Introduction to Robotics

Assignment \#5

Due: 15.06.2021, 23.59

Task 5.1 (8 points) Configuration Space - Programming Task:

Given is the planar 2-DOF manipulator as seen in Figure 1.

- The base is mounted at position $(500,500)$ of the reference coordinate system.
- The manipulator is defined as
- link length: $l_{1}=l_{2}=200$
- joint range: $\quad \rho_{1}, \rho_{2} \in[0,2 \pi)$
- The reachable workspace has a radius of 400
- The workspace holds two circular obstacles
- Obstacle o_{1}
- origin: $\quad(270,620)$
- radius: 50
- Obstacle o_{2}

- origin:	$(250,200)$
- radius:	200

5.1.1 (6 points): Use the mechanims of configuration space to shrink the manipulator to a single point. Assume the manipulator to have no physical links and the TCP to be a circle with radius 2 . Plot the configuration space with the two C -obstacles and the point-sized manipulator. Discretize the configuration space to a precision of at least 1°.
5.1.2 (2 points): Plot the start area (circle with radius 10 around $s=(900,500)$) and the two goal areas (circles with radius 10 around $g_{1}=(580,150)$ and $g_{2}=(230,470)$) in the workspace and in the configuration space. Draw a path from s to g_{1} and from s to g_{2}.

Task 5.2 (7 points) Configuration Space with Links - Programming Task:

Extend your program to include the geometrical properties of the links. Assume the links to be mounted at the very edge in the center and to have a width of 10 . Draw a path from s to g_{1} and from s to g_{2}.

Task 5.3 (5 points) Arbitrary C-Obstacles - Programming Task:

Extend the program to support arbitrary polygon obstacles. Assume two new obstacles

- Obstacle o_{3} : a rectangle with the following corner points
- $(650,450),(650,200),(800,200),(800,450)$
- Obstacle o_{4} : a polygon with the following corner points
- $(600,800),(550,900),(750,900),(700,800),(650,750),(600,800)$

Plot the configuration space with C -obstacles $o_{1}-o_{4}$. Draw a path from s to g_{1} and from s to g_{2}.

Figure 1: 2-DOF planar manipulator in workspace with obstacles. Grid distance is 100
Pay attention to the depicted direction of ρ_{1} and ρ_{2}
The red arrows represent the zero position of the joints, the black arrows point in the positive rotation direction
Present the resulting plots as a PDF and pack your executable code (with all required libraries) as a ZIP file.

Hints:

When using python you might find useful:
Shapely library allows for polygons, circles (buffered points), affine transformations and intersections of objects https://pypi.python.org/pypi/Shapely
numpy is a powerful scientific library with fast array transformations and math functions http://www. numpy.org/
math math library grants access to sine, cosine, degree and radians https://docs.python.org/2/ library/math.html
PIL(low) is the python imaging library which can export arrays to images https://pypi.python.org/ pypi/Pillow/2.2.1
mulitprocessing allows to speed up your code by using multiple processes https://docs.python. org/3/library/multiprocessing.html

