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Imagine throwing a basketball

Motivation

Source: https://blog.playo.co/how-to-improve-free-throw-shooting/
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Motivation: Latent Imagination

Motivation

Continuous control
» In complex environments

» Uncertainties
» Dynamic environments
» Unpredictable situations

> W|th contact forces Left: Human-Robot collaboration (https://interactive-
> Peg_insertion Assemb|y robotics.engineering.asu.edu/autonomous-robots-special-issue/),
» Locomotion (b|peda| robots) Right: Locomotion in uncertain environment

(https://www.youtube.com/watch?v=k7slsr4JdIl)
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Reinforcement Learning - Overview
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Reinforcement Learning - Overview
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Reinforcement Learning - Overview

Motivation
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Related Work - Model-free

M Related Work

1 1 1 i B. Rider | Breakout | Enduro | Pong | Q¥bert | Seaquest | S.Invaders
Playing Atari with Deep Reinforcement [ ‘Rider [ Breakout | Enduro [ Pong [ Qbert [ Seauest [ 5. Tvad
. Sarsa 3] 996 5.2 120 | —19 | 614 665 271
Learnlng [M KS+13] Conti @ | 1743 6 | 159 | —17 | 960 723 268
DQN 4092 168 470 20 | 1952 | 1705 581
Human TA56 31 368 | —3 | 18900 | 28010 3690
> DQ N HNcat Best8] | 3616 52 106 T0 | 1800 | 920 1720
. . HNeat Pixel [8] | 1332 1 o1 —16_| 1325 | 800 1145
P Input direct from images [DON Best S8 | 25 | 6ol | 21 | 450 | 170 | 105
» Converted to greyscale
» DOWnSCGIed/CrOpped to 84)(84 Performance comparison of DQN and other approaches in different

Atari games. [MKST13]

» Uses non-continuous actions

Different Atari games learned by DQN. [MKS™13]
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Related Work - Model-free

Related Work

Environment

Continuous Control with Deep Rein-
forcement Learning [LHP*19]

» Uses continuous actions
» Actor-critic
> Q-Learning

Overview of the actor critic approach in reinforcement learning.
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Related Work - Model-based

Related Work

World Models [HS18]

» Learns world model using Variational Auto Encoder (VAE)

> Two training phases

»> 1. Encoding World
» 2. Predict future states

Original Observed Frame

Encoder %@—' Decoder

Reconstructed Frame

VAE encodes an image to a small latent vector representing the world. [HS18]
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Related Work - Model-based

Related Work

At each time step, our agent
receives an observation from
the environment.

World Model

The Vision Model (V) encades the
high-dimensional observation into \ \ \
a low-dimensional latent vector.

z z

z
The Memory RNN (M) integrates Mj h KF‘M

the historical codes to create a
representation that can predict
future states.
h h h
A small Controller (C) uses the
representations from both
z C z C z c

V and M to select good actions.

)
&

The agent performs actions that
go back and affect the environment.
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Related Work - Model-based

Related Work

Learning Latent Dynamics for Planning from
Pixels [HLF*19]

» Deep Planning Network (PlaNet)

» Recurrent State Space Model (RSSM)

» Same Encoder/Decoder from World
models [HS518]

» Predicts multiple (few 1000) solutions
and pick the best at each time step

» No policy required

Overview of the Recurrent State Space Model. [HLF19]
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Dreamer Overview

Motivation Re d Wor Approach

Concept: Train directly in latent space

> Saves computational resources skipping the image encoding
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Dreamer Overview

Motivation Related Wol Approach

Concept: Train directly in latent space

> Saves computational resources skipping the image encoding
The three stages

> 1. Learn to encode world from past experience

> 2. Learn to pick best actions in latent space

» 3. Perform in new scenarios and collect new data
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Dreamer Overview

Approach

Motivation

Concept: Train directly in latent space
> Saves computational resources skipping the image encoding

The three stages
> 1. Learn to encode world from past experience
> 2. Learn to pick best actions in latent space

» 3. Perform in new scenarios and collect new data

Difference to previous approaches
Training iterates through all stages multiple times

» Own performance influences experience
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Dreamer Overview

Approach

(a) Learn dynamics from experience (b) Learn behavior in imagination  (c) Act in the environment

The three training stages of the Dreamer architecture. [HLBN20]
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Dreamer Architecture

Motivation

Approach

Models for World Model
» Representation

» Convolutional Neural Network
(Encoder/Decoder)
» Encode Image to latent state
» Transition
> Recurrent State Space Model
» Predict next latent state given
latent state + action
» Reward
» Fully Connected Neural Network

» Predict the reward for given latent
state
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Dreamer Architecture

Motivation Related Work

Approach

Models for World Model
» Representation

» Convolutional Neural Network Models for Behavior Learning

(Encoder/Decoder)
>
» Encode Image to latent state Actor Network
-, » Fully Connected Neural Network
» Transition

» Pick action given latent state
> Recurrent State Space Model

. . >
» Predict next latent state given Value Network
latent state + action : Eul!y ConEected II\Ieur-al Neltwork
stimate best value given latent
» Reward state p

» Fully Connected Neural Network
» Predict the reward for given latent
state
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» Uses VAE from World models [HS18]
> Latent space
> 2 vectors of length 30
P> Represent 30 mean and variance pairs
» True state: just mean vector
P Stochastic state: sample from gaussian
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Dreamer Architecture - Encoder/Decoder

Approach

Input Image 64x64x3

relu conv 32x4

31x31x32

relu conv 64x4

14x14x64

“_relu conv 128x4

6x6x128

relu conv 256x4

2x2x256

T—J z=p+0NO,1)
dense .~
1x1x1024
relu deconv 128x5
5x5x128

_relu deconv 64x5™.

