Models for World Model
I Representation

I Convolutional Neural Network
(Encoder/Decoder)

I Encode Image to latent state
I Transition

I Recurrent State Space Model
I Predict next latent state given

latent state + action
I Reward

I Fully Connected Neural Network
I Predict the reward for given latent

state

Models for Behavior Learning
I Actor Network

I Fully Connected Neural Network
I Pick action given latent state

I Value Network
I Fully Connected Neural Network
I Estimate best value given latent

state
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Dreamer Architecture - Encoder/Decoder
Motivation Related Work Approach Results

I Uses VAE from World models [HS18]
I Latent space

I 2 vectors of length 30
I Represent 30 mean and variance pairs
I True state: just mean vector
I Stochastic state: sample from gaussian

VAE used to encode/decode latent vectors. [HS18]
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Dreamer Architecture - RSSM
Motivation Related Work Approach Results

Recurrent State Space Model [HLF+19]
I Recurrent Neural Network
I Deterministic part ht

I Forwards the actual information present
I Stochastic part st

I Helps predicting multiple futures
I Useful for partial observability

Overview of RSSM. [HLF+19]
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Dreamer Architecture - Reward/Action/Value
Motivation Related Work Approach Results

All other models (Reward, Action, Value)
I 3 Dense Layers with 300 neurons
I Exponential Linear Unit activation

Reward/Value Model
I Scalar output (1 neuron)
Actor Model
I High dimensional (depends on task)
I Continuous (real numbers)

ELU activation. Source: https://blog.robofied.com/scaled-elu-

activation-function/
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Training Process - Learn World Model
Motivation Related Work Approach Results

Overview of world model learning step. [HLBN20]
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Training Process - Learn Behaviors
Motivation Related Work Approach Results

Overview of behavior learning step. [HLBN20]
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Training Process - Value Estimator
Motivation Related Work Approach Results

I Trains the actor and value Network
I exponentially weighted average of value estimates

Equation for the value estimator. [HLBN20]
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Training Process - Value Estimator
Motivation Related Work Approach Results

Visualisation of the value estimation Vλ(sτ ) for t = 0 (here s = 0) with H = 3.
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Training Process - Value Estimator
Motivation Related Work Approach Results

Visualisation of the distribution of the value estimation Vλ(sτ ) for t = 0 with H = 3.
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Training Process - Learn Behaviors
Motivation Related Work Approach Results

Overview of behavior learning step. [HLBN20]
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Training Process - Interact in Environment
Motivation Related Work Approach Results

Overview of environment interaction step. [HLBN20]

F. Wieczorek – Dream to Control: Learning Behaviors by Latent Imagination 24 / 31



Results - Tasks
Motivation Related Work Approach Results

Selection of different tasks requiring continuous control. [HLBN20]
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Results - Scores in Tasks
Motivation Related Work Approach Results

Comparison of overall performance between different algorithms. [HLBN20]
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Results - Efficiency
Motivation Related Work Approach Results

Comparison of efficiency between different algorithms. [HLBN20]
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Results - Reconstructed predictions
Motivation Related Work Approach Results

Comparison between the reconstructed predictions of dynamics (given five images) and the actual outcome. [HLBN20]
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Conclusion
Motivation Related Work Approach Results

I Learns accurate world model using images
I Efficiently trains directly on latent states
I Estimates values beyond time horizon
I Exceeds state-of-the-art algorithms in performance/efficiency

Future Work
I Mastering Atari with Discrete World Models [HLNB21]
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