13x13x64

relu deconv 32x6

30x30x32

sigmoid deconv 3x6

Reconstruction 64x64x3

VAE used to encode/decode latent vectors. [HS18]




Dreamer Architecture - RSSM

Approach

Recurrent State Space Model [HLFT19]

» Recurrent Neural Network
» Deterministic part h;

» Forwards the actual information present
» Stochastic part s;

» Helps predicting multiple futures
» Useful for partial observability

Overview of RSSM. [HLF"19]
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Dreamer Architecture - Reward/Action /Value

Motivation Relate o Approach

Scaled Exponential Linear Unit

All other models (Reward, Action, Value)
» 3 Dense Layers with 300 neurons

» Exponential Linear Unit activation

Reward/Value Model
» Scalar output (1 neuron)

Actor Model -100 -75 -50 -25 00 2.5 5.0 7.5 10.0

Scaled Exponential Linear Unit(x)
-

» High dimensional (depends on task)

ELU activation.  Source: https://blog.robofied.com/scaled-elu-

» Continuous (real numbers)

activation-function/
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Training Process - Learn World Model

Approach

while not converged do
for update step ¢ = 1..C' do
// Dynamics learning
Draw B data sequences {(a,,ot,rt)}f;{‘ ~D.
1 2 Compute model states s; ~ po(S¢ | Se—1, as—1,04)-

: : Update # using representation learning.

/ /!

AAAAA
s fafalala
O1 0l OZ OZ O3

1
6)

Overview of world model learning step. [HLBN20]
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Training Process - Learn Behaviors

Approach

v, v, a, 3 a3
// Behavior learning
N X -\ Imagine trajectories {(s,,a, )}t from each s;.
Predict rewards E (qo (7 | 5,)) and values vy (s, ).

F. Wieczorek — Dream to Control: Learn

Compute value estimates V(s-) via Equation 6.
Update ¢ « ¢ +aVy X vy (s,).

2
Update 9 +— 1) — 'V, Eff:‘f %va s,)—VA(sT)H .

Overview of behavior learning step. [HLBN20]

ehaviors by Latent Imagination



Training Process - Value Estimator

Approach

» Trains the actor and value Network

> exponentially weighted average of value estimates

h—1

VE(sr) = Eqg,.q, ( Z Y T+ Wh_rvlp(sh)) with A = min(7 + k,t + H),

n=t

H—-1
Valse) = (L=X) D> NIV (s,) + ATV (s,),

n=1

Equation for the value estimator. [HLBN20]
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Training Process - Value Estimator

Approach
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Visualisation of the value estimation V(s ) for t = 0 (here s = 0) with H = 3.
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Training Process - Value Estimator

Approach
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Visualisation of the distribution of the value estimation V) (s7) for t = 0 with H = 3.
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Training Process - Learn Behaviors

Approach

v, v, a, 3 a3
// Behavior learning
N X -\ Imagine trajectories {(s,,a, )}t from each s;.
Predict rewards E (qo (7 | 5,)) and values vy (s, ).
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Compute value estimates V(s-) via Equation 6.
Update ¢ « ¢ +aVy X vy (s,).

2
Update 9 +— 1) — 'V, Eff:‘f %va s,)—VA(sT)H .

Overview of behavior learning step. [HLBN20]
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Training Process - Interact in Environment

Approach

// Environment interaction

0y + env.reset ()

for time step t = 1..T do
Compute s, ~ pg(s¢ | $1—1, a1, 0,) from history.
Compute a; ~ g¢(a: | s¢) with the action model.
Add exploration noise to action.
Ty, 0441 + env.step (a) .

1 2 3 Add experience to dataset D < D U {(os, a¢, 1¢) {1}

Overview of environment interaction step. [HLBN20]
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Results - Tasks

Results

(a) Cup (b) Acrobot (c) Hopper (d) Walker (e) Quadruped

Selection of different tasks requiring continuous control. [HLBN20]
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Results - Scores in Tasks

Related Wor Results

Acrobot Swingup Cartpole Swingup Sparse Hopper Hop Hopper Stand
1000 -
) 400 4 800 1 4004
5 300 600 7501
&
2200 1 400 1 2001 5007
o
& 100 1 200 1 2301
0 0 0 0
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.
Pendulum Swingup Quadruped Walk Walker Run
1000 1000
750 8001
g 750 - i
E 600 4 750
& 500 -
_‘g 500 400 4 500
-2 250 4
& 250 200 250 4
04
: - ; 07 . ; ; 04 : : . 0 — :
00 05 1.0 1.5 20 00 05 1.0 1.5 20 00 05 1.0 1.5 2.0 00 05 1.0 1.5 20
Environment Steps 16 Environment Steps  1€6 Environment Steps  1e6 Environment Steps  1e6
—— Dreamer —— Novalue —— PlaNet —— D4PG (le9steps) == A3C (le9 steps, proprio)

Comparison of overall performance between different algorithms. [HLBN20]
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Results - Reconstructed predictions

Motivation Re A Results

Context 6 10 15 20 25 30 35 40 45 50

True

True Model

Model

Comparison between the reconstructed predictions of dynamics (given five images) and the actual outcome. [HLBN20]
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Conclusion

Motivation k Results

P Learns accurate world model using images
> Efficiently trains directly on latent states
P Estimates values beyond time horizon

> Exceeds state-of-the-art algorithms in performance/efficiency

Future Work
» Mastering Atari with Discrete World Models [HLNB21]
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